共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Extremely strong magnetic fields change the vacuum index of refraction. Although this polarization-dependent effect is small for typical neutron stars, it is large enough to decouple the polarization states of photons travelling within the field. The photon states evolve adiabatically and follow the changing magnetic field direction. The combination of a rotating magnetosphere and a frequency-dependent-state decoupling predicts polarization phase lags between different wavebands, if the emission process takes place well within the light cylinder. This QED effect may allow observations to distinguish between different pulsar-emission mechanisms and to reconstruct the structure of the magnetosphere. 相似文献
3.
The term 'dynamo' means different things to the laboratory fusion plasma and astrophysical plasma communities. To alleviate the resulting confusion and to facilitate interdisciplinary progress, we pinpoint conceptual differences and similarities between laboratory plasma dynamos and astrophysical dynamos. We can divide dynamos into three types: 1. magnetically dominated helical dynamos which sustain a large-scale magnetic field against resistive decay and drive the magnetic geometry towards the lowest energy state, 2. flow-driven helical dynamos which amplify or sustain large-scale magnetic fields in an otherwise turbulent flow and 3. flow-driven non-helical dynamos which amplify fields on scales at or below the driving turbulence. We discuss how all three types occur in astrophysics whereas plasma confinement device dynamos are of the first type. Type 3 dynamos require no magnetic or kinetic helicity of any kind. Focusing on Types 1 and 2 dynamos, we show how different limits of a unified set of equations for magnetic helicity evolution reveal both types. We explicitly describe a steady-state example of a Type 1 dynamo, and three examples of Type 2 dynamos: (i) closed volume and time dependent; (ii) steady state with open boundaries; (iii) time dependent with open boundaries. 相似文献
4.
Recent numerical magnetohydrodynamic calculations by Braithwaite and collaborators support the 'fossil field' hypothesis regarding the origin of magnetic fields in compact stars and suggest that the resistive evolution of the fossil field can explain the reorganization and decay of magnetar magnetic fields. Here, these findings are modelled analytically by allowing the stellar magnetic field to relax through a quasi-static sequence of non-axisymmetric, force-free states, by analogy with spheromak relaxation experiments, starting from a random field. Under the hypothesis that the force-free modes approach energy equipartition in the absence of resistivity, the output of the numerical calculations is semiquantitatively recovered: the field settles down to a linked poloidal–toroidal configuration, which inflates and becomes more toroidal as time passes. A qualitatively similar (but not identical) end state is reached if the magnetic field evolves by exchanging helicity between small and large scales according to an α-dynamo-like, mean-field mechanism, arising from the fluctuating electromotive force produced by the initial random field. The impossibility of matching a force-free internal field to a potential exterior field is discussed in the magnetar context. 相似文献
5.
6.
Axel Brandenburg Simon Candelaresi Piyali Chatterjee 《Monthly notices of the Royal Astronomical Society》2009,398(3):1414-1422
Using mean-field models with a dynamical quenching formalism, we show that in finite domains magnetic helicity fluxes associated with small-scale magnetic fields are able to alleviate catastrophic quenching. We consider fluxes that result from advection by a mean flow, the turbulent mixing down the gradient of mean small-scale magnetic helicity density or the explicit removal which may be associated with the effects of coronal mass ejections in the Sun. In the absence of shear, all the small-scale magnetic helicity fluxes are found to be equally strong for both large- and small-scale fields. In the presence of shear, there is also an additional magnetic helicity flux associated with the mean field, but this flux does not alleviate catastrophic quenching. Outside the dynamo-active region, there are neither sources nor sinks of magnetic helicity, so in a steady state this flux must be constant. It is shown that unphysical behaviour emerges if the small-scale magnetic helicity flux is forced to vanish within the computational domain. 相似文献
7.
David Moss 《Monthly notices of the Royal Astronomical Society》1999,306(2):300-306
A simple non-linear, non-axisymmetric mean field dynamo model is applied to a differentially rotating spherical shell. Two approximations are used for the angular velocity, to represent what is now believed to be the solar rotation law. In each case, stable solutions are found which possess a small non-axisymmetric field component. Although the model has a number of obvious shortcomings, it may be relevant to the problem of the solar active longitudes. 相似文献
8.
We have used Stanford magnetic field maps to construct distributions of longitudinal magnetic field gradients in the neighbourhood of polarity inversion lines. The distributions were constructed with proper account of the type of the polarity inversion lines and of the existence or absence of dark filaments above them. It is shown that for polarity inversion lines that pass inside active regions or on their boundary, grad BII distributions for portions of the lines with persisting filament are shifted toward lower values of gradient as compared with grad BII distributions for portions of the lines without filaments. The influence of the spatial resolution of the magnetograms upon polarity inversion line characteristics is discussed. 相似文献
9.
D. Mitra S. Candelaresi P. Chatterjee R. Tavakol A. Brandenburg 《Astronomische Nachrichten》2010,331(1):130-135
We use direct numerical simulations of forced MHD turbulence with a forcing function that produces two different signs of kinetic helicity in the upper and lower parts of the domain. We show that the mean flux of magnetic helicity from the small‐scale field between the two parts of the domain can be described by a Fickian diffusion law with a diffusion coefficient that is approximately independent of the magnetic Reynolds number and about one third of the estimated turbulent magnetic diffusivity. The data suggest that the turbulent diffusive magnetic helicity flux can only be expected to alleviate catastrophic quenching at Reynolds numbers of more than several thousands. We further calculate the magnetic helicity density and its flux in the domain for three different gauges. We consider the Weyl gauge, in which the electrostatic potential vanishes, the pseudo‐Lorenz gauge, where the speed of light is replaced by the sound speed, and the ‘resistive gauge’ in which the Laplacian of the magnetic vector potential acts as a resistive term. We find that, in the statistically steady state, the time‐averaged magnetic helicity density and the magnetic helicity flux are the same in all three gauges (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
10.
The reduced magnetic helicity is a quantity related to the handedness of the magnetic field fluctuations. In the present paper we study the scaling law of the reduced magnetic helicity in fast streams in the solar wind by using high-resolution magnetic field data by the Ulysses spacecraft. We show that at high frequencies both the left-hand and the right-hand helicity survives, implying that there is no predominance of a single sign. In addition, the scaling law of the magnetic helicity exhibits a strong dependence on the data set analyzed and we do not observe any universal behavior. 相似文献
11.
The non-axisymmetric, non-dipolar magnetic fields of Uranus and Neptune are markedly different from the axially-dipolar dominated fields of the other planets in our Solar System with active dynamos. Stanley and Bloxham [Stanley, S., Bloxham, J., 2004. Nature 428, 151-153] used numerical modeling to demonstrate that Uranus' and Neptune's unusual fields could be the result of a different convective region geometry in these planets. They found that a numerical dynamo operating in a thin shell surrounding a stably-stratified fluid interior produces magnetic field morphologies similar to those of Uranus and Neptune. This geometry for the convective region was initially proposed by Hubbard et al. [Hubbard, W.B., Podolak, M., Stevenson, D.J., 1995. In: Cruickshank, D. (Ed.), Neptune and Triton. Univ. of Arizona Press, Tucson, pp. 109-138] to explain both the magnetic field morphology as well as the low intrinsic heat flows from these planets. Here we examine the influence of varying the stable layer radius in numerical models and compare the results to thin shell models surrounding solid inner cores. We find that a limited range of stable-layer shell thicknesses exist in which Uranus/Neptune-like field morphologies result. This allows us to put constraints on the size of the convective layers in Uranus and Neptune. 相似文献
12.
Accretion to stars with non-dipole magnetic fields 总被引:1,自引:0,他引:1
M. Long M. M. Romanova R. V. E. Lovelace 《Monthly notices of the Royal Astronomical Society》2007,374(2):436-444
13.
14.
T. J. T. Moore C. H. Smith D. K. Aitken T. Fujiyoshi 《Astrophysics and Space Science》1995,224(1-2):521-522
We have obtained diffraction-limited images of the mid-infrared emission and polarization patterns in a number of southern-sky objects. By mapping the polarization produced in absorption or emission by aligned aspherical dust grains, we have been able to trace the detailed spatial structure of magnetic fields in the warm circumstellar material of young molecular-outflow sources and HII regions, in the expanding dust shell of the mass-losing star Eta Carinae, and in the inner parsec of the Galactic Centre. 相似文献
15.
O. A. Andreyeva Ya. I. Zyelyk N. N. Stepanian 《Bulletin of the Crimean Astrophysical Observatory》2008,104(1):1-6
The connection of the differential rotation of solar magnetic fields with the field sign and strength is studied. The synoptic maps of magnetic fields over the last three solar cycles taken at the Kitt Peak Observatory served as input data for the study. The algorithm of magnetic field filtering over 14 chosen strengt intervals and successive 5-degree latitude zones was applied to these data. The Fourier transform of the time series obtained was then used. Analysis of the power spectra led to the conclusion that there are two types of magnetic fields. These differ in strength (0–50 and 50–700 G) and rotation characteristics. The rotation differentiality for strong magnetic field is almost twice as large as that for weak magnetic fields. 相似文献
16.
We apply the model of flux expulsion from the superfluid and superconductive core of a neutron star, developed by Konenkov & Geppert, both to neutron star models based on different equations of state and to different initial magnetic field structures. Initially, when the core and the surface magnetic field are of the same order of magnitude, the rate of flux expulsion from the core is almost independent of the equation of state, and the evolution of the surface field decouples from the core field evolution with increasing stiffness. When the surface field is initially much stronger than the core field, the magnetic and rotational evolution resembles that of a neutron star with a purely crustal field configuration; the only difference is the occurrence of a residual field. In the case of an initially submerged field, significant differences from the standard evolution only occur during the early period of the life of a neutron star, until the field has been re-diffused to the surface. The reminder of the episode of submergence is a correlation of the residual field strength with the submergence depth of the initial field. We discuss the effect of the re-diffusion of the magnetic field on the difference between the real and the active age of young pulsars and on their braking indices. Finally, we estimate the shear stresses built up by the moving fluxoids at the crust–core interface and show that these stresses may cause crust cracking, preferentially in neutron stars with a soft equation of state. 相似文献
17.
More and more observations are showing a relatively weak, but persistent, non-axisymmetric magnetic field co-existing with the dominant axisymmetric field on the Sun. Its existence indicates that the non-axisymmetric magnetic field plays an important role in the origin of solar activity. A linear non-axisymmetric α2 – Ω dynamo model is derived to explore the characteristics of the axisymmetric ( m = 0) and the first non-axisymmetric ( m = 1) modes and to provide a theoretical basis with which to explain the 'active longitude', 'flip-flop' and other non-axisymmetric phenomena. The model consists of an updated solar internal differential rotation, a turbulent diffusivity varying with depth, and an α-effect working at the tachocline in a rotating spherical system. The difference between the α2 –Ω and the α–Ω models and the conditions that favour the non-axisymmetric modes under solar-like parameters are also presented. 相似文献
18.
We study the spatial properties of solar magnetic fields using data from the Solar Vector Magnetograph of the Marshall Space Flight Center (MSFC) (FeI 5250.2 Å) and SOHO/MDI longitudinal magnetic field measurements (Ni 6767.8 Å) (96-min full-disk maps). Our study is focused on two objects: the fractal properties of sunspots and the fractal properties of the spatial magnetic field distribution of active and quiet regions considered as global structures. To study the spatial structure of sunspots, we use a well-known method of determining the fractal dimension based on an analysis of the perimeter—area relation. To analyze the fractal properties of the spatial magnetic field distribution over the solar surface, we use a technique developed by Higuchi. We have revealed the existence of three families of self-similar contours corresponding to the sunspot umbra, penumbra, and adjacent photosphere. The fractal coefficient has maxima near the umbra—penumbra and penumbra—photosphere boundaries. The fractal dependences of the longitudinal and transverse magnetic field distributions are similar, but the fractal numbers themselves for the transverse fields are larger than those for the longitudinal fields approximately by a factor of 1.5. The fractal numbers decrease with increasing mean magnetic field strength, implying that the magnetic field distribution is more regular in active regions. 相似文献
19.
The stability of magnetic fields in the solar tachocline is investigated. We present stability limits for higher azimuthal wave numbers and results on the dependence of the stability on the location of toroidal magnetic fields in latitude. While the dependence of the wave number with the largest growth rate on the magnetic field strength and the magnetic Prandtl number is small, the dependence on the magnetic Reynolds number Rm indicates that lowest azimuthal modes are excited for very high Rm. Upon varying the latitudinal position of the magnetic field belts, we find slightly lower stability limits for high latitudes, and very large stability limits at latitudes below 10°, with little dependence on latitude in between. An increase of the maximum possible field was achieved by adding a poloidal field. The upper limit for the toroidal field which can be stored in the radiative tachocline is then 1000 G, compared to about 100 G for a purely toroidal field as was found in an earlier work. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
20.
N. N. Stepanian O. A. Andryeyeva Ya. I. Zyelyk 《Bulletin of the Crimean Astrophysical Observatory》2009,105(1):1-9
Differences of magnetic field flows of “+” and “?” polarities, i.e. the imbalance of magnetic fields for 26 years—from January 1, 1977, to September 30, 2003—are investigated,. The synoptic maps of the longitudinal vector of Sun’s magnetic field strength obtained at the Kitt Peak National Observatory (United States) and kindly given to us by Dr. J. Harvey have served as the initial material. The imbalance of magnetic fields’ cyclicity features and the deviations from the dipole structure of Sun’s magnetic field are determined. The contribution of latitude zones and fields of various strength into the general magnetic flux from the Sun is found. The latter characteristic was compared with the Sun’s mean magnetic field (MMF) obtained from the observations of the Sun as a star (Kotov et al., 2002; Kotov, 2008). The obtained results testify that the imbalance is one of physical characteristics of the Sun. The confirmations of this conclusion are the strict regularities of the Sun’s dipole structure changing; the complicated character of the imbalance cyclicity, i.e., the multiplicity of cycles; the solar nature of MMF changing; and the distinction between two classes of magnetic fields in the imbalance characteristics. 相似文献