首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In situ chemical oxidation involves the introduction of a chemical oxidant into the subsurface for the purpose of transforming groundwater contaminants into harmless by‐products. Owing to oxidant persistence, groundwater samples collected at hazardous waste sites may contain both the contaminant(s) and the oxidant in a “binary mixture.” Binary mixtures composed of sodium persulfate (2.5 g/L; 10.5 mM) and volatile organic compounds (VOCs) (benzene, toluene, m‐xylene, perchloroethylene, trichloroethylene) were analyzed to assess the impact on the quality of the sample. A significant decline (49 to 100%) in VOC concentrations was measured in binary mixtures using gas chromatography (GC) purge and trap, and GC mass spectroscopy headspace methods. Preservation of the binary mixture samples was achieved through the addition of ascorbic acid (99 to 100% VOC average recovery). High concentrations of ascorbic acid (42 to 420 mM) did not interfere in the measurement of the VOCs and did not negatively impact the analytical instruments. High concentrations of ascorbic acid favored the reaction between persulfate and ascorbic acid while limiting the reaction between persulfate and VOCs. If an oxidant is detected and the binary sample is not appropriately preserved, the quality of the sample is likely to be compromised.  相似文献   

2.
Compound‐specific standardized sampling and storage methods are not available for artificial sweeteners found in groundwater. This study aimed to understand: (1) the appropriate length of storage time for samples containing acesulfame (ACE), sucralose (SUC), saccharin (SAC), and cyclamate (CYC) in simulated groundwater (SGW); (2) conditions of their stability; and (3) which sampling materials are appropriate for sample collection. The evaluated storage conditions included acidification, headspace, exposure to light, and refrigeration; the evaluated sampling materials included steel, stainless steel, aluminum, polyvinyl chloride, polyamide (nylon), polypropylene (PharMed BPT?) tubing, styrene‐ethylene‐butylene co‐polymer (MasterFlex?) tubing, and polytetrafluoroethylene (Teflon?) tubing. All compounds evaluated were stable in storage at 4 °C for 241 d (8 months). Concentrations of artificial sweeteners were consistently within 60% to 120% of original concentrations, except ACE and SAC that were substantially lower under acidified conditions at 25 °C after 241 d. Artificial sweetener concentrations remained nearly constant while in contact with all sampling materials except steel. SEM and TEM images showed oxidation of steel occurred; moreover, removal of all artificial sweetener compounds from aqueous solution had occurred after 289 d. These results suggest artificial sweetener analyses conducted within 14 d of sample collection produce optimal results; however, longer storage times may be acceptable under certain conditions. The results also suggest concentrations of artificial sweeteners in SGW are not affected by contact with typical well casing, sampling, and storage materials, with the exception of steel. The findings from this study will improve the use of artificial sweeteners as tracers in environmental studies.  相似文献   

3.
A portable gas chromatograph was used to screen 32 ground water samples for volatile organic compounds. Seven screened samples were positive; four of the seven samples had volatile organic substances identified by second-column confirmation. Four of the seven positive, screened samples also tested positive in laboratory analyses of duplicate samples. No volatile organic compounds were detected in laboratory analyses of samples that headspace screening indicated to be negative. Samples that contained volatile organic compounds, as identified by laboratory analysis, and that contained a volatile organic compound present in a standard of selected compounds were correctly identified by using the portable gas chromatograph. Comparisons of screened-sample data with laboratory data indicate the ability to detect selected volatile organic compounds at concentrations of about 1 microgram per liter in the headspace of water samples by use of a portable gas chromatograph.  相似文献   

4.
5.
6.
The full spectrum of volatile sulfur compounds was detected in the water column of the permanently stratified meromictic Lake Cadagno. Besides hydrogen sulfide it included methanethiol, carbonyl sulfide, dimethyl sulfide, carbon disulfide, and dimethyl disulfide. Their distribution in the water column suggests that these compounds are of biogenic origin. Except for carbon disulfide which is present in all layers of Lake Cadagno, these volatile organic sulfur compounds are restricted to the anoxic part of the lake. For methanethiol, dimethyl sulfide, and carbon disulfide maximum concentrations were observed in the redox transition zone and in the sediment porewater. Carbon disulfide is the most abundant volatile organic sulfur compound with concentrations of up to 60 μmol L–1. The concentrations of the methylated sulfides are in the nmolar range. Although their concentrations varied during the summer months, seasonal trends of the concentrations of volatile organic sulfur compounds did not follow a consistent pattern. The restriction of most sulfur species to the anoxic layers of the lake indicates that their production originates from anaerobic microbial degradation of biomass and not from its release from a specific precursor like dimethylsulfoniumpropionate as in marine environments.  相似文献   

7.
A large-scale air sparging/soil vapor extraction (AS/SVE) project constructed within coastal plain sediments in New Jersey has demonstrated substantial progress toward remediating ground water through removal of volatile organic compounds (VOCs). Potential concerns identified prior to project implementation regarding hydraulic mounding, reduction in hydraulic conductivity, development of air channels, and the absence of hydraulic containment were assessed and addressed through testing and operational features incorporated into the project. At the project site, AS/SVE has successfully reduced the presence of many VOCs to undetectable levels, while reducing the concentrations of the remaining VOCs by factors of two to 500. The physical agitation caused by air sparging, and incomplete transformation from sorbed and nonaqueous phases to the vapor phase, appears to temporarily increase VOC concentrations and/or mobility of dense nonaqueous phase liquids (DN APLs) within source areas at the project site, but this is addressed in terms of subsequent removal of VOCs by properly placed downgradient treatment lines and VOCs by properly placed downgradient treatment lines and DNAPL recovery wells. This case study identifies and evaluates project-specific features and provides empirical data for potential comparison to other candidates AS/SVE sites.  相似文献   

8.
9.
10.
In order to collect baseline information on the environmental occurrence of volatile organic compounds (VOCs) in groundwater in East China, shallow groundwater samples were collected from five alluvial plains in East China in 2008 to 2009. All samples were analyzed for 54 VOCs representing a wide variety of uses and origins. Sampling sites were mainly selected in the areas to be susceptible to contamination from human activities in terms of previous hydrogeological survey. The data of all samples showed a variety of different hydrogeological systems with potential sources of VOCs, with 36 of the 54 VOCs being found. The most frequently detected compounds include naphthalene (56.9%), chloroform (16.9%), 1,2‐dichloroethane (16.2%), 1,2‐dichloropropane (13.1%), and 1,2,3‐trichlorobenzene (12.3%). The concentrations of methylene chloride, 1,2‐dichloroethane, carbon tetrachloride, trichloroethene, 1,2‐dichloropropane, and tetrachloroethene exceeded the relating drinking water standards. Future work will be needed to identify those factors that are most important in determining the occurrence and concentrations of VOCs in groundwater in China.  相似文献   

11.
The diffusion and adsorption of two common volatile organic compounds, i. e., methanol and benzene, in different zeolite pellets were studied experimentally by using the single pellet moment technique. The experiments were conducted in a one‐sided single pellet adsorption cell at different temperatures in the range between 303 and 343 K. The results showed that both volatile organic tracers were adsorbed reversibly onto all zeolite samples. The overall adsorption equilibrium constants of both volatile organic compounds decreased with increasing temperature. The adsorption of the tracers onto the zeolite samples were found to increase in the order of NaY > clinoptilolite > 4A. In the range between 303 and 343 K, the adsorption constants of benzene range from 10.51 to 5.52 for zeolite 4A, from 11.90 to 6.37 for clinoptilolite and from 20.32 to 9.82 for NaY. The adsorption constants of methanol range from 19.05 to 8.26 for zeolite 4A, from 38.40 to 9.12 for clinoptilolite and from 74.21 to 14.70 for NaY at temperatures between 303 and 333 K. The effective diffusivities for benzene varied from 2.20·10–6 to 13.01·10–6 m2/s, whereas for methanol, they varied from 9.80·10–6 to 15.60·10–6 m2/s at the temperatures studied.  相似文献   

12.
The principal difficulties with determinations of volatile organic compounds (VOCs) in ground water are the reliability of sampling procedures and analytical methods. Two integrated methods have been developed for routine sampling, processing, and analysis of VOCs in ground water. These methods involve in situ collection of ground water using a modified syringe sampler from PVC piezometers or using dedicated glass syringes from stainless steel multilevel bores. The samples are processed in the syringe using purge and trap or microsolvent extraction and analyzed by GC/MSD.
The modified purge-and-trap method is time-consuming and limited to volatile organic compounds. However, it is extremely sensitive and flexible: the volume of sample used can be varied by the use of different-size glass syringes (sample volumes from 1 to 100 mL).
In cases where extremely low sensitivity (<10 mg 1−1) is not critical, the microextraction technique is a more cost-effective method, allowing twice as many samples to be analyzed in the same time as the purge-and-trap method. It enables less volatile compounds such as polynuclear aromatic hydrocarbons, phenol, and cresols to be analyzed in the same GC run. Also, the microextraction method can be used in the field to avoid delays associated with transportation of ground water samples to the laboratory.  相似文献   

13.
Vertical flow filters are containers filled with porous medium that are recharged from top and drained at the bottom, and are operated at partly saturated conditions. They have recently been suggested as treatment technology for groundwater containing volatile organic compounds (VOCs). Numerical reactive transport simulations were performed to investigate the relevance of different filter operation modes on biodegradation and/or volatilization of the contaminants and to evaluate the potential limitation of such remediation mean due to volatile emissions. On the basis of the data from a pilot‐scale vertical flow filter intermittently fed with domestic waste water, model predictions on the system’s performance for the treatment of contaminated groundwater were derived. These simulations considered the transport and aerobic degradation of ammonium and two VOCs, benzene and methyl tertiary butyl ether (MTBE). In addition, the advective‐diffusive gas‐phase transport of volatile compounds as well as oxygen was simulated. Model predictions addressed the influence of depth and frequency of the intermittent groundwater injection, degradation rate kinetics, and the composition of the filter material. Simulation results show that for unfavorable operation conditions significant VOC emissions have to be considered and that operation modes limiting VOC emissions may limit aerobic biodegradation. However, a suitable combination of injection depth and composition of the filter material does facilitate high biodegradation rates while only little VOC emissions take place. Using such optimized operation modes would allow using vertical flow filter systems as remediation technology suitable for groundwater contaminated with volatile compounds.  相似文献   

14.
15.
The concentration levels of 12 priority volatile organic compounds (VOCs) were determined in two species of vertebrates and four species of invertebrates from sampling stations in the southern North Sea, using a modified Tekmar LSC 2000 purge and trap system coupled to gas chromatograph–mass spectrometer (GC–MS). In general, concentration levels of VOCs found in this study were of the same order of magnitude as those previously reported in the literature. The concentrations of the chlorinated hydrocarbons (CHCs), with the exception of chloroform, tended to be lower than those of the monocyclic aromatic hydrocarbons (MAHs). The experimental data were statistically evaluated using both cluster analysis and principal component analysis (PCA). From the results of cluster analysis and PCA, no specific groups could be distinguished on the basis of geographical, temporal or biological parameters. However, based on the cluster analysis and the PCA, the VOCs could be divided into three groups, C2-substituted benzenes, CHCs and benzene plus toluene. This division could be related to different types of sources. Finally, it was shown that organisms can be used to monitor the presence of VOCs in the marine environment and the observed concentrations levels were compared with proposed safety levels.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号