首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The paper presents the effect of solar flare index on Antarctic O3 depletion. Solar flare index is the actual representative of energy output of any flare event. A calibration curve between solar flare index and relative sunspot number is drawn. (A straight line is obtained and correlation coefficient between two variables is 0.95, n = 27, P < 0.01).The equation of straight line from least square principle becomes, Solar Flare Index (If) = 1.0932 * Relative Sunspot Number- 9.4391. From this equation solar flare index for long period is calculated from known values of relative sunspot numbers. O3 concentration of two antarctic Survey Stations, Halley Bay (76 °S, 27 °W) and McMurdo (78 °S, 166 °E) are considered for analysis and following results are obtained: (i) Correlation coefficient between O3 concentration and solar flare index during Antarctic Spring is not so significant. (ii) It is concluded that dramatic decrease of O3concentration during Antarctic Spring is independent of solar parameters. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
We present a broad range of complementary observations of the onset and impulsive phase of a fairly large (1B, M1.2) but simple two-ribbon flare. The observations consist of hard X-ray flux measured by the SMM HXRBS, high-sensitivity measurements of microwave flux at 22 GHz from Itapetinga Radio Observatory, sequences of spectroheliograms in UV emission lines from Ov (T ≈ 2 × 105 K) and Fexxi (T ≈ 1 × 107 K) from the SMM UVSP, Hα and Hei D3 cine-filtergrams from Big Bear Solar Observatory, and a magnetogram of the flare region from the MSFC Solar Observatory. From these data we conclude:
  1. The overall magnetic field configuration in which the flare occurred was a fairly simple, closed arch containing nonpotential substructure.
  2. The flare occurred spontaneously within the arch; it was not triggered by emerging magnetic flux.
  3. The impulsive energy release occurred in two major spikes. The second spike took place within the flare arch heated in the first spike, but was concentrated on a different subset of field lines. The ratio of Ov emission to hard X-ray emission decreased by at least a factor of 2 from the first spike to the second, probably because the plasma density in the flare arch had increased by chromospheric evaporation.
  4. The impulsive energy release most likely occurred in the upper part of the arch; it had three immediate products:
  1. An increase in the plasma pressure throughout the flare arch of at least a factor of 10. This is required because the Fexxi emission was confined to the feet of the flare arch for at least the first minute of the impulsive phase.
  2. Nonthermal energetic (~ 25 keV) electrons which impacted the feet of the arch to produce the hard X-ray burst and impulsive brightening in Ov and D3. The evidence for this is the simultaneity, within ± 2 s, of the peak Ov and hard X-ray emissions.
  3. Another population of high-energy (~100keV) electrons (decoupled from the population that produced the hard X-rays) that produced the impulsive microwave emission at 22 GHz. This conclusion is drawn because the microwave peak was 6 ± 3 s later than the hard X-ray peak.
  相似文献   

3.
At the Swedish Solar Observatory in Anacapri we have simultaneously used the following combination of instruments in our investigation of active regions:
  1. A spectrograph with an image rotator placed in front of the slit.
  2. A subtractive double dispersive spectrograph (solar Chromatograph).
  3. A Hα+0.5 Å patrol instrument. Scans over the 3b flare of August 4th 1972 are used to illustrate the method. The illustrations clearly show downflowing matter connected with bright knots and filaments in the emitting area, possibly in accordance with Hyder's infall-impact mechanism.
  相似文献   

4.
We analyze particle acceleration processes in large solar flares, using observations of the August, 1972, series of large events. The energetic particle populations are estimated from the hard X-ray and γ-ray emission, and from direct interplanetary particle observations. The collisional energy losses of these particles are computed as a function of height, assuming that the particles are accelerated high in the solar atmosphere and then precipitate down into denser layers. We compare the computed energy input with the flare energy output in radiation, heating, and mass ejection, and find for large proton event flares that:
  1. The ~10–102 keV electrons accelerated during the flash phase constitute the bulk of the total flare energy.
  2. The flare can be divided into two regions depending on whether the electron energy input goes into radiation or explosive heating. The computed energy input to the radiative quasi-equilibrium region agrees with the observed flare energy output in optical, UV, and EUV radiation.
  3. The electron energy input to the explosive heating region can produce evaporation of the upper chromosphere needed to form the soft X-ray flare plasma.
  4. Very intense energetic electron fluxes can provide the energy and mass for interplanetary shock wave by heating the atmospheric gas to energies sufficient to escape the solar gravitational and magnetic fields. The threshold for shock formation appears to be ~1031 ergs total energy in >20 keV electrons, and all of the shock energy can be supplied by electrons if their spectrum extends down to 5–10 keV.
  5. High energy protons are accelerated later than the 10–102 keV electrons and most of them escape to the interplanetary medium. The energetic protons are not a significant contributor to the energization of flare phenomena. The observations are consistent with shock-wave acceleration of the protons and other nuclei, and also of electrons to relativistic energies.
  6. The flare white-light continuum emission is consistent with a model of free-bound transitions in a plasma with strong non-thermal ionization produced in the lower solar chromosphere by energetic electrons. The white-light continuum is inconsistent with models of photospheric heating by the energetic particles. A threshold energy of ~5×1030 ergs in >20 keV electrons is required for detectable white-light emission.
The highly efficient electron energization required in these flares suggests that the flare mechanism consists of rapid dissipation of chromospheric and coronal field-aligned or sheet currents, due to the onset of current-driven Buneman anomalous resistivity. Large proton flares then result when the energy input from accelerated electrons is sufficient to form a shock wave.  相似文献   

5.
Celebrating the diamond jubilee of the Physics Research Laboratory (PRL) in Ahmedabad, India, we look back over the last six decades in solar physics and contemplate on the ten outstanding problems (or research foci) in solar physics:
  1. The solar neutrino problem
  2. Structure of the solar interior (helioseismology)
  3. The solar magnetic field (dynamo, solar cycle, corona)
  4. Hydrodynamics of coronal loops
  5. MHD oscillations and waves (coronal seismology)
  6. The coronal heating problem
  7. Self-organized criticality (from nanoflares to giant flares)
  8. Magnetic reconnection processes
  9. Particle acceleration processes
  10. Coronal mass ejections and coronal dimming
The first two problems have been largely solved recently, while the other eight selected problems are still pending a final solution, and thus remain persistent Challenges for Solar Cycle 24, the theme of this jubilee conference.  相似文献   

6.
Improving our understanding of the mechanisms that energize the solar wind and heat structures in the solar corona requires the development of empirical methods that can determine the three-dimensional (3D) temperature and density distributions with as much spatial and temporal resolution as possible. This paper reviews the solar rotational tomography (SRT) methods that will be used for 3D reconstruction of the solar corona from data obtained by the next generation of space-based missions such as the Solar and Terrestrial Relations Observatory (STEREO), Solar-B and the Solar Dynamics Observatory (SDO). In the next decade, SRT will undergo rapid advancement on several frontiers of 3D image reconstruction:
  1. Electron density reconstruction from white-light coronagraph images.
  2. Differential emission measure (DEM) reconstruction from EUV images.
  3. Dual-spacecraft (STEREO) observing geometry.
  4. Fusion of data from multiple spacecraft with differing instrumentation.
  5. Time-dependent estimation methods.
Although the principles described apply to many different wavelength regimes, this paper concentrates on white-light and EUV data. Previous work on all of these subjects is reviewed, and major technical issues and future directions are discussed.  相似文献   

7.
The observational data permit us to establish clear statistical correlations between different parameters of stellar flare activity and the characteristics of quiet stars. These relations are:
  1. between energies and frequencies of flares on stars of different luminosities;
  2. between total radiation energies of flares and quiet stars both in X-ray and Balmer emission lines;
  3. between flare decay rates just after the maxima and flare luminosities at maxima.
  相似文献   

8.
Using the Baranger-Mozer method, we explore the possibility of diagnosing the flare plasma of forbidden Hei lines, that permits the determination of the plasma oscillation frequency and noise level. Examination of the Hei lines observed in solar flare has led us to conclude that:
  1. the appearance of satellites of forbidden components in the flares spectrum, due to turbulent electric fields, is the most probable for Hei 3819.606 Å lines;
  2. the Baranger-Mozer method is more sensitive to the high-frequency component of turbulent fields than to the low-frequency ones;
  3. the upper limit of the turbulent oscillation level in flares is evaluated.
In the spectrum of the solar flare of 26 September, 1963 we detected satellites of the forbidden component of the 3820 Å line and used its relative intensity to derive the level of low-frequency oscillations (~1.5 kVcm-1).  相似文献   

9.
The Transition Region and Coronal Explorer (TRACE) gave us the highest EUV spatial resolution and the Ramaty High Energy Solar Spectrometric Imager (RHESSI) gave us the highest hard X-ray and gammaray spectral resolution to study solar flares. We review a number of recent highlights obtained from both missions that either enhance or challenge our physical understanding of solar flares, such as:
  1. Multi-thermal Diagnostic of 6.7 and 8.0 keV Fe and Ni lines
  2. Multi-thermal Conduction Cooling Delays
  3. Chromospheric Altitude of Hard X-Ray Emission
  4. Evidence for Dipolar Reconnection Current Sheets
  5. Footpoint Motion and Reconnection Rate
  6. Evidence for Tripolar Magnetic Reconnection
  7. Displaced Electron and Ion Acceleration Sources.
  相似文献   

10.
X-ray, extreme-ultraviolet and optical observations of a solar flare are discussed. It is shown that the flare exemplifies a class of transient events characterized by long duration and long decay time and by the development of high systems of loops, generally brighter at the top. In contrast with compact short lifetime events, the distinctive properties of this class of transients are:
  1. The disruption of the magnetic configuration at the flare onset, as indicated by prominence eruption or activation and by associated white-light coronal transients;
  2. a continuous energy deposition, presumably at the top of loops, during a large fraction of the flare development and well after the intensity peak;
  3. a continuous supply of additional material to the top of loops, with subsequent downflows and out-of-hydrostatic equilibrium conditions.
  相似文献   

11.
An observational study of maps of the longitudinal component of the photospheric fields in flaring active regions leads to the following conclusions:
  1. The broad-wing Hα kernels characteristic of the impulsive phase of flares occur within 10″ of neutral lines encircling features of isolated magnetic polarity (‘satellite sunspots’).
  2. Photospheric field changes intimately associated with several importance 1 flares and one importance 2B flare are confined to satellite sunspots, which are small (10″ diam). They often correspond to spot pores in white-light photographs.
  3. The field at these features appears to strengthen in the half hour just before the flares. During the flares the growth is reversed, the field drops and then recovers to its previous level.
  4. The magnetic flux through flare-associated features changes by about 4 × 1019 Mx in a day. The features are the same as the ‘Structures Magnétiques Evolutives’ of Martres et al. (1968a).
  5. An upper limit of 1021 Mx is set for the total flux change through McMath Regions 10381 and 10385 as the result of the 2B flare of 24 October, 1969.
  6. Large spots in the regions investigated did not evince flux changes or large proper motions at flare time.
  7. The results are taken to imply that the initial instability of a flare occurs at a neutral point, but the magnetic energy lost cannot yet be related to the total energy of the subsequent flare.
  8. No unusual velocities are observed in the photosphere at flare time.
  相似文献   

12.
The purpose of this paper is to present the correlation of seasonal variation of 5893 Å line intensity with relative sunspot numbers, solar flare numbers and the variable component of 10.7 cm solar flux. A study has been made and the following important results have been obtained.
  1. The intensity of 5893 Å line at Calcutta shows periodic variation with different solar parameters during descending part of secondary peak of 21st solar cycle (1984–1985).
  2. 5893 Å line intensity of Mt. Abu also shows periodic variation with solar parameters during the period 1965–1968 when there was a peak phase of 20th solar cycle.
  3. A possible explanation for such type of variation is also presented.
  相似文献   

13.
Recent gamma-ray observations of solar flares have provided a better means for estimating the heating of the solar atmosphere by energetic protons. Such heating has been suggested as the explanation of the continuum emission of the white-light flare. We have analyzed the effects on the photosphere of high-energy particles capable of producing the intense gamma-ray emission observed in the 1978 July 11 flare. Using a simple energy-balance argument and taking into account hydrogen ionization, we have obtained the following conclusions:
  1. Heating near τ5000 = 1 in the input HSRA model atmosphere is negligible, even for very high fluxes of energetic particles.
  2. Energy deposition increases with height for the inferred proton spectra, and does not depend strongly upon the assumed angle of incidence. The computed energy inputs fall in the range 10–100 ergs (cm3 s)?1 at the top of the photosphere.
  3. H? continuum dominates for column densities as small as 1022 cm?3, but at greater heights hydrogen ionizes sufficiently for the higher continua to dominate the energy balance.
  4. The total energy deposited in the ‘photospheric’ region of H? dominance could be within a factor of 3 of the necessary energy deposition, by comparison with the white-light flare of 1972 August 7, but the emergent spectrum is quite red so that the intensity excess in the visible band is insufficient to explain the observations.
In summary, it remains energetically possible, within observational limits, that high-energy protons could cause sufficient heating of the upper photosphere to produce detectable excess continuum, but emission from the vicinity of τ = 1 is not significant.  相似文献   

14.
In connection with the appearance of the first results of infrared observations of stellar flares, a more elaborate analysis ofnegative infrared flares as a phenomenon, predicted by the fastelectron hypothesis, has been carried out. As a result, the wavelength regions of negative flares are established for the stars of different spectral types as well as the calculated amplitudes of the negative flares (Tables I and II). The analysis of the infrared observations (c.f. Kilyachkoet al., 1978) lead to the following conclusions:
  1. The negative infrared flares discovered around 8000 Å is not in agreement with the theory in the case of the flare star UV Cet. Some traces of negative flares have been noted for a number of less powerful flares of EV Lac.
  2. The amplitudes of the recorded positive flares of UV Cet and EV Lac on λ8000 Å are in good agreement with the magnitudes predicted by the fast-electron hypothesis (non-thermal bremsstrahlung).
  3. In the future the negative flares around 8000 Å should be looked for in early-type flare stars of types M0-K5.
  4. For a positive discovery of negative flares, future observations must be carried out in the wavelength region of 1–3 μm.
  相似文献   

15.
The jet/grain model proposed by Ramatyet al. (1984, hereafter abbreviated as RKL) for production of the narrow gamma-ray lines reported from SS433 is examined and shown to be untenable on numerous grounds. Most importantly:
  1. The huge Coulomb collisional losses (W c?2×1041 erg s?1) from the jet, which would necessarily accompany non-thermal production of the gamma rays, demands a jet acceleration/collimation process acting over a very long range and with a power at least 102 times the Eddington limit for any stellar object.
  2. There is a collisional thick target limit (irrespective of jet mass) to the gamma ray yield per interstellar proton. Consequently, the gamma-ray data demand an improbably high interstellar density (?109 cm?3).
  3. For the grains to be kept cool enough (?3000 K) to survive the heating rateW c either by radiation or jet expansion would demand a ‘jet’ wider than its length and so inconsistent with narrow lines. In the case of radiative cooling, the resultant IR flux would exceed the observed values by a factor ?104.
  4. Light scattered on the jet grain mass required would be highly polarized, contrary to observations, unless the jet was optically thick to grains, again precluding their radiative cooling.
  5. To avoid unacceptable precessional broadening of the gamma-ray lines demands an emitting jet length ?0.5 days atv=0.26c. This increases the necessary mass loss rate by a factor ?10 over the values obtained by RKL who assumed a 4-day ‘flare’.
  6. The model also predicts rest energy gamma-ray lines which are not observed.
  相似文献   

16.
The majority of flare activity arises in active regions which contain sunspots, while Coronal Mass Ejection (CME) activity can also originate from decaying active regions and even so-called quiet solar regions which contain a filament. Two classes of CME, namely flare-related CME events and CMEs associated with filament eruption are well reflected in the evolution of active regions. The presence of significant magnetic stresses in the source region is a necessary condition for CME. In young active regions magnetic stresses are increased mainly by twisted magnetic flux emergence and the resulting magnetic footpoint motions. In old, decayed active regions twist can be redistributed through cancellation events. All the CMEs are, nevertheless, caused by loss of equilibrium of the magnetic structure. With observational examples we show that the association of CME, flare and filament eruption depends on the characteristics of the source regions:
  • ?the strength of the magnetic field, the amount of possible free energy storage,
  • ?the small- and large-scale magnetic topology of the source region as well as its evolution (new flux emergence, photospheric motions, cancelling flux), and
  • ?the mass loading of the configuration (effect of gravity). These examples are discussed in the framework of theoretical models.
  •   相似文献   

    17.
    Evidence is discussed showing that a representative solar flare event comprises three or more separate but related phenomena requiring separate mechanisms. In particular it is possible to separate the most energetic effect (the interplanetary blast) from the thermal flare and from the rapid acceleration of particles to high energies. The phenomena are related through the magnetic structure characteristic of a composite flare event, being a bipolar surface field with most of its field lines ‘closed’. Of primary importance are helical twists on all scales, starting with the ‘flux rope’ of the spot pair which was fully twisted before it emerged. Subsequent untwisting by the upward propagation of an Alfvén twist wave provides the main flare energy.
    1. The interplanetary blast model is based on subsurface, helically twisted flux ropes which erupt to form spots and then transfer their twists and energy by Alfvén-twist waves into the atmospheric magnetic fields. The blast is triggered by the prior-commencing flash phase or by a coronal wave.
    2. The thermal flare is explained in terms of Alfvén waves travelling up numerous ‘flux strands’ (Figure 3) which have frayed away from the two flux ropes. The waves originate in interaction (collisions, bending, twisting, rubbing) between subsurface flux strands; the sudden flash is caused by a collision. The classical twin-ribbon flare results from the collision of a flux rope with a tight bunch of S-shaped flux strands.
    3. The impulsive acceleration of electrons (hard X-ray, EUV, Hα and radio bursts) is tentatively attributed to magnetic reconnection between fields in two parallel, helically twisted flux strands in the low corona.
    4. Flare (Moreton) waves in the corona have the same origin as the interplanetary blast. Sympathetic flares represent only the start of enhanced activity in a flare event already in the slow phase. Filament activation also occurs during the slow phase as twist Alfvén waves store their energy in the atmosphere.
    5. Flare ejecta are caused by Alfvén waves moving up flux strands. Surges are attributed to packets of twist Alfvén waves released into bundles of flux strands; the waves become non-linear and drive plasma upwards. Spray-type prominences result from accumulations of Alfvén wave energy in dome-shaped fields; excessive energy density eventually explodes the field.
      相似文献   

    18.
    The paper presents the effect of O3 depletion on different night airglow emission lines. Calculations based on chemical kinetics show that the airglow intensity of Na5893Å, O5577Å and OH band emissions will also be affected due to the depletion of O3 concentration. Intensity of Na5893Å is calculated theoretically for Halley Bay (76° S,27° W), British Antarctic Survey Station, during the period 1973 to 1984. It is concluded from the covariation of different emission lines that O5577Å and OH emissions also follow the same trend of variation. A study has been made to find the correlation between the depletion of O3 concentration and total solar flare numbers. Important results are as follows:
    (i)  Depletion of O3 is oscillatory upto 7932 solar flare numbers. The average trend of variation of O3 concentration is downward, i.e., O3 is depleted with the increase of total solar flare numbers.
    (ii)  Afterwards, it follows a upward trend. Possible explanation of such type variation is also presented.
      相似文献   

    19.
    A clarification and discussion of the energy changes experienced by cosmic rays in the interplanetary region is presented. It is shown that the mean time rate of change of momentum of cosmic rays reckoned for a fixed volume in a reference frame fixed in the solar system is 〈p〉 =p V·G/3 (p=momentum,V is the solar wind velocity andG=cosmic-ray density gradient). This result is obtained in three ways:
    1. by a rearrangement and reinterpretation of the cosmic-ray continuity equation;
    2. by using a scattering analysis based on that of Gleeson and Axford (1967);
    3. by using a special scattering model in which cosmic-rays are trapped in ‘magnetic boxes’ moving with the solar wind.
    The third method also gives the rate of change of momentum of particles within a moving ‘magnetic box’ as 〈pad = ?p ?·V/3, which is the adiabatic deceleration rate of Parker (1965). We conclude that ‘turnaround’ energy change effects previously considered separately are already included in the equation of transport for cosmic rays.  相似文献   

    20.
    The radiation fluxes of the NGC 1275 galaxy central region are being observed on the 1.25-m telescope, using a scanning spectrophotometer with the entrance aperture 10″ in three Δλ=80 Å spectral regions: Hβ, 4959+5007 Å [OIII] and continuum. There were 35 nights of observations during 1982–1987. With the time resolution of half an hour 379 measurements were obtained in each spectral region. The analysis of these results shows:
    1. The standard deviations of measurements in each spectral region 2–3 times exceed the errors of observations.
    2. The radiation flux distribution resembles to normal one only for Hβ line.
    3. Two-humps forms of continuum flux distribution curve is like that of radio emission in 8 mm and 2.6 cm wavelengths.
    4. Various forms of fluxes distribution curves of Hβ and [OIII] lines permit us to suppose that the location of these lines emission regions near the sources of excitation are different.
      相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号