首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Garnet crystals with quartz inclusions were hydrothermally crystallized from oxide starting materials in piston–cylinder apparatuses at pressures from 0.5 to 3 GPa and temperatures ranging from 700 to 800 °C to study how entrapment conditions affect remnant pressures of quartz inclusions used for quartz-in-garnet (QuiG) elastic thermobarometry. Systematic changes of the 128, 206 and 464 cm?1 Raman band frequencies of quartz were used to determine pressures of quartz inclusions in garnet using Raman spectroscopy calibrations that describe the P–T dependencies of Raman band shifts for quartz under hydrostatic pressure. Within analytical uncertainties, inclusion pressures calculated for each of the three Raman band frequencies are equivalent, which suggests that non-hydrostatic stress effects caused by elastic anisotropy in quartz are smaller than measurement errors. The experimental quartz inclusions have pressures ranging from ??0.351 to 1.247 GPa that span the range of values observed for quartz inclusions in garnets from natural rocks. Quartz inclusion pressures were used to model P–T conditions at which the inclusions could have been trapped. The accuracy of QuiG thermobarometry was evaluated by considering the differences between pressures measured during experiments and pressures calculated using published equation of state parameters for quartz and garnet. Our experimental results demonstrate that Raman measurements performed at room temperature can be used without corrections to estimate garnet crystallization pressures. Calculated entrapment pressures for quartz inclusions in garnet are less than ~?10% different from pressures measured during the experiments. Because the method is simple to apply with reasonable accuracy, we expect widespread usage of QuiG thermobarometry to estimate crystallization conditions for garnet-bearing silicic rocks.  相似文献   

2.
A xenolith of eclogite from the kimberlite pipe Udachnaya–East, Yakutia Grt+Cpx+Ky + S + Coe/Qtz + Dia + Gr has been studied. Graphite inclusions in diamond have been studied in detail by Confocal Raman (CR) mapping. The graphite inclusion in diamond has a highly ordered structure and is characterized by a substantial shift in the band (about 1580 cm–1) by 7 cm–1, indicating a significant residual strain in the inclusion. According to the results of FTIR spectroscopic studies of diamond crystals, a high degree of nitrogen aggregation has been detected: it is present mainly in form A, which means an “ancient” age of the diamonds. In the xenolith studied, the diamond formation occurred about 1 Byr, long before their transport by the kimberlite melt, and the conditions of the final equilibrium were temperatures of 1020 ± 40°C at 4.7 GPa. Thus, these graphite inclusions found in a diamond are the first evidence of crystallization of metastable graphite in a diamond stability field. They were formed in rocks of the upper mantle significantly below (≥20 km) the graphite-diamond equilibrium line.  相似文献   

3.
Residual pressure around mineral inclusions in diamond can provide useful information on the depth of diamond origin. Differential stress between an inclusion and host diamond arises from differences in thermal expansion and compressibility between host diamond and minerals. We determined residual pressure around mineral inclusions in a diamond from the Internationalnaya pipe, Yakutia, Russia, using the three-dimensional Raman mapping system developed recently by our group. The maximum residual pressures around the olivine and chromite inclusions were determined to be 0.69 GPa and 0.75 GPa, respectively. We proposed an advanced method for determining simultaneously pressure and temperature conditions where the mineral inclusions were trapped in the host diamond. The obtained values were 3.0 GPa and 447 °C, but these values are lower than typical P-T conditions in the mantle. Several technical possibilities for the discrepancy are discussed.  相似文献   

4.
ABSTRACT

Polycrystalline microdiamonds are rare in ultrahigh-pressure (UHP) rocks worldwide. Among samples collected at Erzgebirge, Germany, we found abundant polycrystalline microdiamonds as inclusions in zircons from a quartzofeldspathic rock. To illuminate their origin and forming age, we investigated morphologies and Raman spectra of 52 microdiamond inclusions, and dated the zircon host. The zircons have low Th/U values (0.03–0.07) and a concordia U/Pb age of 335.8 ± 1.9 Ma. Polycrystalline diamond (10–40 µm) consists of many fine-grained crystals (1.5–3 µm) with different orientations; discrete single diamonds (2–20 µm) are rare. All measured Raman spectra show an intense diamond band at 1332–1328 cm?1 and have a negative correlation with full width at half maximum (FWHM) of 5.8–11.3 cm?1. These data combined with previously reported diamond band data (1331–1337 cm?1) are compatible with those of diamond inclusions in various host minerals from other UHP terranes, but are different from those of ureilite diamonds. The Erzgebirge microdiamonds in zircon do not display visible disordered sp3-carbon, but show downshifting of the Raman band from the ideal value (1332 cm?1), and have a broader diamond band (FWHM >3 cm?1) than those of well-ordered diamonds. These features may reflect imperfect ordering due to rapid nucleation/crystallization during UHP metamorphism and rapid exhumation of the UHP terrane. Graphite inclusions in zircon show a typical G-band at 1587 cm?1. Our study together with previously reported C-isotopic compositions (δ13C, ?17 to ?27‰) of diamond and occurrences of fluid/melt inclusions in diamond and garnet indicates that Erzgebirge microdiamonds are metamorphic, have an organic carbon source, and crystallized from aqueous fluids. Limited long-range ordering suggested by the Raman spectra is a function of the PT time of crystallization and subsequent thermal annealing on decompression. Combined with regional geology, our work further constrains the tectonic evolution of the Erzgebirge terrane.  相似文献   

5.
As a step towards resolving the genesis of inclusions in diamonds, a new technique is presented. This technique combines cathodoluminescence (CL) and electron backscatter diffraction (EBSD) using a focused ion beam–scanning electron microscope (FIB–SEM) instrument with the aim of determining, in detail, the three-dimensional diamond zonation adjacent to a diamond inclusion. EBSD reveals that mineral inclusions in a single diamond have similar crystallographic orientations to the host, within ±0.4°. The chromite inclusions record a systematic change in Mg# and Cr# from core to the rim of the diamond that corresponds with a ~80°C decrease of their formation temperature as established by zinc thermometry. A chromite inclusion, positioned adjacent to a boundary between two major diamond growth zones, is multi-faceted with preferred octahedral and cubic faces. The chromite is surrounded by a volume of non-luminescent diamond (CL halo) that partially obscures any diamond growth structures. The CL halo has apparent crystallographic morphology with symmetrically oriented pointed features. The CL halo is enriched in ~200 ppm Cr and ~80 ppm Fe and is interpreted to have a secondary origin as it overprints a major primary diamond growth structure. The diamond zonation adjacent to the chromite is complex and records both syngenetic and protogenetic features based on current inclusion entrapment models. In this specific case, a syngenetic origin is favoured with the complex form of the inclusion and growth layers indicating changes of growth rates at the diamond–chromite interface. Combined EBSD and 3D-CL imaging appears an extremely useful tool in resolving the ongoing discussion about the timing of inclusion growth and the significance of diamond inclusion studies.  相似文献   

6.
Diamonds and their mineral inclusions are valuable for studying the genesis of diamonds, the characteristics and processes of ancient lithospheric mantle and deeper mantle. This has been paid lots of attentions by geologists both at home and abroad. Most diamonds come from lithospheric mantle. According to their formation preceded, accompanied or followed crystallization of their host diamonds, mineral inclusions in diamonds are divided into three groups: protogenetic, syngenetic and epigenetic. To determine which group the mineral inclusions belong to is very important because it is vital for understanding the data’s meaning. According to the type of mantle source rocks, mineral inclusions in diamonds are usually divided into peridotitic (or ultramafic) suite and eclogitic suite. The mineral species of each suite are described and mineralogical characteristics of most common inclusions in diamonds, such as olivine, clinopyroxene, orthopyroxene, garnet, chromite and sulfide are reviewed in detail. In this paper, the main research fields and findings of diamonds and their inclusions were described: ①getting knowledge of mineralogical and petrologic characteristics of diamond source areas, characteristics of mantle fluids and mantle dynamics processes by studying the major element and trace element compositions of mineral inclusions; ②discussing deep carbon cycle by studying carbon isotopic composition of diamonds; ③determining forming temperature and pressure of diamonds by using appropriate assemblages of mineral inclusions or single mineral inclusion as geothermobarometry, by using the abundance and aggregation of nitrogen impurities in diamonds and by measuring the residual stress that an inclusion remains under within a diamond ; ④estimating the crystallization ages of diamonds by using the aggregation of nitrogen impurities in diamonds and by determine the radiometric ages of syngenetic mineral inclusions in diamonds. Genetic model of craton lithospheric diamonds and their mineral inclusion were also introduced. In the end, the research progress on diamonds and their inclusions in China and the gap between domestic and international research are discussed.  相似文献   

7.
Forty-one diamonds sourced from the Juina-5 kimberlite pipe in Southern Brazil, which contain optically identifiable inclusions, have been studied using an integrated approach. The diamonds contain <20 ppm nitrogen (N) that is fully aggregated as B centres. Internal structures in several diamonds revealed using cathodoluminescence (CL) are unlike those normally observed in lithospheric samples. The majority of the diamonds are composed of isotopically light carbon, and the collection has a unimodal distribution heavily skewed towards δ13C ~ ?25 ‰. Individual diamonds can display large carbon isotope heterogeneity of up to ~15 ‰ and predominantly have isotopically lighter cores displaying blue CL, and heavier rims with green CL. The light carbon isotopic compositions are interpreted as evidence of diamond growth from abiotic organic carbon added to the oceanic crust during hydrothermal alteration. The bulk isotopic composition of the oceanic crust, carbonates plus organics, is equal to the composition of mantle carbon (?5 ‰), and we suggest that recycling/mixing of subducted material will replenish this reservoir over geological time. Several exposed, syngenetic inclusions have bulk compositions consistent with former eclogitic magnesium silicate perovskite, calcium silicate perovskite and NAL or CF phases that have re-equilibrated during their exhumation to the surface. There are multiple occurrences of majoritic garnet with pyroxene exsolution, coesite with and without kyanite exsolution, clinopyroxene, Fe or Fe-carbide and sulphide minerals alongside single occurrences of olivine and ferropericlase. As a group, the inclusions have eclogitic affinity and provide evidence for diamond formation at pressures extending to Earth’s deep transition zone and possibly the lower mantle. It is observed that the major element composition of inclusions and isotopic compositions of host Juina-5 diamonds are not correlated. The diamond and inclusion compositions are intimately related to subducted material and record a polybaric growth history across a depth interval stretching from the lower mantle to the base of the lithosphere. It is suggested that the interaction of slab-derived melts and mantle material combined with subsequent upward transport in channelised networks or a buoyant diapir explains the formation of Juina-5 diamonds. We conclude that these samples, despite originating at great mantle depths, do not provide direct information about the ambient mantle, instead, providing a snapshot of the Earth’s deep carbon cycle.  相似文献   

8.
Significant zonation in major, minor, trace, and volatile elements has been documented in naturally glassy olivine-hosted melt inclusions from the Siqueiros Fracture Zone and the Galapagos Islands. Components with a higher concentration in the host olivine than in the melt (e.g., MgO, FeO, Cr2O3, and MnO) are depleted at the edges of the zoned melt inclusions relative to their centers, whereas except for CaO, H2O, and F, components with a lower concentration in the host olivine than in the melt (e.g., Al2O3, SiO2, Na2O, K2O, TiO2, S, and Cl) are enriched near the melt inclusion edges. This zonation is due to formation of an olivine-depleted boundary layer in the adjacent melt in response to cooling and crystallization of olivine on the walls of the melt inclusions, concurrent with diffusive propagation of the boundary layer toward the inclusion center. Concentration profiles of some components in the melt inclusions exhibit multicomponent diffusion effects such as uphill diffusion (CaO, FeO) or slowing of the diffusion of typically rapidly diffusing components (Na2O, K2O) by coupling to slow diffusing components such as SiO2 and Al2O3. Concentrations of H2O and F decrease toward the edges of some of the Siqueiros melt inclusions, suggesting either that these components have been lost from the inclusions into the host olivine late in their cooling histories and/or that these components are exhibiting multicomponent diffusion effects. A model has been developed of the time-dependent evolution of MgO concentration profiles in melt inclusions due to simultaneous depletion of MgO at the inclusion walls due to olivine growth and diffusion of MgO in the melt inclusions in response to this depletion. Observed concentration profiles were fit to this model to constrain their thermal histories. Cooling rates determined by a single-stage linear cooling model are 150–13,000 °C h?1 from the liquidus down to ~1,000 °C, consistent with previously determined cooling rates for basaltic glasses; compositional trends with melt inclusion size observed in the Siqueiros melt inclusions are described well by this simple single-stage linear cooling model. Despite the overall success of the modeling of MgO concentration profiles using a single-stage cooling history, MgO concentration profiles in some melt inclusions are better fit by a two-stage cooling history with a slower-cooling first stage followed by a faster-cooling second stage; the inferred total duration of cooling from the liquidus down to ~1,000 °C ranges from 40 s to just over 1 h. Based on our observations and models, compositions of zoned melt inclusions (even if measured at the centers of the inclusions) will typically have been diffusively fractionated relative to the initially trapped melt; for such inclusions, the initial composition cannot be simply reconstructed based on olivine-addition calculations, so caution should be exercised in application of such reconstructions to correct for post-entrapment crystallization of olivine on inclusion walls. Off-center analyses of a melt inclusion can also give results significantly fractionated relative to simple olivine crystallization. All melt inclusions from the Siqueiros and Galapagos sample suites exhibit zoning profiles, and this feature may be nearly universal in glassy, olivine-hosted inclusions. If so, zoning profiles in melt inclusions could be widely useful to constrain late-stage syneruptive processes and as natural diffusion experiments.  相似文献   

9.
Quantifying strain birefringence halos around inclusions in diamond   总被引:1,自引:0,他引:1  
The pressure and temperature conditions of formation of natural diamond can be estimated by measuring the residual stress that an inclusion remains under within a diamond. Raman spectroscopy has been the most commonly used technique for determining this stress by utilising pressure-sensitive peak shifts in the Raman spectrum of both the inclusion and the diamond host. Here, we present a new approach to measure the residual stress using quantitative analysis of the birefringence induced in the diamond. As the analysis of stress-induced birefringence is very different from that of normal birefringence, an analytical model is developed that relates the spherical inclusion size, R i, host diamond thickness, L, and measured value of birefringence at the edge of the inclusion, \Updelta n(R\texti )\textav \Updelta n(R_{\text{i}} )_{\text{av}} , to the peak value of birefringence that has been encountered; to first order \Updelta n\textpk = (3/4)(L/R\texti )  \Updelta n(R\texti )\textav \Updelta n_{\text{pk}} = (3/4)(L/R_{\text{i}} ) \, \Updelta n(R_{\text{i}} )_{\text{av}} . From this birefringence, the remnant pressure (P i) can be calculated using the photoelastic relationship \Updelta n\textpk = - (3/4)n3 q\textiso P\texti \Updelta n_{\text{pk}} = - (3/4)n^{3} q_{\text{iso}} P_{\text{i}} , where q iso is a piezo-optical coefficient, which can be assumed to be independent of crystallographic orientation, and n is the refractive index of the diamond. This model has been used in combination with quantitative birefringence analysis with a MetriPol system and compared to the results from both Raman point and 2D mapping analysis for a garnet inclusion in a diamond from the Udachnaya mine (Russia) and coesite inclusions in a diamond from the Finsch mine (South Africa). The birefringence model and analysis gave a remnant pressure of 0.53 ± 0.01 GPa for the garnet inclusion, from which a source pressure was calculated as 5.7 GPa at 1,175°C (temperature obtained from IR analysis of the diamond host). The Raman techniques could not be applied quantitatively to this sample to support the birefringence model; they were, however, applied to the largest coesite inclusion in the Finsch sample. The remnant pressure values obtained were 2.5 ± 0.1 GPa (birefringence), 2.5 ± 0.3 GPa (2D Raman map), and 2.5–2.6 GPa (Raman point analysis from all four inclusions). However, although the remnant pressures from the three methods were self-consistent, they led to anomalously low source pressure of 2.9 GPa at 1,150°C (temperature obtained from IR analysis) raising serious concerns about the use of the coesite-in-diamond geobarometer.  相似文献   

10.
Polycrystalline ruby (α-Al2O3:Cr3+), a widely used pressure calibrant in high-pressure experiments, was compressed to 68.1 GPa at room temperature under non-hydrostatic conditions in a diamond anvil cell. Angle-dispersive X-ray diffraction experiments in a radial geometry were conducted at beamline X17C of the National Synchrotron Light Source. The stress state of ruby at high pressure and room temperature was analyzed based on the measured lattice strain. The differential stress of ruby increases with pressure from ~3.4 % of the shear modulus at 18.5 GPa to ~6.5 % at 68.1 GPa. The polycrystalline ruby sample can support a maximum differential stress of ~16 GPa at 68.1 GPa under non-hydrostatic compression. The results of this study provide a better understanding of the mechanical properties of this important material for high-pressure science. From a synthesis of existing data for strong ceramic materials, we find that the high-pressure yield strength correlates well with the ambient pressure Vickers hardness.  相似文献   

11.
Rare and unusual mineral inclusions in diamonds from Mwadui, Tanzania   总被引:9,自引:3,他引:6  
Syngenetic diamond inclusions from the Mwadui kimberlite reveal that an unusually fertile section of lithospheric mantle beneath the Central African Craton was sampled. This is shown by a very high ratio of lherzolitic to harzburgitic garnet inclusions (1:2) and low Mg/Fe-ratios in olivine and orthopyroxene. Geothermometry applied to the peridotitic inclusions indicates disequilibrium between non-touching inclusion pairs to be common. Disequilibrium between garnet-olivine and garnet-orthopyroxene pairs suggests successive iron enrichment during diamond formation, e.g. leading to the presence of harzburgitic garnet and lherzolitic olivine in the same diamond. Apart from the dominant peridotitic inclusion suite (88%), rare eclogitic inclusions occur (2%) and a number of uncertain paragenesis. Two diamonds, one with eclogitic garnets with moderate pyroxene solid solution and the other with a single ferro-periclase inclusion, suggest the contribution of a small sub-lithospheric component. The finding of the association Fe-FeO-Fe3O4 in one single diamond indicates diamond formation over a large range of f O2 conditions, possibly along redox fronts. Steep compositional gradients may also be reflected by the joint occurrence of harzburgitic garnet and a SiO2-phase in the same diamond. Alternatively the formation of the SiO2-phase may be due to extreme carbonation of the peridotitic source. Further unusual findings include the exsolution of a silicate phase from magnetite inclusions, (i.e. primary solution of γ-olivine) and an ilmenite inclusion with an eskolaite (Cr2O3) component of 14.5 mol%, the latter together with harzburgitic paragenesis silicate inclusions. Received: 23 August 1997 / Accepted: 7 January 1998  相似文献   

12.
从金刚石中获取的包体矿物经电子探针分析其成分与镍黄铁矿相同, 该包体矿物晶体形态完好, 外形为三(六)方对称.用CCD单晶衍射仪对该矿物进行了单晶德拜衍射, 得到的39个衍射峰, 经粉末法指标化程序判别和计算, 这些衍射峰分别属于两种结构的镍黄铁矿的衍射峰: 一套为菱面体结构(六方定向)镍黄铁矿的衍射; 另一套属于立方结构的镍黄铁矿结构的衍射.菱面体结构镍黄铁矿的晶胞参数: a=0.690 62 nm, c=1.720 95 nm, V=0.710 85 nm3(六方定向); aR=0.698 61 nm, α=59.244 5°, V=0.236 95 nm3(菱面体定向).菱面体结构的衍射表明该镍黄铁矿在地幔超高压环境中形成, 出现立方结构的衍射, 反映了金刚石破碎后, 该镍黄铁矿包体在常压下相变的结果.   相似文献   

13.
Superdeep diamonds from the Juina area, Mato Grosso State, Brazil   总被引:4,自引:1,他引:3  
Alluvial diamonds from the Juina area in Mato Grosso, Brazil, have been characterized in terms of their morphology, syngenetic mineral inclusions, carbon isotopes and nitrogen contents. Morphologically, they are similar to other Brazilian diamonds, showing a strong predominance of rounded dodecahedral crystals. However, other characteristics of the Juina diamonds make them unique. The inclusion parageneses of Juina diamonds are dominated by ultra-high-pressure ("superdeep") phases that differ both from "traditional" syngenetic minerals associated with diamonds and, in detail, from most other superdeep assemblages. Ferropericlase is the dominant inclusion in the Juina diamonds. It coexists with ilmenite, Cr-Ti spinel, a phase with the major-element composition of olivine, and SiO2. CaSi-perovskite inclusions coexist with titanite (sphene), "olivine" and native Ni. MgSi-perovskite coexists with TAPP (tetragonal almandine-pyrope phase). Majoritic garnet occurs in one diamond, associated with CaTi-perovskite, Mn-ilmenite and an unidentified Si-Mg phase. Neither Cr-pyrope nor Mg-chromite was found as inclusions. The spinel inclusions are low in Cr and Mg, and high in Ti (Cr2O3<36.5 wt%, and TiO2>10 wt%). Most ilmenite inclusions have low MgO contents, and some have very high (up to 11.5 wt%) MnO contents. The rare "olivine" inclusions coexisting with ferropericlase have low Mg# (87-89), and higher Ca, Cr and Zn contents than typical diamond-inclusion olivines. They are interpreted as inverted from spinel-structured (Mg, Fe)2Si2O4. This suite of inclusions is consistent with derivation of most of the diamonds from depths near 670 km, and adds ilmenite and relatively low-Cr, high-Ti spinel to the known phases of the superdeep paragenesis. Diamonds from the Juina area are characterized by a narrow range of carbon isotopic composition ('13C=-7.8 to -2.5‰), except for the one majorite-bearing diamond ('13C=-11.4‰). There are high proportions of nitrogen-free and low-nitrogen diamonds, and the aggregated B center is predominant in nitrogen-containing diamonds. These observations have practical consequences for diamond exploration: Low-Mg olivine, low-Mg and high-Mn ilmenite, and low-Cr spinel should be included in the list of diamond indicator minerals, and the role of high-Cr, low-Ti spinel as the only spinel associated with diamond, and hence as a criterion of diamond grade in kimberlites, should be reconsidered.  相似文献   

14.
Diamonds and their syngenetic mineral inclusions from placer deposits (Akwatia mine) along the Birim River, Ghana were studied, thus providing the first detailed data collection for the West African Craton. Inclusion contents indicate an almost exclusively peridotitic diamond suite, with the vast majority being part of the harzburgitic paragenesis. Chemically the Akwatian diamond inclusions differ from those in our 1100 sample world-wide data base mainly by shifts towards lower Mg/Fe ratios for harzburgitic olivines and orthopyroxenes, extremely high Ni contents in both harzburgitic and lherzolitic olivines, and a higher mean Cr content in chromites. The inconsistency between the low Mg/Fe ratios and the highly refractory compatible trace element signature seems best to be explained by re-fertilisation of a previously depleted source, similar to the metasomatic re-enrichment of deformed, Fe-Ti-rich and hot peridotites discussed by Harte (1983). Geothermometry shows Akwatian inclusions to be 140–190 °C hotter than the peridotitic average (1050 °C) given by Harris (1992). Since garnet-opx equilibria (1100 °C/50 kbar to 1370 °C/67 kbar) indicate a typical shield geotherm (40–42 mW/m2), these elevated temperatures imply an origin of the Akwatian diamonds unusually deep for a peridotitic suite. This is consistent with the presence of extraordinary amounts of silicate spinel component in chromite inclusions, indicative of crystallisation under higher pressures than recorded for most peridotitic suites. In addition, one garnet showed the highest knorringite component (66.4 mol%) so far observed in an inclusion in diamond. The same garnet also contained a minor enstatite solid-solution component, which indicates crystallisation at pressures just below 80 kbar. Akwatian diamond inclusions, therefore, represent the most complete cross-section through peridotitic subcontinental lithospheric upper mantle so far observed, down to a maximum depth between 200–240 km. Received: 1 November 1995 / Accepted 5 January 1997  相似文献   

15.
Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia   总被引:9,自引:0,他引:9  
The Sputnik kimberlite pipe is a small “satellite” of the larger Mir pipe in central Yakutia (Sakha), Russia. Study of 38 large diamonds (0.7-4.9 carats) showed that nine contain inclusions of the eclogitic paragenesis, while the remainder contain inclusions of the peridotitic paragenesis, or of uncertain paragenesis. The peridotitic inclusion suite comprises olivine, enstatite, Cr-diopside, chromite, Cr-pyrope garnet (both lherzolitic and harzburgitic), ilmenite, Ni-rich sulfide and a Ti-Cr-Fe-Mg-Sr-K phase of the lindsleyite-mathiasite (LIMA) series. The eclogitic inclusion suite comprises omphacite, garnet, Ni-poor sulfide, phlogopite and rutile. Peridotitic ilmenite inclusions have high Mg, Cr and Ni contents and high Nb/Zr ratios; they may be related to metasomatic ilmenites known from peridotite xenoliths in kimberlite. Eclogitic phlogopite is intergrown with omphacite, coexists with garnet, and has an unusually high TiO2 content. Comparison with inclusions in diamonds from Mir shows general similarities, but differences in details of trace-element patterns. Large compositional variations among inclusions of one phase (olivine, garnet, chromite) within single diamonds indicate that the chemical environment of diamond crystallisation changed rapidly relative to diamond growth rates in many cases. P-T conditions of formation were calculated from multiphase inclusions and from trace element geothermobarometry of single inclusions. The geotherm at the time of diamond formation was near a 35 mW/m2 conductive model; that is indistinguishable from the Paleozoic geotherm derived by studies of xenoliths and concentrate minerals from Mir. A range of Ni temperatures between garnet inclusions in single diamonds from both Mir and Sputnik suggests that many of the diamonds grew during thermal events affecting a relatively narrow depth range of the lithosphere, within the diamond stability field. The minor differences between inclusions in Mir and Sputnik may reflect lateral heterogeneity in the upper mantle.  相似文献   

16.
To elucidate the conditions of formation of epigenetic graphite inclusions in natural diamond, we carried out experiments on high-temperature treatment of natural and synthetic diamond crystals containing microinclusions. The crystal annealing was performed in the CO–CO2 atmosphere at 700–1100 °C and ambient pressure for 15 min to 4 h. The starting and annealed diamond crystals were examined by optical microscopy and Raman spectroscopy. It has been established that the microinclusions begin to change at 900 °C. A temperature increase to 1000 °C induces microcracks around the microinclusions and strong stress in the diamond matrix. The microinclusions turn black and opaque as a result of the formation of amorphous carbon at the diamond–inclusion interface. At 1100 °C, ordered graphite in the form of hexagonal and rounded plates is produced in the microcracks. A hypothesis is put forward that graphitization in natural diamond proceeds by the catalytic mechanism, whereas in synthetic diamond it is the result of pyrolysis of microinclusion hydrocarbons. The obtained data on the genesis of graphite microinclusions in diamond are used to evaluate the temperature of kimberlitic melt at the final stage of formation of diamond deposits.  相似文献   

17.
《International Geology Review》2012,54(13):1658-1667
The identification of syngenetic inclusions in diamond (i.e. inclusions of minerals that crystallized at the same time and by the same genesis as their host) has long been of paramount importance in diamond studies. However, the widespread assumption that many or most inclusions in diamonds are syngenetic is based on qualitative morphological criteria and few direct measurements. In order to provide statistically significant information on inclusion–host genetic relations for at least one kimberlite, we have determined the crystallographic orientations of 43 olivine inclusions with diamond-imposed morphology, a feature generally interpreted to indicate syngenesis, in 20 diamonds from the Udachnaya kimberlite (Siberia). Our unprecedented large data set indicates no overall preferred orientation of these olivines in diamond. However, multiple inclusions within a single diamond frequently exhibit similar orientations, implying that they were derived from original single monocrystals. Therefore, regardless of the possible chemical re-equilibration during diamond-forming processes, at least some of the olivines may have existed prior to the diamond (i.e. they are protogenetic). Our results imply that a diamond-imposed morphology alone cannot be considered as unequivocal proof of syngenicity of mineral inclusions in diamonds.  相似文献   

18.
For the first time, three-dimensional, high-resolution X-ray computed tomography (HRXCT) of an eclogite xenolith from Yakutia has successfully imaged diamonds and their textural relationships with coexisting minerals. Thirty (30) macrodiamonds (≥1 mm), with a total weight of just over 3 carats, for an ore grade of some 27,000 ct/ton, were found in a small (4 × 5 × 6 cm) eclogite, U51/3, from Udachnaya. Based upon 3-D imaging, the diamonds appear to be associated with zones of secondary alteration of clinopyroxene (Cpx) in the xenolith. The presence of diamonds with secondary minerals strongly suggests that the diamonds formed after the eclogite, in conjunction with meta-somatic input(s) of carbon-rich fluids. Metasomatic processes are also indicated by the non-systematic variations in Cpx inclusion chemistry in the several diamonds. The inclusions in the diamonds vary considerably in major- and trace-element chemistry within and between diamonds, and do not correspond to the minerals of the host eclogite, whose compositions are extremely homogeneous. Some Cpx inclusions possess +Eu anomalies, probably inherited from their crustal source rocks. The only consistent feature for the Cpx crystals in the inclusions is that they have higher K2O than the Cpx grains in the host.

The δ13C compositions are relatively constant at ?5% both within and between diamonds, whereas δ15N values vary from ?2.8% to ?15.8%. Within a diamond, the total N varies considerably from 15 to 285 ppm in one diamond to 103 to 1250 ppm in another. Cathodoluminescent imaging reveals extremely contorted zonations and complex growth histories in the diamonds, indicating large variations in growth environments for each diamond.

This study directly bears on the concept of diamond inclusions as time capsules for investigating the mantle of the Earth. If diamonds and their inclusions can vary so much within this one small xenolith, the significance of their compositions is a serious question that must be addressed in all diamond-inclusion endeavors.  相似文献   

19.
Since cross-anisotropic sand behaves differently when the loading direction or the stress state changes, the influences of the loading direction and the intermediate principal stress ratio (b = (σ 2 ? σ 3)/(σ 1 ? σ 3)) on the initiation of strain localization need study. According to the loading angle (angle between the major principal stress direction and the normal of bedding plane), a 3D non-coaxial non-associated elasto-plasticity hardening model was proposed by modifying Lode angle formulation of the Mohr–Coulomb yield function and the stress–dilatancy function. By using bifurcation analysis, the model was used to predict the initiation of strain localization under plane strain and true triaxial conditions. The predictions of the plane strain tests show that the major principal strain at the bifurcation points increases with the loading angle, while the stress ratio decreases with the loading angle. According to the loading angle and the intermediate principal stress ratio, the true triaxial tests were analyzed in three sectors. The stress–strain behavior and the volumetric strain in each sector can be well captured by the proposed model. Strain localization occurs in most b value conditions in all three sectors except for those which are close to triaxial compression condition (b = 0). The difference between the peak shear strength corresponding to the strain localization and the ultimate shear strength corresponding to plastic limit becomes obvious when the b value is near 0.4. The influence of bifurcation on the shear strength becomes weak when the loading direction changes from perpendicular to the bedding plane to parallel. The bifurcation analysis based on the proposed model gives out major principal strain and peak shear strength at the initiation of strain localization; the given results are consistent with experiments.  相似文献   

20.
The mobility of H2O and D2O by diffusion through quartz is illustrated with H2O-rich fluid inclusions synthesized at 600 °C and 337 MPa, within the α-quartz stability field. Inclusions are re-equilibrated at the same experimental conditions within a pure D2O fluid environment. Consequently, a gradient in volatile fugacities is the only driving force for diffusion, in the absence of pressure gradients and deformation processes. Up to 100 individual inclusions are analyzed in each experiment before and after re-equilibration by microscopic investigation, microthermometry, and Raman spectroscopy. Changes in fluid inclusion composition are obtained from the ice-melting temperatures, and density changes are obtained from total homogenization temperatures. After 1-day re-equilibration, inclusions already contain up to 11 mol % D2O. A maximum concentration of 63 mol % D2O is obtained after 40-day re-equilibration. D2O concentration profiles in quartz are determined from the concentration in inclusions as a function of their distance to the quartz surface. These profiles illustrate that deep inclusions contain less D2O than shallow inclusions. At equal depths, a variety of D2O concentration is observed as a function of fluid inclusion size: Small inclusions are stronger effected compared with large inclusions. A series of 19-day re-equilibration experiments are performed at 300, 400, 500, and 600 °C (at 337 MPa), at the same conditions as the original synthesis. The threshold temperature of diffusion is estimated around 450 °C at 337 MPa, because D2O is not detected in inclusions from re-equilibration experiments at 300 and 400 °C, whereas maximally 26 mol % D2O is detected at 500 °C. Our study indicates that the isotopic composition of natural fluid inclusions may be easily modified by re-equilibration processes, according to the experimental conditions at 600 °C and 337 MPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号