共查询到20条相似文献,搜索用时 15 毫秒
1.
Flares and coronal mass ejections (CMEs) contribute to the acceleration and propagation of solar energetic particles (SEP) detected in the interplanetary space, but the exact roles of these phenomena are yet to be understood. We examine two types of energetic particle tracers related with 15 CME-less flares that emit bright soft X-ray bursts (GOES X class): radio emission of flare-accelerated electrons and in situ measurements of energetic electrons and protons near 1 AU. The CME-less flares are found to be vigorous accelerators of microwave-emitting electrons, which remain confined in low coronal structures. This is shown by unusually steep low-frequency microwave spectra and by lack of radio emission from the middle and high corona, including dm?–?m wave type IV continua and metre-to-hectometre type III bursts. The confinement of the particles accelerated in CME-less flares agrees with the magnetic field configuration of these events inferred by others. Two events produced isolated metric type II bursts revealing coronal shock waves. None of the seven flares in the western hemisphere was followed by enhanced particle fluxes in the GOES detectors, but one, which was accompanied by a type II burst, caused a weak SEP event detected at SoHO and ACE. Three of the CME-less flares were followed within some hours by SEP-associated flares from the same active region. These SEP-producing events were clearly distinct from the CME-less ones by their association with fast and broad CMEs, dm?–?m wave radio emission, and intense DH type III bursts. We conclude that radio emission at decimetre and longer waves is a reliable indication that flare-accelerated particles have access to the high corona and interplanetary space. The absence of such emission can be used as a signal that no SEP event is to be expected despite the occurrence of a strong soft X-ray burst. 相似文献
2.
We generalize previous studies of Alfvénic oscillations in the solar atmosphere to geometries in which the background magnetic field is not parallel to the gravitational acceleration. A uniform but inclined field produces only subtle changes in the mathematics, and virtually no changes to the coronal energy flux, over previous vertical field studies. We show that simple, two-layer models agree remarkably well with more sophisticated, multi-layer calculations. In addition, we derive several useful and accurate analytic results with which we highlight many features and parameter dependences. We also study a model with a spreading field geometry. For low magnetic fields (- 10 G) the corona still appears WKB to the oscillations and we do not find any significant deviations from the uniform field calculations. This is not the case for higher magnetic fields in active regions (- 3000 G) where we confirm previous results which suggest an order of magnitude increase in the coronal flux. Again, we derive useful analytic approximations.Now at: Mathematics Department, Monash University, Clayton, Victoria, Australia. 相似文献
3.
YiXu Hong-HuaXu 《中国天文和天体物理学报》2001,1(5):411-420
A new spectrum function is obtained by use of the Compton scattering cross section in the laboratory frame dervied earlier. This spectrum function, besides some modifications in the coefficients of the resonant term, contains also a non-resonant term which is inversely proportional to the square of the magnetic field. Based on this spectrum function, the hardening of thermal photons through inverse Compton scattering by relativistic electron beams on the surface of a strongly magnetized neutron star is investigated. Two new features are found. First, there is a maximum scattered photon energy for a given resonant scattering, beyond which resonance disappears. This maximum depends on the electron energy and the magnetic field, but is independent of the incident photon energy. Second, Beyond each resonant scattering, there is a high-energy tail, resulting from non-resonant scattering. It is also found that all the tails have a common upper limit which is the highest scattered photon energy for the given incident photon and electron energies. These two new features are absent in the Monte Carlo simulations and therefore, may have physical implications for γ-ray emissions. 相似文献
4.
N. N. Stepanyan Z. S. Akhtemov V. G. Fainstein G. V. Rudenko 《Bulletin of the Crimean Astrophysical Observatory》2013,109(1):115-123
The radial component of the solar magnetic field, Br, was calculated in the potential approximation in the height range from 1 to 2.5 solar radii, Ro. According to these data, synoptic maps of the magnetic field for solar cycles 21–23 were constructed. For each 10-degree latitudinal zone, the proportion of its area, S +field, that was occupied by the “+” field in each rotation was found. In the entire latitudinal zone, the radial component of the field is assumed to be positive if S+field ≥ 80% and negative if S +field ≤ 20%. The field proved to be virtually unipolar at the level of the photosphere (R = Ro) during most of the cycle, from the poles to the north and south latitude ≈60°. In the vicinity of minimums between cycles 21 and 22, as well as cycles 22 and 23, for a few rotations of the Sun, the field was almost unipolar within the range of latitudes (?40°)-90°. At R = 2.5 Ro, for most of each cycle, the field was unipolar in the range of latitudes (?20°-(-90°)) and (20°–90°). According to our interpretation, the shift of the polar-field boundary to the equator with height reflects superradial expansion of open magnetic flux tubes from the polar coronal holes. It was found that the reversal of the polar fields began with 1–2 rotations and ended from 2 to 14 solar rotations earlier at great heights than at the surface of the Sun. This indicates that the reversal of the large-scale field occurs first and then that of the small-scale one. In the study of the sectoral structure of the magnetic field at different heights it was found that the boundaries that rotate with a period of less than the Carrington revolution extend to greater heights than the boundaries with a Carrington or longer period. We assume that the boundaries of the first type are formed by the large-scale structures of the magnetic field and the boundaries of the second type are determined by the active regions. 相似文献
5.
K. Saaidi A. Vajdi S. W. Rabiei A. Aghamohammadi H. Sheikhahmadi 《Astrophysics and Space Science》2012,337(2):739-745
We introduce a new approach for investigating the weak field limit of vacuum field equations in f(R) gravity and we find the weak field limit of f(R)=R+μ
4/R gravity. Furthermore, we study the strong gravity regime in R+μ
4/R model of f(R) gravity. We show the existence of strong gravitational field in vacuum for such model. We find out in the limit μ→0, the weak field limit and the strong gravitational field can be regarded as a perturbed Schwarzschild metric. 相似文献
6.
Observations show that small-amplitude prominence oscillations are usually damped after a few periods. This phenomenon has been theoretically investigated in terms of non-ideal magnetoacoustic waves, non-adiabatic effects being the best candidates to explain the damping in the case of slow modes. We study the attenuation of non-adiabatic magnetoacoustic waves in a slab prominence embedded in the coronal medium. We assume an equilibrium configuration with a transverse magnetic field to the slab axis and investigate wave damping by thermal conduction and radiative losses. The magnetohydrodynamic equations are considered in their linearised form and terms representing thermal conduction, radiation and heating are included in the energy equation. The differential equations that govern linear slow and fast modes are numerically solved to obtain the complex oscillatory frequency and the corresponding eigenfunctions. We find that coronal thermal conduction and radiative losses from the prominence plasma reveal as the most relevant damping mechanisms. Both mechanisms govern together the attenuation of hybrid modes, whereas prominence radiation is responsible for the damping of internal modes and coronal conduction essentially dominates the attenuation of external modes. In addition, the energy transfer between the prominence and the corona caused by thermal conduction has a noticeable effect on the wave stability, radiative losses from the prominence plasma being of paramount importance for the thermal stability of fast modes. We conclude that slow modes are efficiently damped, with damping times compatible with observations. On the contrary, fast modes are less attenuated by non-adiabatic effects and their damping times are several orders of magnitude larger than those observed. The presence of the corona causes a decrease of the damping times with respect to those of an isolated prominence slab, but its effect is still insufficient to obtain damping times of the order of the period in the case of fast modes. 相似文献
7.
In this paper, we analyze the relationship between photospheric magnetic fields and chromospheric velocity fields in a solar active region, especially evolving features of the chromospheric velocity field at preflare sites. It seems that flares are related to unusually distributed velocity field structures, and initial bright kernels and ribbons of the flares appear in the red-shifted areas (i.e., downward flow areas) close to the inversion line of H Dopplergrams with steep gradients of the velocity fields, no matter whether the areas have simple magnetic structure or a weak magnetic field, or strong magnetic shear and complex structure of the magnetic fields. The data show that during several hours prior to the flares, while the velocity field evolves, the sites of the flare kernels (or ribbons) with red-shifted features come close to the inversion line of the velocity field. This result holds regardless of whether or not the flare sites are wholly located in blue-shifted areas (i.e., upward flow areas), or are far from the inversion line of the Doppler velocity field (V
= 0 line), or are partly within red-shifted areas. There are two cases favourable for the occurrence of flares, one is that the gulf-like neutral lines of the magnetic field (B
= 0 line) occur in the H red-shifted areas, the other is that the gulf-like inversion lines of the H Doppler velocity field (V
= 0 line) occur in the unipolar magnetic areas. These observational facts indicate that the velocity field and magnetic field have the same effect on the process of flare energy accumulation and release. 相似文献
8.
J. J. Aly 《Solar physics》1992,138(1):133-162
Some useful properties of a finite energy, constant-α, force-free magnetic field B α occupying a half-space D are presented. In particular:
- Fourier and Green representations of B α are obtained and used to derive conditions for the existence and uniqueness of a B α having a given normal component B z on the boundary ?D.
- The asymptotic behaviour of B α at infinity as well as stability results against changes in the boundary condition on ?D and in the value of α are established.
- The energy of B α is shown to be smaller than the energy of the open field having the same B z on ?D, thus confirming an earlier conjecture (Aly, 1984).
- B α is proved to not be a Taylor-Heyvaerts-Priest state, in spite of the fact that its relative helicity H is finite and that it is the only solution of the Lagrange-Euler equation associated with the problem of minimizing the energy among all the fields having the same value of H and the same B z on ?D.
9.
10.
11.
A Study of Neutron Star Structure in Strong Magnetic Fields that includes Anomalous Magnetic Moments
Akira Iwamoto 《中国天文和天体物理学报》2003,3(4):359-374
We study the effect of strong magnetic fields on the structure of neutronstar. We find that if the interior field is on the same order as the surface field currently observed, then the influences of the field on the star‘s mass and radius arenegligible; if the field is as large as that estimated from the scalar virial theorem,then considerable effects will be induced. The maximum mass of the star will be increased substantially while the central density is greatly reduced. The radius of a magnetic star can be larger by about 10%~20% than a nonmagnetic star of the same mass. 相似文献
12.
Solar System Research - In studying the connections of the δ-Cancrids (DCA) meteor stream, consisting of the northern (NCC) and southern (SCC) branches, with the comet–asteroid complex,... 相似文献
13.
The Effect of Central Baryonic Cores in Dark Halos on the Evaluation of Strong Lensing Probabilities
Jie WangNational Astronomical Observatories Chinese Academy of Sciences Beijing 《中国天文和天体物理学报》2004,4(1):10-16
We present an estimate of the strong lensing probability by dark halos, with emphasis on the role of the baryonic matter arising purely from radiative cooling. We treat the contribution of the cooled baryons optimistically with all the cooled baryons confined within a central core, and including no feedback process from stellar evolution. Our two-component model provides a strong lensing probability that is in good agreement with the observed distribution of multiple images of quasars, provided that the cooled baryons are deposited within a spherical region of radius of 0.1 times the virial radius and follow an isothermal profile. It is pointed out that strong lensing may be used as an additional probe‘of baryon physics in dark halos though this may meanwhile complicate the test of the inner density profiles of dark matter in halos using the observed strong lensing probability. 相似文献
14.
15.
16.
《New Astronomy》2003,8(1):1-14
We study the influence of intracluster large scale magnetic fields on the thermal Sunyaev–Zel’dovich (SZ) effect. In a macroscopic approach we complete the hydrostatic equilibrium equation with the magnetic field pressure component. Comparing the resulting mass distribution with a standard one, we derive a new electron density profile. For a spherically symmetric cluster model, this new profile can be written as the product of a standard (β-) profile and a radius dependent function, close to unity, which takes into account the magnetic field strength. For non-cooling flow clusters we find that the observed magnetic field values can reduce the SZ signal by ∼10% with respect to the value estimated from X-ray observations and the β-model. If a cluster harbours a cooling flow, magnetic fields tend to weaken the cooling flow influence on the SZ-effect. 相似文献
17.
Using polarimetric spectra obtained with the SOFIN spectrograph installed at the Nordic Optical Telescope, we detect a longitudinal magnetic field 〈Bz〉 = –168±35 G in the Of?p star HD 108. This result is in agreement with the longitudinal magnetic field measurement of the order of –150 G recently reported by the MiMeS team. The measurement of the longitudinal magnetic field in the Of?p star HD 191612 results in 〈Bz〉 = +450±153 G. The only previously published magnetic field measurement for this star showed a negative longitudinal magnetic field 〈Bz〉 = –220±38 G, indicating a change of polarity over ∼100 days. Further, we report the detection of distinct Zeeman features in the narrow Ca II and Na I doublet lines for both Of?p stars, hinting at the possible presence of material around these stars. The origin of these features is not yet clear and more work is needed to investigate how magnetic fields interact with stellar wind dynamics (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
18.
19.
Castagnoli G. Cini Bonino G. Della Monica P. Taricco C. Bernasconi S.M. 《Solar physics》1999,188(1):191-202
In this paper we present the 18O profile of Globigerinoides ruber measured in the GT90/3 shallow water Ionian sea core, dated with high precision. The 18O profile covers the period 1200–1900 AD, with a resolution of 3.87 years. This long record of 700 years of 18O allows us to identify the imprint of the solar cycle in a climatic record. In fact, the spectral analysis of the time series performed with different methods shows a dominant periodicity of about 11 years with an amplitude of 0.07. The signal is in opposition to the sunspot number cycle. This component is identified at a high significance level by Monte Carlo Singular Spectrum Analysis (MC-SSA). 相似文献
20.
We investigate the reliability with which magnetograph observations of the large-scale polar fields establish the zero-flux contour by comparing magnetic maps from various sources with one another and with the locations of filament structures seen on the disk in H filtergrams. The daily MWO and NSOKP magnetograms smoothed over 120 arc sec provide consistent large-scale zero-flux contours which align with the filaments out to heliocentric angles of about 75°. Synoptic maps match in regions where the locations of the zero-flux contour and of the filaments are maintained for several days. Attention is drawn to regions at the tips of unipolar `plumes' and the polar crown gap where the contours are variable from day to day; these are tentatively identified as regions of active reorganization of large-scale flux. 相似文献