首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
山谷风转换期的漫烟扩散模式   总被引:2,自引:0,他引:2  
根据渡口市空气污染监测资料首次鉴别出一种特殊形式的空气污染过程——山谷风转换期的漫烟过程。这种类型的空气污染在春、秋、冬季都经常发生,尤以冬季较严重。为此,发展了山谷风转换期的漫烟扩散模式,可以满意地解释上述观测事实。分析表明,模式不但能对高地面污染浓度的大小、而且能对其发生的时间和地点给出较准确的推断。 在上述情况下,SO_2地面浓度比该地区日平均浓度大几倍至一个数量级以上,是影响渡口市的主要空气污染过程之一。模式的分析为进一步开展空气质量预测及控制污染的对策研究提供了基础。  相似文献   

2.
2008年秋季从化山谷风观测研究   总被引:7,自引:0,他引:7  
利用2008年10月15日—11月16日在广州从化获得的基线小球测风资料,分析研究了秋季从化山谷风的特征。研究表明:从化山谷风主要出现在系统风速小于1.5 m/s,谷风出现时间为10:00—18:00,山风强度比谷风强度大;山谷风厚度大致为300 m,回流出现高度在300~700 m;山谷风转换期间,静小风频率较高;系统风与山谷风方向相反时,山谷风高度内多为静小风。冷锋过境时不会出现山谷风。  相似文献   

3.
张耀存 《气象科学》1995,15(3):245-253
本文利用三维土壤-植被-大气耦合的区域气候模式模拟分析植被覆盖状地山谷风环流形成与演变过程的影响。结果表明,植被覆盖状况不仅影响风速大小和环流强弱经,而且对环流的形成和维持也有很大影响。植被覆盖度越大,山谷风环流形成时间越滞后,风速越小,环流强度越弱,维持时间越短。  相似文献   

4.
本文以兰州地区的实际地形为背景,建立了一个二维小尺度数值模式,并用它对山谷之间热力差异造成的山谷风环流及其控制下山谷中高架源排放的污染物输送和扩散过程进行了模拟研究。结果表明,在山谷风环流控制下,造成山谷内高污染浓度的主要因素有两个:一是日出前和日落后山谷风的转换;二是在白天由于山谷风环流所造成的山谷上空较强的下沉气流。  相似文献   

5.
The present study examined the diurnal variations of summer precipitation in the Beijing area by using subdaily precipitation and wind observations. A combined effect of topography and urbanization on the characteristics of diurnal variations was suggested. It was shown that stations located in the plain areaexhibited typical night rain peaks, whereas those in the mountainous area exhibited clear afternoon peaks ofprecipitation diurnal variations. The precipitation peaks were associated with wind fields around the Beijing area, which were found to be highly modulated by mountain-valley circulation and urban-country circulation.The lower-tropospheric wind exhibited a clear diurnal shift in its direction from north at 0800 LST to southat 2000 LST, which reflected mountain-valley circulation. The transitions from valley to mountain windand the opposite generally happened after sunset and sunrise, respectively, and both occurred earlier for thestations located closer to mountains. By comparing the diurnal variations of precipitation at stations in anortheast suburb, an urban area, and a southwest suburb, it was revealed that the northeast suburb grouphad the highest normalized rainfall frequency, but the southwest group had the lowest from late afternoon tolate evening. On the contrary, in the early morning from about 0200 to 1000 LST, the southwest group andurban group had the highest normalized rainfall frequency. This pattern might originate from the combined effects of mountain-valley topography and urbanization.  相似文献   

6.
The mean concentration distributionwithin a plume released from a point source in the atmosphericboundary layer can be greatly influenced by the systematic turningof wind with height (i.e. vertical wind direction shear). Such aninfluence includes a deflection of the plume centroid, with anassociated shearing of the vertical plume cross-section, and anenhancement of dispersion, in the horizontal plane. Wind directionshear is normally not accounted for in coastal fumigation models,although dispersion observations with shear acting as acontrolling parameter are not uncommon. A three-dimensionalLagrangian stochastic model is used to investigate the influenceof uniform wind direction shear on the diffusion of a point-sourceplume within the horizontally homogeneous convective boundarylayer, with the source located at the top of the boundary layer.Parameterisations are developed for the plume deflection andenhanced dispersion due to shear within the framework of aprobability density function (PDF) approach, and compared with theLagrangian model results. These parameterisations are thenincorporated into two applied coastal fumigation models: a PDFmodel, and a commonly used model that assumes uniform andinstantaneous mixing in the vertical direction. The PDF modelrepresents the vertical mixing process more realistically. A moreefficient version of the PDF model, which assumes a well-mixedconcentration distribution in the vertical at large times, isapplied to simulate sulfur dioxide data from the Kwinana CoastalFumigation Study. A comparison between the model results and thedata show that the model performs much better when the wind-sheareffects are included.  相似文献   

7.
Performance of the fifth-generation Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model(MM5) over the Lake Nam Co region of the Tibetan Plateau was evaluated based on the data from five surface observation sites in 2006. The interaction between two thermally-induced circulations(lake breezes and mountain-valley winds) was also investigated. The results show that MM5 could be used to simulate 2-m air temperature; however, MM5 needs improvement in wind field simulation.Two numerical simulations were conducted to study the effect of the lake on the local weather and wind system. The original land cover of the model was used in the control experiment, and the lake was replaced with grassland resembling the area surrounding the lake in the sensitive experiment. The results of the simulations indicate that the lake enhanced the north slope mountain-valley wind and the mountain changed the offshore flow direction at the north shore. During the day, a clear convergent zone and a strong upflow were observed over the north slope of the Nyainq?entanglha Range, which may cause frequent precipitation over the north slope. During the night, the entire area was controlled by a south flow.  相似文献   

8.
利用辽东湾温坨子地区冬夏两季大气扩散试验资料,采用风场诊断模式,对拟建核电站厂区水平风场的分布特征进行了研究, 以为评估该地区拟建核电站的大气污染扩散状况提供基本参数与依据。结果表明:冬季该地区水平风场分布主要有3种形式:1) 呈偏南风型的风场;2) 偏北风型的风场;3) 厂址附近位于高低压中心之间,或整个区域是一均压场, 这时系统风弱,局地风 (包括山谷风及海陆风) 明显,整个区域地面风场比较混乱。夏季该地区水平风场分布主要有4种形式:1) 受季风控制,呈偏南风型的风场;2) 系统风较弱,呈海陆风型的风场;3) 锋前低压控制,产生切变型的风场;4) 受季风控制,呈偏北风型的风场。  相似文献   

9.
Observations show that there was change in interannual North Atlantic Oscillation (NAO) variability in the mid-1970s. This change was characterized by an eastward shift of the NAO action centres, a poleward shift of zonal wind anomalies and a downstream extension of climate anomalies associated with the NAO. The NAO interannual variability for the period after the mid-1970s has an annular mode structure that penetrates deeply into the stratosphere, indicating a strengthened relationship between the NAO and the Arctic Oscillation (AO) and strengthened stratosphere-troposphere coupling. In this study we have investigated possible causes of these changes in the NAO by carrying out experiments with an atmospheric GCM. The model is forced either by doubling CO2, or increasing sea surface temperatures (SST), or both. In the case of SST forcing the SST anomaly is derived from a coupled model simulation forced by increasing CO2. Results indicate that SST and CO2 change both force a poleward and eastward shift in the pattern of interannual NAO variability and the associated poleward shift of zonal wind anomalies, similar to the observations. The effect of SST change can be understood in terms of mean changes in the troposphere. The direct effect of CO2 change, in contrast, can not be understood in terms of mean changes in the troposphere. However, there is a significant response in the stratosphere, characterized by a strengthened climatological polar vortex with strongly enhanced interannual variability. In this case, the NAO interannual variability has a strong link with the variability over the North Pacific, as in the annular AO pattern, and is also strongly related to the stratospheric vortex, indicating strengthened stratosphere-troposphere coupling. The similarity of changes in many characteristics of NAO interannual variability between the model response to doubling CO2 and those in observations in the mid-1970s implies that the increase of greenhouse gas concentration in the atmosphere, and the resulting changes in the stratosphere, might have played an important role in the multidecadal change of interannual NAO variability and its associated climate anomalies during the late twentieth century. The weak change in mean westerlies in the troposphere in response to CO2 change implies that enhanced and eastward extended mid-latitude westerlies in the troposphere might not be a necessary condition for the poleward and eastward shift of the NAO action centres in the mid-1970s.  相似文献   

10.
复杂地形局地环流的数值模拟研究   总被引:7,自引:1,他引:6  
采用一个三维中尺度动力学诊断模式,对重庆地区气象场进行了实例模拟,研究了复杂地形和不同下垫面型对流场的动力和热力作用,揭示了中尺度局地环流(山谷风、河陆风)的基本特征和变化规律,模拟结果与实测资料有好的一致性,表明该模式能够成功地模拟复杂地形局地环流。  相似文献   

11.
Near-instantaneous vertical scans ofpower plant plumes, sampled by a lidar over three days as part ofthe 1995 Kwinana Coastal Fumigation Study, are analysed to obtainhourly-averaged total dispersion moments up to fourth order, andalso the relative and meander spreads. Two distinct fumigationcases, termed as neutral and stable cases, are observed dependingon whether the plume transport prior to fumigation takes place ina neutral atmosphere, or in a stable region above the neutralatmosphere. Plumes in the stable case are observed to undergoslower fumigation. The mean spreads display contrasting behavioursfor the two fumigating cases, while the vertical skewness shows anegative peak value of about -1 for the neutral case and -2for the stable case in the fumigation zone. The lateral skewnessis positive with a peak value of about unity for both cases, andis attributed to wind directional shear within the thermalinternal boundary layer. The vertical kurtosis is greater than theGaussian value of 3 in the fumigation zone, while the lateralkurtosis is scattered about this value. A recently-developedskewed probability density function model with wind shear isapplied to describe the fumigation data. Overall, the modelsimulates the observed vertical and lateral statistics well up tothe fourth order, except for the lateral skewness and kurtosisvalues in the stable case, which is probably due to the lidar'srange and sensitivity constraints and an inadequate sample size.Although the lateral turbulent diffusion in the model is Gaussian(i.e., zero skewness), the inclusion of wind shear in the model ismanifested in the predicted lateral skewness being greater thanzero in the fumigation zone, and of similar magnitude to the lidardata in the neutral case.  相似文献   

12.
Atmospheric modeling is considered an important tool with several applications such as prediction of air pollution levels, air quality management, and environmental impact assessment studies. Therefore, evaluation studies must be continuously made, in order to improve the accuracy and the approaches of the air quality models. In the present work, an attempt is made to examine the air pollution model (TAPM) efficiency in simulating the surface meteorology, as well as the SO2 concentrations in a mountainous complex terrain industrial area. Three configurations under different circumstances, firstly with default datasets, secondly with data assimilation, and thirdly with updated land use, ran in order to investigate the surface meteorology for a 3-year period (2009–2011) and one configuration applied to predict SO2 concentration levels for the year of 2011.The modeled hourly averaged meteorological and SO2 concentration values were statistically compared with those from five monitoring stations across the domain to evaluate the model’s performance. Statistical measures showed that the surface temperature and relative humidity are predicted well in all three simulations, with index of agreement (IOA) higher than 0.94 and 0.70 correspondingly, in all monitoring sites, while an overprediction of extreme low temperature values is noted, with mountain altitudes to have an important role. However, the results also showed that the model’s performance is related to the configuration regarding the wind. TAPM default dataset predicted better the wind variables in the center of the simulation than in the boundaries, while improvement in the boundary horizontal winds implied the performance of TAPM with updated land use. TAPM assimilation predicted the wind variables fairly good in the whole domain with IOA higher than 0.83 for the wind speed and higher than 0.85 for the horizontal wind components. Finally, the SO2 concentrations were assessed by the model with IOA varied from 0.37 to 0.57, mostly dependent on the grid/monitoring station of the simulated domain. The present study can be used, with relevant adaptations, as a user guideline for future conducting simulations in mountainous complex terrain.  相似文献   

13.
山区复杂地形条件下的风场分析   总被引:8,自引:1,他引:7  
利用实测资料对山区复杂地形条件下风场的一般特征和局地性特点作了计算分析,详细分析了山谷风的时空变化规律,比较了山谷风演变的不同阶段以及不同季节的特点和差异.  相似文献   

14.
应用文献[1]建立的中尺度(β-γ)大气模式,模拟了强对流风暴、过山气流与降水、及山谷风和海陆风等重要中小尺度天气过程,研究了各个过程的发展特点,检验了模式各部分功能。模拟结果与实际观测、国外模拟结果和概念模型相当一致,表明模式方程、物理参数化、地形坐标系和套网格设计等对局地天气过程中复杂的云过程、下垫面强迫和地形效应具有较强的模拟能力,适用于各种局地天气过程的模拟研究。文中对各个个例模拟结果进行了初步分析,揭示了它们的结构特征和演变机理,并指出了模式的一些缺点和未来进一步完善的方向。  相似文献   

15.
西双版纳地区雾的数值模拟研究   总被引:14,自引:1,他引:13  
建立了一个适用于复杂地形上的三维非定常雾模式,用于研究西双版纳地区雾的生消规律。模式详细考虑了湍流、长短波辐射、凝结、蒸发、重力沉降等影响因子,特别注意了植被和气溶胶辐射效应对雾的生消的影响。利用本模式对山谷风及雾的生消过程进行了实况模拟,结果表明,模式在一定程度上反映了实际情况。  相似文献   

16.
Climate change has been receiving wide attention in the last few decades. In order to quantify the climate variability of extreme weather events and their possible impacts on weather parameters and air quality, cold surge events in the past 45 years and the difference in characteristics of air pollutants before and after frontal passage has been examined after December 1993 in Taiwan. The potential impact of climate change on air pollutant concentration and its health implication were presented and discussed. In the past 45 years, the cold surge days (about 18.7 days, or 0.42 day/year) decreased significantly and the average lowest daily temperature for winter in northern Taiwan increased nearly 3°C (0.067°C/year). Based on the definition of cold surge in Taiwan and excluding the stagnation frontal passage, 21 cold surge frontal passage (CSFP) cases and 89 common frontal passage (CFP) events in winter (December–February) were identified in the past 12 years (1993–2005). We take the frontal passage day as the baseline and the differences in air pollutant concentrations and weather-related parameters between the two days before and after the frontal passage days were examined for each case. The averages of the above-mentioned differences during CSFP were compared to the corresponding differences during CFP. During CSFP, the air temperatures after the frontal passage were nearly 4–6°C lower than before the passage at both the background windward stations and urban stations. The average wind speed was about 4–5 m/s higher at the windward stations and less than 2 m/s higher in the major urban areas in Taiwan. During CFP, there was a 2°C increase in temperature but 1 m/s decrease in wind speeds on the day after frontal passage. Because of these meteorological differences, the concentration change of air pollutants during CSFP is significantly greater than that during CFP, especially for PM10 concentration. The difference of PM10 concentration during CSFP can be as large as 20–40 μg/m3 while that during CFP is only about 10 μg/m3. The differences in the other air pollutants such as CO, SO2, and O3 during CSFP are greater than those during CFP, but the difference is insignificant. Under the warming trend, less frequent CSFP’s are expected; the impacts on deterioration of air quality and human health are noteworthy.  相似文献   

17.
采用一个基于流体静力平衡的动力学诊断模式对大亚湾核电站厂址区域的气象场进行实际模拟,研究了复杂地形和下垫面对流场的动力和热力作用。数值实验表明:模式能很好地模拟中尺度局地环流的基本特征和变化规律。在模拟气象场的基础上,利用Monte Carlo多源模式计算了污染物的时空分布和干湿沉积量。模拟结果显示:模式很好地反映在海陆风和山谷风环流及排牙山影响下大气参数的非均匀性和非平稳性。  相似文献   

18.
《大气与海洋》2013,51(1):101-118
Abstract

A number of recent sea‐ice and ocean changes in the Arctic and subarctic regions are simulated using the global University of Victoria (UVic) Earth System Climate Model version 2.6. This is an intermediate complexity model which includes a three‐dimensional ocean model (MOM 2.2), an energy‐moisture balance model for the atmosphere with heat and moisture transport, and a dynamic‐thermodynamic sea‐ice model with elastic‐viscous‐plastic rheology. The model is first spun up for 1800 years with monthly wind stress forcing derived from the National Centers for Environmental Prediction (NCEP) climatology winds and a pre‐industrial atmospheric CO2 concentration of 280 ppm. After a second spin‐up for the period 1800–1947 with daily climatology winds‐tress forcing, and a linearly increasing atmospheric CO2 concentration, the model is run with interannually varying wind stresses for the period 1948–2002 with an average forcing interval of 2.5 days and an exponentially increasing atmospheric CO2 concentration varying from 315 to 365 ppm. However, the analysis of the model output is only carried out for the years 1955–2002.

The simulated maximum and minimum sea‐ice areas for the Arctic are within 6% of the observed climatologies for the years 1978–2001. The model output also shows a small downward trend in sea‐ice extent, which, however, is smaller than has been observed during the past few decades. In addition, the model simulates a decrease in sea‐ice thickness in the SCICEX (SCientific ICe EXpeditions) measurement area in the central Arctic that is consistent with, but smaller than, that observed from submarine sonar profiling data.

The observed variability and magnitude of the export of sea ice through Fram Strait is quite well captured in the simulation. The change in correlation between the North Atlantic Oscillation (NAO) index and the sea‐ice export around 1977 as found in a data study by Hilmer and Jung (2000) is also reproduced. Within the Arctic basin the model simulates well the patterns and the timing of the two major regimes of wind‐forced sea‐ice drift circulation (cyclonic and anticyclonic) as found earlier by Proshutinsky and Johnson (1997). The influence of variations in the Fram Strait ice export on the strength of the North Atlantic thermohaline circulation and surface air temperature are also determined. In particular, it is shown that 3–4 years after a large ice export, the maximum meridional overturning streamfunction decreases by more than 10%.

The temperature and salinity increase at depths of 200–300 m, as observed in the eastern Arctic by Morison et al. (1998), between the USS Pargo cruise in 1993 and the Environmental Working Group (EWG) Joint USRussian Arctic Atlas climatology for the years 1948–87, are just visible in the model simulation. The increases are more noticeable, however, when the ocean model data are averaged over the pentade 1995–2000 and compared with model data averaged over the pentade 1955–60. The fact that these, and some of the other modelled changes, are smaller than the observed changes can likely be attributed to the relatively coarse resolution of the UVic Earth System Climate Model (3.6°E‐W and 1.8°N‐S). Nevertheless, the fact that the model captures qualitatively many of the recent sea‐ice and ocean changes in the Arctic suggests that it can be successfully used to investigate other Arctic‐North Atlantic Ocean climate interactions during past and future eras.  相似文献   

19.
利用WRF模式与多尺度空气质量模式(CMAQ)系统模拟了试验期间(2005年1月30-2月2日)兰州市城区SO2的地面浓度,并根据模拟结果进一步分析了兰州市冬季污染物的空间分布特征。研究结果表明西固区和城关区各有一处污染物高浓度区域;受排放源空间分布和气象场的综合影响,夜间SO2地面污染范围小于日间,夜间污染物地面最大浓度明显高于日间,夜间模拟区域平均值低于日间;水平流场和山谷风环流形成的垂直运动均对污染物地面浓度有明显影响。  相似文献   

20.
无锡梅雨期湿沉降综合分析   总被引:2,自引:0,他引:2  
苏艳  刘端阳  彭华青  周彬  赵兵 《气象科学》2016,36(4):547-555
利用2008—2014年梅雨期间酸雨观测资料及2014年6月16—27日降水个例加密采样资料,结合大气污染物资料分析了近7 a无锡梅雨期酸雨特征,研究降水过程中空气污染物、p H值、电导率的变化及降水对污染物的清除作用。结果表明:无锡市梅雨期酸雨年平均p H值呈现逐年递增趋势。降水过程中,颗粒物质量浓度显著降低;气体浓度变化受其自身日变化及排放源影响大于雨水的清除作用;样品的p H值、K值每个过程变化并不一致,K值变化与颗粒物质量浓度变化大致保持一致。降水、风对颗粒物质量浓度影响大于对气体浓度的影响。长时间连续降水时,降水对颗粒污染物的清除存在极限。小时雨量在0~0.5 mm时,降水对颗粒物浓度做负清除,其值反而略有增加;小时雨量在0.6~5.0 mm时,降水对颗粒物质量浓度做正清除;小时雨量达到5.1 mm及以上时,对PM_(2.5)和PM_(2.5-10)做正清除,对PM_(10)做负清除。降水对SO_2有稀释清除作用;对NO_2的稀释作用取决于其开始浓度值;对CO、O_3的清除作用不显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号