首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
董巧玲  葛永慧 《测绘科学》2016,41(5):147-151
针对最小二乘估计中稳健估计方法的效果尚未被分析证明的问题,该文以不同观测值数量、不同粗差数量和等权或不等权观测值的三个测边网为例,通过仿真实验的方法,对12种常用稳健估计方法的稳健性进行了比较,确定了对测边网解算相对更为有效的稳健估计方法。结果表明,L1法、Danish法、German-McClure法和IGGIII方案是12种方法中更为有效的稳健估计方法,能相对更有效地消除或减弱粗差对参数估计结果的影响。  相似文献   

2.
3.
本文提出了用坐标法解算边测网概算的方法,给出了具体计算步骤和公式。经大量实例验证,证明了坐标法理论的正确性。  相似文献   

4.
以三维坐标转换为例解算稳健总体最小二乘方法   总被引:1,自引:2,他引:1  
陈义  陆珏 《测绘学报》2012,41(5):715-722
稳健最小二乘方法能够有效解决平差计算中观测值存在粗差的情况,因此广泛应用于各种实际问题中。在最小二乘方法中,系数矩阵被认为是不含有误差的。然而在实际情况中,系数矩阵中的变量往往也包含观测值,因此不可避免地会被误差污染。为同时考虑系数矩阵和观测向量中的误差,同时对粗差进行探测和定位,本文提出基于选权迭代的稳健总体最小二乘方法,并以三维相似坐标变换为例展示解算过程。通过模拟计算,证明采用本文提出的稳健总体最小二乘方法,能够较好地达到粗差探测和定位的目的,获得稳健的参数解。  相似文献   

5.
龚循强  李志林 《测绘学报》2014,43(9):888-894
加权总体最小二乘没有考虑观测数据中可能存在的粗差,本文基于IGG权函数,采用选权迭代法求解加权总体最小二乘。结合模拟数据和真实数据,系统地比较了加权总体最小二乘方法、基于Huber权函数的稳健加权总体最小二乘方法和基于IGG权函数的稳健加权总体最小二乘方法的系数估计和误差估计,通过对比分析表明,两种稳健加权总体最小二乘方法的参数估计结果比加权总体最小二乘方法更加可靠,且以基于IGG权函数的稳健加权总体最小二乘方法为最优。  相似文献   

6.
葛旭明  伍吉仓 《测绘学报》2013,42(2):196-202
大地测量和地球物理数据解算中时常会涉及病态问题的处理。基于客观的观测精度,利用设计矩阵与观测向量的误差限制,一方面降低了病态性对求解造成的波动;另一方面避免引入正常数,从而提高整个解算过程的客观性与可靠性。计算表明,本文提出的方法可以有效地处理病态总体最小二乘问题,并且具有较高的稳定性。  相似文献   

7.
运用仿真试验的方法,以不同的稳健估计方法和不同斜率的一元线性回归模型为例,探讨了系数矩阵含粗差的不同误差影响模型下稳健最小二乘法(RLS)和稳健总体最小二乘法(RTLS)在一元线性回归中的相对有效性。结果表明,对于观测值的估值,不同的斜率将影响RTLS与RLS的相对有效性;对于回归系数的估值,RLS优于RTLS。  相似文献   

8.
根据总体最小二乘准则,可以将附有不等式约束的变量误差(errors-in-variables,EIV)模型转化为标准最优化问题,并运用有效集法、序列二次规划法等优化方法求解。已有算法在涉及计算目标函数的Hesse矩阵(二阶导数)时,存在计算量较大的缺陷。针对上述问题,利用基于拟牛顿法修正Hesse矩阵的序列二次规划算法解算附有不等式约束加权总体最小二乘问题,新算法减小了计算量,可以提高收敛速度。通过实例,证明了该算法具有很好的适用性和计算效率。  相似文献   

9.
针对加权总体最小二乘平差模型中系数矩阵具有结构性的问题,该文设计了一种顾及系数矩阵结构性的加权总体最小二乘迭代解法:首先,利用非线性最小二乘平差方法将总体最小二乘模型线性化;然后,采用结构矩阵的方法顾及系数矩阵的重复元素和常数项,通过间接平差的原理推导了顾及系数矩阵结构性的加权总体最小二乘迭代公式,可适用于加权总体最小二乘的参数估计;最后,通过算例分析并与其他算法进行比较,验证了该算法的有效性和可行性。  相似文献   

10.
在处理坐标转换数据的方法中,通常使用的方法是最小二乘法,但其由于不能顾及系数矩阵误差而具有一定的局限性,导致坐标转换结果的可靠性较差。因此,需要一种新的方法来弥补最小二乘法的不足。本文引入总体最小二乘法和混合最小二乘法,采用仿真数据求解坐标转换七参数,并将结果与其仿真值进行比较,证明采用混合最小二乘法得到的坐标转换七参数更接近于理论值。  相似文献   

11.
在测量数据处理中,最为经典的处理方法是最小二乘法,认为误差只是包含在观测向量当中,系数矩阵中不包含误差。实际上由于模型等因素,系数矩阵中经常存在着误差。为了平差的严密性和精确性,采用一种可以同时顾及观测向量误差和系数矩阵误差的总体最小二乘方法,应用于测量数据处理和坐标转换中,得到更符合实际的平差处理,获得更准确的坐标转换参数。  相似文献   

12.
对比总体最小二乘方法与最小二乘方法在相机标定中的适用性及优越性。在相机标定中,由于像点坐标和对应的地面点坐标均存在误差,因此采用总体最小二乘方法对误差方程中的系数矩阵及观测向量同时改正,能够建立更加合理的计算模型。文中以相机标定两步法为例,通过实例解算,证明利用总体最小二乘法能够得到精度更高的相机标定参数解。  相似文献   

13.
将总体最小二乘平差方法应用于矿山开采沉陷概率积分法预计参数的解算,建立了概率积分法总体最小二乘平差模型,给出了非线性总体最小二乘平差的迭代算法。并以淮南矿区谢桥矿某工作面为例,考虑观测方程系数阵病态性的影响,分别采用最小二乘岭估计法和总体最小二乘岭估计法解算预计参数,计算表明,采用总体最小二乘岭估计法在解算预计参数时精度更高,且拟合参数的估值受到模型参数初值的影响。  相似文献   

14.
总体最小二乘问题解算的两种方法比较分析   总被引:1,自引:0,他引:1  
介绍了求解总体最小二乘问题的奇异值分解法和基于拉格朗日极值的迭代法,比较了两种方法在直线拟合中的应用,分析了二者的区别与联系。  相似文献   

15.
顾及像点观测方程的系数矩阵中存在随机误差,提出了基于总体最小二乘的线阵卫星遥感影像光束法平差模型。在假定像点观测误差和系数矩阵误差均为独立、等精度分布的基础上,利用拉格朗日条件极值法推导了包含外方位元素虚拟观测方程和控制点误差方程的总体最小二乘光束法平差算法的具体公式和计算方法。该方法利用方差分量估计确定各类虚拟观测值的方差,可求解包含多类虚拟观测量的平差问题,并可用先验信息或岭迹法确定系数矩阵观测值的权比例系数,从而克服了现有总体最小二乘虚拟观测方法不能处理多类虚拟观测值的不足,确保了光束法平差可正确有效求解。分别利用模拟算例与两组真实影像进行了试验验证。结果表明,相比于常规最小二乘虚拟观测法以及现有总体最小二乘虚拟观测方法,本文方法具有更高的求解精度与适应性。相较于传统线阵卫星遥感影像光束法平差方法,本文方法可以获得更高的平差计算精度。  相似文献   

16.
龚循强 《测绘学报》2018,47(10):1424-1424
正在测绘地理信息实践中,可能会遇到系数矩阵含有误差的情况,如果此时采用传统的最小二乘(LS)方法进行参数估计显然是不恰当的。为了弥补这个缺陷,在顾及权阵的前提下,采用同时考虑观测向量和系数矩阵误差的加权总体最小二乘(WTLS)方法被认为是更可取的。然而,该方法虽然考虑了系数矩阵存在误差的情况,但对于观测向量和系数矩阵中均可能存在的粗差却没有考虑,致使结果较大地偏离真实值。本文研究加权总体最  相似文献   

17.
分析指出了在总体最小二乘解下,含有多列独立变量的(以下简称为多变量)变量含误差(errors-invariables,EIV)模型,其各列变量的改正数受对应的参数估值与观测向量先验精度的联合影响,参数估值与观测向量先验精度的乘积越大,则该列变量的改正数越大。因此,现有稳健总体最小二乘方法采用同一个单位权中误差对多变量EIV模型进行降权处理时,会优先对模型中的某一列变量进行降权处理,从而造成平差结果不合理甚至错误,称之为虚假稳健估计现象。鉴于此,提出了多变量稳健总体最小二乘平差方法,并导出了相应的参数估计与精度评定公式。该方法对含有粗差的多变量EIV模型的各列独立变量分别进行降权处理,从而避免虚假稳健估计现象的发生。仿真算例结果表明,当观测值含有粗差时,该方法能够有效避免虚假稳健估计现象的发生,并能够定位出粗差所对应的误差方程;相较于总体最小二乘和稳健最小二乘方法,该方法的参数估计结果更接近真值。  相似文献   

18.
由于外界的种种原因,测量误差始终存在。总体最小二乘考虑了系数矩阵误差以及观测向量误差,却未考虑观测向量可能存在粗差。因此,利用稳健估计方法,采用IGGⅡ权函数,提出了基于IGGⅡ的稳健总体最小二乘迭代方法。通过实例对比LS,TLS,以及稳健总体最小二乘的结果,发现稳健总体最小二乘的精度最高。  相似文献   

19.
在现有的关于GPS高程转换的总体最小二乘方法研究中,通常是将高程异常转换参数的计算与待求点高程异常的计算分两步进行处理,并且只考虑由已知高程异常点的平面坐标组成的系数矩阵的误差,忽略了高程异常待求点的坐标误差。针对以上问题,本文提出了GPS高程转换的总体最小二乘拟合推估模型,将计算高程异常转换参数和待求点高程异常联合处理,且考虑到所有点的点位误差,最后采用拟合推估法进行求解。实验结果表明,本文方法能够有效地提高高程转换的精度。  相似文献   

20.
相对最小二乘方法,总体最小二乘顾及了观测方程系数矩阵含有误差的情况,然而,当系统出现病态时,总体最小二乘受病态的影响将更加明显。因此,针对病态总体最小二乘问题解算方法的研究越来越多受到关注。文中基于总体最小二乘进行火山形变Mogi模型反演,针对反演过程中出现的病态性问题,采用虚拟观测解法、谱修正迭代解法、共轭梯度解法,通过模拟算例验证文中方法在抑制病态性方面的有效性。与一般总体最小二乘、正则化总体最小二乘等方法相比存在优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号