首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Tetsuro Hirono   《Tectonophysics》2005,397(3-4):261-280
Geological investigation of the deformation structures and sedimentary setting of the Emi Group, a Miocene sand-rich accretionary complex, central Japan, revealed a six stage-structural evolution during shallow level accretion in a subduction zone. The early deformation (stage 1) is characterized by independent particulate flow in layer parallel faults, scaly cleavages and web structures, and upward dewatering in dish-and-pillar structures and breccia injections, while later deformation (stages 2–6) involve mappable scale folding, meso- to macro-scopic thrusts and web structures with cataclastic flow. Based on microscopic analyses of these structures, the early faulting with independent particulate flow (stage 1 deformation) is associated with dilatancy and preferred orientation of void space, whereas the later faulting with cataclastic flow (stage 2 deformation) occurs with compaction and crude preferred orientation. The former features imply more permeable fluid migration pathways, supported by the permeability measurements and direct imaging of fluid flow by X-ray CT. On the other hand, the later fault zone has lower permeability and porosity than intact rock, and plays as fluid sealing. Thus, in the early stage (stages 1), fluid flow occurs as focused flow through dilatant fault zones with independent particulate flow or fluid migration by upward dewatering forming dish-and-pillar structures and breccia injections, whereas no evidence of fluid flow is recognized at the later stages (stages 2–6). Namely the fault zones focus fluid flow during primary accretion in shallow levels, and the fluid flow is strongly controlled by the deformation mechanism. Furthermore, the change of the deformation mechanism could be effected by progressive increment of the confining pressure, accompanied with accretion and lithification in the accretionary prism. In the shallow, dilatant-faulting regime where the deformation mechanism is independent particulate flow, focused flow dominates, whereas in the deep, cataclastic regime distributed flow may play a main conduit rather than the focused flow.  相似文献   

2.
The microstructures of cm-scale displacement faults offsetting unlithified sequences of finely interbedded sands, silts and clays from outcrops in Denmark have been examined. A variety of shear band types are recognised based on their grain-scale deformation mechanism and internal structure. Shear bands in a Jurassic sequence exposed along the coastline of Bornholm are characterised by intense cataclasis of both sand and clay layers. This deformation mechanism is accompanied by extensive grain scale mixing along discrete shear bands to give a fault rock composition that reflects the relative amount of sand and clay within the faulted sequence. In contrast, shear bands at Nr. Lyngby and Jensgaard, both on the Jutland coast, are characterised by granular flow within the sand units. Grain scale mixing is subdued at these locations so that layers maintain their integrity across the shear band to form a layered internal structure of sand, silt and clay smears. In some instances, particularly at Nr. Lyngby, clays have deformed in a brittle manner so that they do not contribute material to the shear band, which is then comprised exclusively of coarser-grained components. The different deformation mechanisms and internal structures of shear bands are thought to be controlled by burial depth at the time of faulting.  相似文献   

3.
The Tertiary Mineoka ophiolite occurs in a fault zone at the intersection of the Honshu and Izu forearcs in central Japan and displays structural evidence for three major phases of deformation: normal and oblique-slip faults and hydrothermal veins formed during the seafloor spreading evolution of the ophiolite at a ridge-transform fault intersection. These structures may represent repeated changes in differential stress and pore-fluid pressures during their formation. The second series of deformation is characterized by oblique thrust faults with Riedel shears and no significant mineral veining, and is interpreted to have resulted from transpressional dextral faulting during the obduction of the ophiolite through oblique convergence and tectonic accretion. This deformation occurred at the NW corner of a TTT-type (trench–trench–trench) triple junction in the NW Pacific rim before the middle Miocene. The third series of deformation of the ophiolite is marked by contractional and oblique shear zones, Riedel shears, and thrust faults that crosscut and offset earlier structures, and that give the Mineoka fault zone its lenticular (phacoidal) fabric at all scales. This deformation phase was associated with the establishment and the southward migration of the TTT Boso triple junction and with the kinematics of oblique subduction and forearc sliver fault development. The composite Mineoka ophiolite hence displays rocks and structures that evolved during its complex geodynamic history involving seafloor spreading, tectonic accretion, and triple junction evolution in the NW Pacific Rim.  相似文献   

4.
In this research, we have focused on the geometrical characteristics of young faults in North Tehran tectonic wedge which is confined with the Mosha and North Tehran faults, the most outstanding active faults in Alborz fold-thrust belt. The statistical, genetic, and kinematic relationships between internal faults, boundary faults, and the stress regime in the area (at the finite state of deformation path) are considered in detail with the help of rose diagrams and Riedel??s model. On this basis, all faults with diverse mechanisms have been classified into different Riedel fractures and their orders of formation are identified. Pattern of faults implies a more or less N?CS compression at the period of faulting. Consideration of geometry and tectonic setting of abundant normal faults have led to propose folding and listric faulting model to explain the origin of normal faults in a compressional tectonic region. These structural models represent the mechanism of normal faulting in response to compression in crustal and upper crustal scales, respectively.  相似文献   

5.
Recognition of fractures as porosity-reducing deformation bands pervading all sandstone segments of the Teufelsmauer, Subhercynian Creatceous Basin, Germany, motivates a study relating the observed macroscopic and microscopic deformation to the damage zone of the nearby Harz border fault. Deformation bands, confirmed and documented by several porosity-reducing micro-mechanisms, such as cataclasis, particulate flow, pressure solution and a heavy quartz cementation, were mapped and analyzed in terms of the kinematics and deformation intensities expressed by them. Deformation band kinematics are uniform throughout the entire basin and consistent with the large-scale tectonic structures of the area. A strain intensity study highlights two narrow but long zones of deformation bands, sub-parallel to the Harz border fault. Deformation band kinematics, strain intensity, as well as micro-mechanisms are all consistent with a continuous but internally diverse deformation band damage zone of the entire Teufelsmauer structure along the Harz border fault, bringing new insights into the tectonic evolution and the origin of the heavy quartz cementation of the sandstones in the Subhercynian Cretaceous Basin.  相似文献   

6.
We present a multiscale investigation on the initiation and development of compaction bands in high-porosity sandstones based on an innovative hierarchical multiscale approach. This approach couples the finite element method and the discrete element method (DEM) to offer direct, rigorous linking of the microscopic origins and mechanisms with complex macroscopic phenomena observed in granular rocks such as strain localization and failure. To simulate compaction band in granular cementitious sandstone, we adopt a bonded contact model with normal and tangential interparticle cohesions in the DEM and propose a dual-porosity structure consisting of macro-pores and interstitial voids for the representative volume element to mimic the typical meso-structure of high-porosity sandstones. In the absence of particle crushing, our multiscale analyses identify debonding and pore collapses as two major contributors to the formation of compaction bands. The critical pressures predicted by our simulations, corresponding to surges of debonding and pore collapse events, agree well with the estimations from field data. The occurrence patterns of compaction band are found closely related to specimen heterogeneity, porosity and confining pressure. Other deformation band patterns, including shear-enhanced compaction bands and compactive shear bands, were also observed under relatively low confining pressure conditions with a rough threshold at \(0.55P^{*}\) (\(P^{*}\) is the critical pressure) on the failure envelop. Key microscopic characteristics attributable to the occurrence of these various deformation patterns, including fabric anisotropy, particle rotation, debonding and pore collapse, are examined. Shear-enhanced compaction bands and pure compaction bands bear many similarities in terms of these microscopic characteristics, whereas both differ substantially from compactive shear bands.  相似文献   

7.
The geometry and architecture of a well exposed syn-rift normal fault array in the Suez rift is examined. At pre-rift level, the Nukhul fault consists of a single zone of intense deformation up to 10 m wide, with a significant monocline in the hanging wall and much more limited folding in the footwall. At syn-rift level, the fault zone is characterised by a single discrete fault zone less than 2 m wide, with damage zone faults up to approximately 200 m into the hanging wall, and with no significant monocline developed. The evolution of the fault from a buried structure with associated fault-propagation folding, to a surface-breaking structure with associated surface faulting, has led to enhanced bedding-parallel slip at lower levels that is absent at higher levels. Strain is enhanced at breached relay ramps and bends inherited from pre-existing structures that were reactivated during rifting. Damage zone faults observed within the pre-rift show ramp-flat geometries associated with contrast in competency of the layers cut and commonly contain zones of scaly shale or clay smear. Damage zone faults within the syn-rift are commonly very straight, and may be discrete fault planes with no visible fault rock at the scale of observation, or contain relatively thin and simple zones of scaly shale or gouge. The geometric and architectural evolution of the fault array is interpreted to be the result of (i) the evolution from distributed trishear deformation during upward propagation of buried fault tips to surface faulting after faults breach the surface; (ii) differences in deformation response between lithified pre-rift units that display high competence contrasts during deformation, and unlithified syn-rift units that display low competence contrasts during deformation, and; (iii) the history of segmentation, growth and linkage of the faults that make up the fault array. This has important implications for fluid flow in fault zones.  相似文献   

8.
Using a new ring-shear apparatus with a transparent shear box and video image analysis system, drained and undrained speed-controlled tests were conducted on coarse-grained silica sands to study the shear-zone formation process in granular materials. Velocity distribution profiles of grains under shear at various stages in the ring shear tests were observed through processing the video image by the Particle Image Velocimetry (PIV) program. Shear-zone thickness and type of shear mode (slide-like or flow-like) during shear were observed. Before reaching peak strength in low-speed and drained condition test, a comparatively major part of the sample in the upper shear box showed a velocity distribution profile of structural deformation and dilatancy behavior. After peak strength, the velocity profile changed into a slide-like mode and thereafter showed almost no change. In higher speed tests with drained and undrained conditions, an almost slide-like mode was observed, compared to low-speed test. Apparent shear-zone thicknesses of high-speed tests are thinner than low-speed tests. Unexpectedly, almost no difference was observed in the shear-zone thickness and mode of shear (slide or flow-like) between drained and undrained tests. This study was conducted as part of the International Programme on Landslides (IPL) M101 “Areal prediction of earthquake and rain induced rapid and long-traveling flow phenomena (APERITIF)” of the International Consortium on Landslides (ICL). These results will contribute to understanding the mechanism of shear-zone development in granular materials as a basic knowledge for disaster risk mitigation of rapid long run-out landslides.  相似文献   

9.
The evolution of the Main Cordillera of Central Chile is characterized by the formation and subsequent inversion of an intra-arc volcano-tectonic basin. The world’s largest porphyry Cu-Mo deposits were emplaced during basin inversion. Statistically, the area is dominated by NE- and NW-striking faults, oblique to the N-striking inverted basin-margin faults and to the axis of Cenozoic magmatism. This structural pattern is interpreted to reflect the architecture of the pre-Andean basement. Stratigraphic correlations, syn-extensional deposits and kinematic criteria on fault surfaces show several arc-oblique structures were active as normal faults at different stages of basin evolution. The geometry of syn-tectonic hydrothermal mineral fibers, in turn, demonstrates that most of these structures were reactivated as strike-slip ± reverse faults during the middle Miocene – early Pliocene. Fault reactivation age is constrained by 40Ar/39Ar dating of hydrothermal minerals deposited during fault slip. The abundance and distribution of these minerals indicates fault-controlled hydrothermal fluid flow was widespread during basin inversion. Fault reactivation occurred under a transpressive regime with E- to ENE-directed shortening, and was concentrated around major plutons and hydrothermal centers. At the margins of the former intra-arc basin, deformation was largely accommodated by reverse faulting, whereas in its central part strike-slip faulting was predominant.  相似文献   

10.
The results of a lithostratigraphic, tectonic and kinematic study of the Karoo deposits of northern Malawi are reported. The objective of the lithostratigraphic study is to correlate the deposits of the Karoo basins of northern Malawi with the well-known deposits of southern Tanzania, thus establishing a stratigraphic framework through which the timing of faulting can be constrained. The kinematic analysis of faulting constrains the opening direction for the Karoo graben in this area and provides basic data to discuss the Karoo graben development within the regional tectonic framework of south-eastern Africa. The studied adults are defined by moderately to steeply dipping cataclastic zones with a width of up to 15 m and are characterized by an array of slickensided fault surfaces with different orientations and slip directions. In this study, small faults (offset < 10 m) and meso-scale faults (offset > 10 m, but generally not exceeding 30–40 m) have been distinguished. Methods used to analyse the kinematic data include the ‘pressure tension’ (PT) method, which estimates the principal axes for the bulk brittle strain, and the internal rotation axis (IRA) method, which estimates the axis of bulk internal rotation and the overall sense of slip at the faults. A mass balance calculation reveals a volume increase of up to 16% during cataclastic deformation in the fault zones. The PT method shows an approximately east trending extension direction for faults that occur only in the latest Carboniferous (?) and Early Permian strata, whereas the fault kinematics from faults that cut middle Permian to Early Triassic rocks is characterized by a ESE to SE trending extension direction. The small faults yield essentially the same kinematic results as the meso-scale faults. In a transport-parallel cross-sectional view, the principal extension axes are at an acute angle of approximately 60° to the major fault planes. Given the moderate fault density, the relatively high angle between the orientation of the principal extension axis and the fault planes suggest only a moderate amount of horizontal extension across the Karoo graben of northern Malawi. Riedel structures in the fault zones formed within two conjugate sets of localized shear zones; slip on one set was top to the W/NW and, on the other, top to the E/SE. The two conjugate sets of Riedel structures have an acute angle about the regional shortening axes, implying that no pronounced rotation of the strain axes occurred. The internal rotation axes for the Riedel structures reveal a largely bimodal distribution and inferred weakly monoclinic to orthorhombic symmetry. Therefore the overall deformation during Karoo rifting in northern Malawi is interpreted to be close to a coaxial deformation with a limited amount of horizontal extension.[/p]  相似文献   

11.
Large‐scale soft‐sediment deformation structures occur within fluvial sandstone bodies of the Upper Cretaceous Wahweap Formation in the Kaiparowits basin, southern Utah, USA. These structures represent an exceptional example of metre‐scale fault‐proximal, seismogenic load structures in nearly homogenous sandstones. The load structures consist of two types: large‐scale load casts and wedge‐shaped load structures. Large‐scale load casts penetrate up to 4·5 m into the underlying sandstone bed. Wedge‐shaped load structures include metre‐scale, parallel, sub‐vertical features and decimetre‐scale features along the periphery of the large‐scale load casts or other wedge‐shaped load structures. Wedge‐shaped load structures contain well‐developed, medial cataclastic shear deformation bands. All load structures contain pervasive well‐defined millimetre‐thick to centimetre‐thick internal laminae, oriented parallel to the outside form of the load structures and asymptotic to deformation bands. Both types of load structures formed because of an inverted density profile, earthquake‐triggered liquefaction and growth of irregularities (a Rayleigh–Taylor instability) on the sandstone–sandstone erosional contact. The internal laminae and deformation bands formed during deformation and clearly demonstrate polyphase deformation, recording a transition from liquefied to hydroplastic to brittle modes of deformation. Decimetre‐scale wedge‐shaped load structures on the edge of the large‐scale load casts probably formed towards the end of a seismic event after the sediment dewatered and increased the frictional contact of grains enough to impart strength to the sands. Metre‐scale wedge‐shaped load structures were created as the tips of downward foundering sediments were driven into fractures, which widened incrementally with seismic pulsation. With each widening of the fracture, gravity and a suction effect would draw additional sediment into the fracture. Superimposed laminae indicate a secondary syndeformational origin for internal laminae, probably by flow‐generated shearing and vibrofluidization mechanisms. Large‐scale and wedge‐shaped load structures, polyphase deformation and secondary laminae may characterize soft‐sediment deformation in certain fault‐proximal settings.  相似文献   

12.
目前数字图像相关方法在岩石力学领域的应用主要集中于获取变形场云图,缺乏结合一些指标对变形数据进行定量分析。采用数字图像相关方法对裂隙砂岩试件压缩加载过程进行非接触式、实时变形测量,结合方差量化描述应变场分异特征;而后对应变场方差变化曲线进行有限差分求导,量化描述应变场分异速率,分析应变场演化规律及前兆特征。研究结果表明:裂隙砂岩试件的变形破裂过程可划分为压密、弹性变形、裂纹稳定扩展、裂纹快速扩展及破坏等4个阶段。加载过程中裂隙砂岩试件的裂纹萌生和扩展行为,在应变场上表现为应变局部化带的产生与发展,进而导致应变场方差和分异速率发生变化。应变场方差-轴向应变曲线表现出阶段性特征,可划分为稳定分异、加速分异以及加加速分异等3个阶段。应变场分异速率-轴向应变曲线在张拉裂纹起裂时均出现第一个尖峰,可作为裂隙岩体失稳破坏前的前兆信号,对应的前兆应力与峰值应力之比为0.80~0.96。研究成果对工程岩体失稳预测具有较好的理论参考价值。  相似文献   

13.
We report for the first time the occurrence of polygonal faults in sandstone, which is compelling given that layer-bound polygonal fault systems have been observed so far only in fine-grained sediments such as clay and chalk. The polygonal faults are shear deformation bands that developed under shallow burial conditions via strain hardening in dm-wide zones. The edges of the polygons are 1–5 m long. The shear deformation bands are organized as conjugate faults along each edge of the polygon and form characteristic horst-like structures. The individual deformation bands have slip magnitudes ranging from a few mm to 1.5 cm; the cumulative average slip magnitude in a zone is up to 10 cm. The deformation bands heaves, in aggregate form, accommodate a small isotropic horizontal extension (strain <0.005). The individual shear deformation bands show abutting T-junctions, veering, curving, and merging where they mechanically interact. Crosscutting relationships are rare. The interactions of the deformation bands are similar to those of mode I opening fractures. The documented fault networks have important implications for evaluating the geometry of km-scale polygonal fault systems in the subsurface, top seal integrity, as well as constraining paleo-tectonic stress regimes.  相似文献   

14.
Typical pull-apart structures were created in scaled clay experiments with a pure strike-slip geometry (Riedel type experiments). A clay slab represents the sedimentary cover above a strike-slip fault in the rigid basement. At an early stage of the development of the deformation zone, synthetic shear fractures (Riedel shears) within the clay slab display dilatational behaviour. With increasing basal displacement the Riedel shears rotate and open further, developing into long, narrow and deep troughs. The shear displacement and the low angle with the prescribed principal basal fault set them apart from tension gashes. At a more evolved stage, synthetic segments (Y-shears) parallel to the basal principal fault develop and accommodate progressive strike-slip deformation. The Y-shears connect the tips of adjacent troughs developed from the earlier Riedel shears, resulting in the typical rhomb-shaped structures characteristic for pull-apart basins. The Strait of Sicily rift zone, with major strike-slip systems being active from the Miocene to the Present, comprises pull-apart basins at different length scales, for which the structural record suggests development by a mechanism similar to that observed in our experiments.  相似文献   

15.
西藏罗布莎豆荚状铬铁矿成矿演化的构造过程   总被引:5,自引:0,他引:5  
李德威 《现代地质》1995,9(4):450-458,T001
摘要:通过对罗布莎铬铁矿区的构造解析,揭示出了豆荚状铬铁矿的成矿演化规律。由地幔韧性剪切带和脆-韧性剪切带组成的含铬剪切带是成矿期构造,被造山期发生的变形分解作用和脆性断裂作用改造,成矿演化经历了从上地幔到上地壳所发生的5个构造变形相的转换,即熔融流变变形相→地幔韧性剪切变形相→壳幔脆→韧性剪切变形相→塑性挤压变形相→脆性断裂变形相,可划分为中生代改造成矿和新生代矿床改造两个阶段,并概括为包含6个变形世代的构造成矿序列。  相似文献   

16.
Field observations are presented on meso-scale normal faults and sandstone dikes which cross-cut turbidites in the petroliferous Recôncavo Basin situated in Bahia, NE Brazil. Two discrete phases of normal faulting occurred. It is argued that the first was probably active during the first 200 m of burial. Compaction estimates from folded sandstone dikes and the accommodation patterns of shale bedding planes around ball-and-pillow structures were made. First-phase fault profiles were initially reasonably straight but refraction on the fault planes increased due to the differing compaction between sandstone and shale. The later phase of faulting occurred at a greater depth, with steeper fault dips and strong refraction of fault planes at lithological boundaries. This greater fault refraction is probably the result of burial and diagenesis, which increased the difference in rheological properties between sandstone and shale before faulting occurred. Thus, complex superposed fault geometries may be developed by changing rheological properties and stress conditions during progressive burial. It is shown that sandstone dikes were not always intruded vertically. Injected dikes cannot be used in the same manner that Neptunian dikes are conventionally used to estimate tectonic strain, if independent evidence of the original orientation of the dike is not available.  相似文献   

17.
Recent analysis of data from triaxial tests on sand and discrete element simulations indicate the final pattern of failure is encoded in grain motions during the nascent stages of loading. We study vortices that are evident from grain displacements at the start of loading and bear a direct mathematical connection to boundary conditions, uniform continuum strain and shear bands. Motions of three grains in mutual contact, that is, 3‐cycles, manifest vortices. In the initial stages of loading, 3‐cycles initiate a rotation around a region Ω* where the shear band ultimately develops. This bias sets a course in 3‐cycle evolution, determining where they will more likely collapse. A multiscale spatial analysis of 3‐cycle temporal evolution provides quantitative evidence that the most stable, persistent 3‐cycles degrade preferentially in Ω*, until essentially depleted when the shear band is fully formed. The transition towards a clustered distribution of persistent 3‐cycles occurs early in the loading history—and coincides with the persistent localisation of vortices in Ω*. In 3D samples, no evidence of spatial clustering in persistent 3‐cycle deaths is found in samples undergoing diffuse failure, while early clustering manifests in a sample that ultimately failed by strain localisation. This study not only delivered insights into the possible structural origins of vortices in dense granular systems but also a tool for the early detection of the mode of failure—localised versus diffuse—a sample will ultimately undergo. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The northern part of the Northeast German Basin contains a large number of Late Permian (Zechstein) salt pillows, whereas diapiric structures are almost completely absent. This lack of diapirs facilitated the study of early stages of salt movement in the basin. Salt pillows and related structures were investigated in terms of distribution, geometry and time of initiation of salt flow within the regional geological context. The primary Zechstein thickness in the study area was reconstructed to gain more insight into the relationship between the geometry of the salt layer and the style of the salt-related structures. In this study, no clear spatial relationship between the salt structures and basement faults has been found and the location of the salt structures in this area appears to be highly independent of the underlying structural grain. The overburden is affected by minor faulting. We propose that buckling of the overburden due to regional compression significantly contributed to the initiation of the Late Jurassic to Early Cretaceous salt structures in the basin. Reverse faulting of the Gardelegen and Haldensleben Faults is related to inversion tectonics and exerted a compression on the basin fill. During the deformation, the Late Permian salt layer acted as an efficient detachment and led to a marked decoupling of the Mesozoic overburden from the underlying pre-Zechstein rocks.  相似文献   

19.
秦建敏  迟璐璐 《岩土力学》2013,34(5):1508-1514
剪胀性是颗粒材料在加载过程中表现出来的重要变形特性。以孔隙胞元描述颗粒材料内部结构的最小单元,通过对单个孔隙胞元进行剪切受力分析,探讨了剪切过程中颗粒材料体积的改变对应力比和单个孔隙胞元形状的依赖关系,解释了排列密实的颗粒材料在剪切过程中先压缩后剪胀的微观机制。用离散元数值模拟得到了在双轴剪切过程中单个孔隙胞元形状以及孔隙胞元体积变形的演化过程。离散元数值结果表明,加载过程中孔隙胞元形状由初始各向同性到沿大主应力方向变大变长、体积变形先压缩后膨胀,并且体积变形在加载过程中存在局部化现象,体积变化大的孔隙胞元在较大变形时,排列成倾斜的窄带。综合孔隙胞元的受力分析和离散元数值结果表明,致密排列颗粒材料的剪胀性与微观尺度上孔隙胞元的几何结构及其内部的力链传递方式密切相关。  相似文献   

20.
袁静  俞国鼎  钟剑辉  董志芳  谢君  单康 《沉积学报》2018,36(6):1177-1189
构造成岩作用(structural diagenesis)是构造地质学与沉积学交叉融合形成的前沿研究领域,主要研究构造作用、构造和非构造成因的变形构造和变形效应与沉积物(岩)成岩变化之间的相互作用。变形构造及变形过程通过影响成岩流体流动对成岩作用非均质性产生重要影响;与变形构造相关的成岩作用研究则有助于揭示储层成岩演化、流体流动以及构造活动时期、期次及速率等重要信息。构造成岩作用提供了构造-成岩格架下探讨储层演化的新思路,在实际工作中应注意这一思路在储层成因与预测、致密化机制及沉积盆地动力学过程等研究方面的应用。碳酸盐岩变形条带相关研究起步较晚,相对较薄弱,未来应加强这方面的研究;同时亟待建立考虑碳酸盐岩在内的新的变形条带分类体系。目前,不同变形构造之间的研究程度不均衡,变形条带与裂缝几乎构成了构造成岩作用研究的主体;与软沉积物变形构造、砂岩脉等变形构造有关的构造成岩作用研究有待强化。变形构造空间分布预测及其对流体流动影响的研究要综合岩芯、露头及数值模拟等多种资料与方法。国内学者就中国中西部盆地深层系构造作用对储层演化的物理影响开展了研究,并取得了重要进展,构造作用对储层化学变化影响的相关研究已经起步;未来应重视运用构造成岩作用思路探究储层演化与分布的动力机制和过程,推进储层成岩动力学过程和沉积盆地动力学研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号