首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Neogene magmatism in the Muka mine area in the Kitami metallogenic province was characterized on the basis of K-Ar age data by felsic–to–mafic terrestrial extrusive and intrusive volcanism from Late Miocene to Early Pliocene. The geology of the Muka mine area comprises the Upper Cretaceous-Paleocene Yubetsu Group, consisting primarily of sandstone and shale; Upper Miocene Ikutahara Formation, consisting of clastic and felsic volcaniclastic rocks and Kane-hana Lava (rhyolite) of 7. 5 Ma; Upper Miocene Yahagi Formation, consisting of clastics, felsic volcaniclastics and rhyolite lavas; Late Miocene andesite and rhyolite dikes (Chidanosawa Rhyolite of 7. 2 Ma and Hon-Mukagawa Andesite of 6. 6 Ma); Lower Pliocene Hakugindai Lava (basalt: 4. 0 Ma); and Quaternary System. The volcanism consists of earlier Late Miocene felsic extrusive activity during the sedimentation of the Ikutahara Formation, later Late Miocene felsic extrusive and intrusive activities during the sedimentation of the Yahagi Formation and intermediate intrusive activity after the sedimentation of the Yahagi Formation and Early Pliocene mafic extrusive activity. The Muka gold-silver ore deposit occurs primarily in the felsic volcaniclastic rocks and Kanehana Lava of the Ikutahara Formation and in Hon-Mukagawa Andesite. These wall–rocks, the clastic rocks of the Ikutahara Formation and the clastic and felsic volcaniclastic rocks of the Yahagi Formation were affected to various extents by hydrothermal alteration. The hydrother-mal alteration can be divided into two stages (early and late) based on the modes of occurrence and mineral assemblages. Early hydrothermal alteration is characterized by regional and vein-related alterations associated with epithermal gold-silver mineralization in a near-neutral hydrothermal system. Regional alteration can be subdivided into a zeolite zone (mordenite+adularia±heulandite–clinoptilolite series mineral±smectite±quartz°Cristobalite±opal–CT) and a smectite zone (smec–tite±quartz±opal–CT). Vein-related alteration can be subdivided into a K-feldspar zone (quartz+adularia±illite±interstratified illite/smectite±pyrite), an illite zone (quartz+illite°Chlorite±interstratified illite/smectite±smectite±pyrite) and an interstratified illite/smectite zone (quartz+interstratified illite/smectite±smectite±pyrite). The adularization age of 6. 8 Ma in the K-feldspar zone that developed in Kanehana Lava hosting ore veins coincides well with the epithermal gold-silver mineralization age of 6. 6 Ma. Late hydrothermal alteration is characterized by a kaolinite zone (kaolinite±dickite±alunite±quartz°Cristobalite± tridymite±pyrite) in an acid hydrothermal system, and cuts early alteration zones such as the K-feldspar zone. Other modes of occurrence of acid alteration are a 7Å halloysite-kaolinite vein in the hydrothermal explosion breccia dike and smectite–kaoli–nite veins along joint planes of Kanehana Lava. The style of the gold-silver deposit associated with early near-neutral hydrothermal alteration is a low-sulfidation epithermal type. The low-sulfidation epithermal gold-silver mineralization of 6. 6 Ma in the vicinity of the Muka ore deposit was essentially accompanied by felsic volcanic activity during the sedimentation of the Yahagi Formation, and was closely related both temporally and spatially to the felsic intrusive activity of Chidanosawa Rhyolite of 7. 2 Ma. The related hydrother-mal activity of the gold-silver mineralization took place at intervals of approximately 0. 4–0. 6 Ma after the volcanic activity related to the mineralization.  相似文献   

2.
Archean terrains of the Quadrilátero Ferrífero comprise a greenstone belt association surrounded by granitoid–gneiss complexes, mainly composed of banded TTG gneisses whose igneous protoliths are older than 2900 Ma. This early continental crust was affected by three granitic magmatic episodes during the Neoarchean: ca. 2780 to 2760 Ma; 2720 to 2700 Ma; and 2600 Ma. Dating of felsic volcanic and volcaniclastic rocks defines a felsic magmatic event within the greenstone belt association around 2772 Ma, contemporaneous with emplacement of several of the granitic plutons and constrains a major magmatic and tectonic event in the Quadrilátero Ferrífero. Lead isotopic studies of lode–gold deposits indicate that the main mineralization episode occurred at about 2800 to 2700 Ma.Proterozoic evolution of the Quadrilátero Ferrífero comprises deposition of a continental-margin succession hosting thick, Lake Superior-type banded iron formations, at ca. 2500 to 2400 Ma, followed by deposition of syn-orogenic successions after 2120 Ma. The latter is related to the Transamazonian Orogeny. The western part of the Quadrilátero Ferrífero was also affected by the Brasiliano Orogeny (600 to 560 Ma).  相似文献   

3.
The thick piles of late-Archean volcaniclastic sedimentary successions that overlie the voluminous greenstone units of the eastern Yilgarn Craton, Western Australia, record the important transition from the cessation in mafic-ultramafic volcanism to cratonisation between about 2690 and 2655 Ma. Unfortunately, an inability to clearly subdivide the superficially similar sedimentary successions and correlate them between the various geological terranes and domains of the eastern Yilgarn Craton has led to uncertainty about the timing and nature of the region's palaeogeographic and palaeotectonic evolution. Here, we present the results of some 2025 U–Pb laser-ablation-ICP-MS analyses and 323 Sensitive High-Resolution Ion Microprobe (SHRIMP) analyses of detrital zircons from 14 late-Archean felsic clastic successions of the eastern Yilgarn Craton, which have enabled correlation of clastic successions. The results of our data, together with those compiled from previous studies, show that the post-greenstone sedimentary successions include two major cycles that both commenced with voluminous pyroclastic volcanism and ended with widespread exhumation and erosion associated with granite emplacement. Cycle One commences with an influx of rapidly reworked feldspar-rich pyroclastic debris. These units, here-named the Early Black Flag Group, are dominated by a single population of detrital zircons with an average age of 2690–2680 Ma. Thick (up to 2 km) dolerite bodies, such as the Golden Mile Dolerite, intrude the upper parts of the Early Black Flag Group at about 2680 Ma. Incipient development of large granite domes during Cycle One created extensional basins predominantly near their southeastern and northwestern margins (e.g., St Ives, Wallaby, Kanowna Belle and Agnew), into which the Early Black Flag Group and overlying coarse mafic conglomerate facies of the Late Black Flag Group were deposited. The clast compositions and detrital-zircon ages of the late Black Flag Group detritus match closely the nearby and/or stratigraphically underlying successions, thus suggesting relatively local provenance. Cycle Two involved a similar progression to that observed in Cycle One, but the age and composition of the detritus were notably different. Deposition of rapidly reworked quartz-rich pyroclastic deposits dominated by a single detrital-zircon age population of 2670–2660 Ma heralded the beginning of Cycle Two. These coarse-grained quartz-rich units, are name here the Early Merougil Group. The mean ages of the detrital zircons from the Early Merougil Group match closely the age of the peak in high-Ca (quartz-rich) granite magmatism in the Yilgarn Craton and thus probably represent the surface expression of the same event. Successions of the Late Merougil Group are dominated by coarse felsic conglomerate with abundant volcanic quartz. Although the detrital zircons in these successions have a broad spread of age, the principal sub-populations have ages of about 2665 Ma and thus match closely those of the Early Merougil Group. These successions occur most commonly at the northwestern and southeastern margins of the granite batholiths and thus are interpreted to represent resedimented units dominted by the stratigraphically underlying packages of the Early Merougil Group. The Kurrawang Group is the youngest sedimentary units identified in this study and is dominated by polymictic conglomerate with clasts of banded iron formation (BIF), granite and quartzite near the base and quartz-rich sandstone units containing detrital zircons aged up to 3500 Ma near the top. These units record provenance from deeper and/or more-distal sources. We suggest here that the principal driver for the major episodes of volcanism, sedimentation and deformation associated with basin development was the progressive emplacement of large granite batholiths. This interpretation has important implication for palaeogeographic and palaeotectonic evolution of all late-Archean terranes around the world.  相似文献   

4.
The northeast (NE) Honshu arc was formed by three major volcano-tectonic events resulting from Late Cenozoic orogenic movement: continental margin volcanism (before 21?Ma), seafloor basaltic lava flows and subsequent bimodal volcanism accompanied by back-arc rifting (21 to 14?Ma), and felsic volcanism related to island arc uplift (12 to 2?Ma). Eight petrotectonic domains, parallel to the NE Honshu arc, were formed as a result of the eastward migration of volcanic activity with time. Major Kuroko volcanogenic massive sulfide (VMS) deposits are located within the eastern marginal rift zone (Kuroko rift) that formed in the final period of back-arc rifting (16 to 14?Ma). Volcanic activity in the NE Honshu arc is divided into six volcanic stages. The eruption volumes of volcanic rocks have gradually decreased from 4,600?km3 (per 1?my for a 200-km-long section along the arc) of basaltic lava flows in the back-arc spreading stage to 1,000?C2,000?km3 of bimodal hyaloclastites in the back-arc rift stage, and about 200?km3 of felsic pumice eruptions in the island arc stage. The Kuroko VMS deposits were formed at the time of abrupt decrease in the eruption volume and change in the mode of occurrence of the volcanic rocks during the final period of back-arc rifting. In the area of the Kuroko rift, felsic volcanism changed from aphyric or weakly plagioclase phyric (before 14?Ma), to quartz and plagioclase phyric with minor clinopyroxene (12 to 8?Ma), to hornblende phyric (after 8?Ma), and hornblende and biotite phyric (after 4?Ma). The Kuroko VMS deposits are closely related to the aphyric rhyolitic activity before 14?Ma. The rhyolite was generated at a relatively high temperature from a highly differentiated part of felsic magma seated at a relatively great depth and contains higher Nb, Ce, and Y contents than the post-Kuroko felsic volcanism. The Kuroko VMS deposits were formed within a specific tectonic setting, at a specific period, and associated with a particular volcanism of the arc evolution process. Therefore, detailed study of the evolutional process from rift opening to island arc tectonics is very important for the exploration of Kuroko-type VMS deposits.  相似文献   

5.
Woodlark Island (Muyuw) is located in a tectonically complex region, one of the few places on Earth where continental breakup is occurring ahead of seafloor spreading. Rifting commenced in the late Miocene (8.8–6 Ma) and is associated with the westward-propagating Woodlark Basin Spreading Centre. The island comprises approximately 850 km2 of raised Pleistocene coral reef and associated sediments with a central, moderately elevated range underlain by the middle Miocene calc-alkaline to shoshonitic Okiduse Volcanic Group (new name). It provides an exposure of upper Cenozoic geology in close proximity to the spreading centre. The Okiduse Volcanic Group is host to most of the island's historical gold and silver production and recently defined mineral resources totalling 1.75 Moz gold. This study uses facies analysis of pyroclastic deposits to develop a detailed geological map of the Okiduse Volcanic Group, with a revision and reinterpretation of the unit. Facies associations suggest that two major volcanic centres erupted synchronously during the middle Miocene (14–12 Ma), referred to as the Watou Mountain Eruptive Centre (new name) and the Uvarakoi Caldera (new name). The mafic–intermediate Watou Mountain Eruptive Centre formed during frequent small eruptions of widely varying style. Strombolian, subplinian, vulcanian and dome-related explosive eruptions occurred, alternating with extrusion of block and ash flow deposits and lava domes. Pyroclastic deposits were rapidly reworked from the steep cone, and were redeposited in a series of coalescing aprons surrounding the volcano. The felsic Uvarakoi Caldera formed during a series of violent explosive eruptions by rapid removal of magma from the underlying chamber, followed by collapse. Plinian and possibly phreatoplinian eruptions, as a result of magma–water mixing in the surface environment, resulted in widely dispersed, highly fragmented tuff deposits. The caldera was modified by widespread erosion following eruptions, resulting in fluvial, laharic and slope-wash deposits. This study highlights lithological controls (porosity and permeability) by various units within the Okiduse Volcanic Group on ore deposition.  相似文献   

6.
Timing, amount, and mechanisms of uplift in the Central Andes have been a matter of debate in the last decade. Our study is based on the Cenozoic Moquegua Group deposited in the forearc basin between the Western Cordillera and the Coastal Cordillera in southern Peru from ∼50 to ∼4 Ma. The Moquegua Group consists mainly of mud-flat to fluvial siliciclastic sediments with upsection increasing grain size and volcanic intercalations. Detrital zircon U–Pb dating and fission track thermochronology allow us to refine previous sediment provenance models and to constrain the timing of Late Eocene to Early Miocene Andean uplift. Uplift-related provenance and facies changes started around 35 Ma and thus predate major voluminous ignimbrite eruptions that started at ∼25 by up to 10 Ma. Therefore magmatic addition to the crust cannot be an important driving factor for crustal thickening and uplift at Late Eocene to Early Oligocene time. Changes in subduction regime and the subducting plate geometry are suggested to control the formation of significant relief in the area of the future Western Cordillera which acts as an efficient large-scale drainage divide between Altiplano and forearc from at least 15.5 to 19°S already at ∼35 Ma. The model integrates the coincidence of (i) onset of provenance change no later than 35 Ma, (ii) drastic decrease in convergence rates at ∼40, (iii) a flat-subduction period at around ∼40 to ∼30 Ma leading to strong interplate coupling, and (iv) strong decrease in volcanic activity between 45 and 30 Ma.  相似文献   

7.
The Bone Mountains, located in Southwest Sulawesi along the SE margin of Sundaland, are composed of Oligocene to possibly lower Miocene marginal basin successions (Bone Group) that are juxtaposed against continental margin assemblages of Eocene–Miocene age (Salokalupang Group). Three distinct units make up the latter: (i) Middle–Upper Eocene volcaniclastic sediments with volcanic and limestone intercalations in the upper part (Matajang Formation), reflecting a period of arc volcanism and carbonate development along the Sundaland margin; (ii) a well-bedded series of Oligocene calc-arenites (Karopa Formation), deposited in a passive margin environment following cessation of volcanic activity, and (iii) a series of Lower–Middle Miocene sedimentary rocks, in part turbiditic, which interfinger in the upper part with volcaniclastic and volcanic rocks of potassic affinity (Baco Formation), formed in an extensional regime without subduction.The Bone Group consists of MORB-like volcanics, showing weak to moderate subduction signatures (Kalamiseng Formation), and a series of interbedded hemipelagic mudstones and volcanics (Deko Formation). The Deko volcanics are in part subduction-related and in part formed from melting of a basaltic precursor in the overriding crust. We postulate that the Bone Group rocks formed in a transtensional marginal basin bordered by a transform passive margin to the west (Sundaland) and by a newly initiated westerly-dipping subduction zone on its eastern side.Around 14–13 Ma an extensional tectonic event began in SW Sulawesi, characterized by widespread block-faulting and the onset of potassic volcanism. It reached its peak about 1 Ma year later with the juxtaposition of the Bone Group against the Salokalupang Group along a major strike-slip fault (Walanae Fault Zone). The latter group was sliced up in variously-sized fragments, tilted and locally folded. Potassic volcanism continued up to the end of the Pliocene, and locally into the Quaternary.  相似文献   

8.
The eastern Amery Ice Shelf (EAIS) and southwestern Prydz Bay are situated near the junction between the Late Neoproterozoic/Cambrian high-grade complex of the Prydz Belt and the Early Neoproterozoic Rayner Complex. The area contains an important geological section for understanding the tectonic evolution of East Antarctica. SHRIMP U–Pb analyses on zircons of felsic orthogneisses and mafic granulites from the area indicate that their protoliths were emplaced during four episodes of ca. 1380 Ma, ca. 1210–1170 Ma, ca. 1130–1120 Ma and ca. 1060–1020 Ma. Subsequently, these rocks experienced two episodes of high-grade metamorphism at > 970 Ma and ca. 930–900 Ma, and furthermore, most of them (except for some from the Munro Kerr Mountains and Reinbolt Hills) were subjected to high-grade metamorphic recrystallization at ca. 535 Ma. Two suites of charnockite, i.e. the Reinbolt and Jennings charnockites, intrude the Late Mesoproterozoic/Early Neoproterozoic and Late Neoproterozoic/Cambrian high-grade complexes at > 955 Ma and 500 Ma, respectively. These, together with associated granites of similar ages, reflect late- to post-orogenic magmatism occurring during the two major orogenic events. The similarity in age patterns suggests that the EAIS–Prydz Bay region may have suffered from the same high-grade tectonothermal evolution with the Rayner Complex and the Eastern Ghats of India. Three segments might constitute a previously unified Late Mesoproterozoic/Early Neoproterozoic orogen that resulted from the long-term magmatic accretion from ca. 1380 to 1020 Ma and eventual collision before ca. 900 Ma between India and the western portion of East Antarctica. The Prydz Belt may have developed on the eastern margin of the Indo-Antarctica continental block, and the Late Neoproterozoic/Cambrian suture assembling Indo-Antarctica and Australo-Antarctica continental blocks should be located southeastwards of the EAIS–Prydz Bay region.  相似文献   

9.
The Rio das Velhas greenstone belt is located in the Quadrilátero Ferrífero region, in the southern extremity of the São Francisco Craton, central-southern part of the State of Minas Gerais, SE Brazil. The metavolcano–sedimentary rocks of the Rio das Velhas Supergroup in this region are subdivided into the Nova Lima and Maquiné Groups. The former occurs at the base of the sequence, and contains the major Au deposits of the region. New geochronological data, along with a review of geochemical data for volcanic and sedimentary rocks, suggest at least two generations of greenstone belts, dated at 2900 and 2780 Ma. Seven lithofacies associations are identified, from bottom to top, encompassing (1) mafic–ultramafic volcanic; (2) volcano–chemical–sedimentary; (3) clastic–chemical–sedimentary, (4) volcaniclastic association with four lithofacies: monomictic and polymictic breccias, conglomerate–graywacke, graywacke–sandstone, graywacke–argillite; (5) resedimented association, including three sequences of graywacke–argillite, in the north and eastern, at greenschist facies and in the south, at amphibolite metamorphic facies; (6) coastal association with four lithofacies: sandstone with medium- to large-scale cross-bedding, sandstone with ripple marks, sandstone with herringbone cross-bedding, sandstone–siltstone; (7) non-marine association with the lithofacies: conglomerate–sandstone, coarse-grained sandstone, fine- to medium-grained sandstone. Four generations of structures are recognized: the first and second are Archean and compressional, driven from NNE to SSW; the third is extensional and attributed to the Paleoproterozoic Transamazonian Orogenic Cycle; and the fourth is compressional, driven from E to W, is related to the Neoproterozoic Brasiliano Orogenic Cycle. Gold deposits in the Rio das Velhas greenstone belt are structurally controlled and occur associated with hydrothermal alterations along Archean thrust shear zones of the second generation of structures.Sedimentation occurred during four episodes. Cycle 1 is interpreted to have occurred between 2800 and 2780 Ma, based on the ages of the mafic and felsic volcanism, and comprises predominantly chemical sedimentary rocks intercalated with mafic–ultramafic volcanic flows. It includes the volcano–chemical–sedimentary lithofacies association and part of the mafic–ultramafic volcanic association. The cycle is related to the initial extensional stage of the greenstone belt formation, with the deposition of sediments contemporaneous with volcanic flows that formed the submarine mafic plains. Cycle 2 encompasses the clastic–chemical–sedimentary association and distal turbidites of the resedimented association, in the eastern sector of the Quadrilátero Ferrífero. It was deposited in the initial stages of the felsic volcanism. Cycle 2 includes the coastal and resedimented associations in the southern sector, in advanced stages of subduction. In this southern sedimentary cycle it is also possible to recognize a stable shelf environment. Following the felsic volcanism, Cycle 3 comprises sedimentary rocks of the volcaniclastic and resedimented lithofacies associations, largely in the northern sector of the area. The characteristics of both associations indicate a submarine fan environment transitional to non-marine successions related to felsic volcanic edifices and related to the formation of island arcs. Cycle 4 is made up of clastic sedimentary rocks belonging to the non-marine lithofacies association. They are interpreted as braided plain and alluvial fan deposits in a retroarc foreland basin with the supply of debris from the previous cycles.  相似文献   

10.
Hathway  & Kelley 《Sedimentology》2000,47(2):451-470
Lower Cretaceous conglomeratic strata exposed on southern Sobral Peninsula were deposited on a deep‐marine apron in the back‐arc Larsen Basin close to its faulted boundary with the Antarctic Peninsula magmatic arc. The succession is dominated by amalgamated beds of clast‐supported conglomerate, which, together with minor intercalated sandstones, consist of varied, but largely basaltic to andesitic, volcanic material and clasts derived from the Palaeozoic–Triassic (meta)sedimentary basement of the arc. Most of the volcanic clasts are thought to have been derived from lithified volcanic successions or older synvolcanic deposits, rather than from sites of coeval eruption. These mixed‐provenance strata enclose a number of intervals, consisting mainly of inverse–normally graded conglomerate and graded–stratified pebbly sandstone, in which the sand fraction is dominated by crystals and vitric grains considered to have been redeposited in the immediate aftermath of explosive silicic arc volcanism. Like syneruption deposits on non‐marine volcaniclastic aprons, these intervals are more sand‐prone than the enclosing strata and appear to show evidence of unusually rapid aggradation. Plagioclase from one such interval has yielded 40Ar/39Ar ages concordant at ≈121 Ma, similar to those obtained from the non‐marine Cerro Negro Formation, deposited within the magmatic arc. It is suggested that the two successions can be viewed as counterparts, both recording a history of mainly basaltic to andesitic volcanism, punctuated by relatively infrequent, explosive silicic eruptions. Whereas the Cerro Negro Formation consists mainly of syneruption deposits, most of the volcaniclastic material delivered to the eruption‐distal, deep‐marine apron appears to have been derived by normal degradation processes. Only rare silicic eruptions were capable of supplying pyroclastic material rapidly enough and in sufficient quantities to produce compositionally distinct syneruption intervals.  相似文献   

11.
New 40Ar/39Ar and published 14C ages constrain voluminous mafic volcanism of the Kamchatka back-arc to Miocene (3–6 Ma) and Late Pleistocene to Holocene (<1 Ma) times. Trace elements and isotopic compositions show that older rocks derived from a depleted mantle through subduction fluid-flux melting (>20%). Younger rocks form in a back arc by lower melting degrees involving enriched mantle components. The arc front and Central Kamchatka Depression are also underlain by plateau lavas and shield volcanoes of Late Pleistocene age. The focus of these voluminous eruptions thus migrated in time and may be the result of a high fluid flux in a setting where the Emperor seamount subducts and the slab steepens during rollback during terrain accretions. The northern termination of Holocene volcanism locates the edge of the subducting Pacific plate below Kamchatka, a “slab-edge-effect” is not observed in the back arc region.  相似文献   

12.
Ambrym is one of the most voluminous active volcanoes in the Melanesian arc. It consists of a 35 by 50 km island elongated east–west, parallel with an active fissure zone. The central part of Ambrym, about 800 m above sea level, contains a 12 kilometre-wide caldera, with two active intra-caldera cone-complexes, Marum and Benbow. These frequently erupting complexes provide large volumes of tephra (lapilli and ash) to fill the surrounding caldera and create an exceptionally large devegetated plateau “ash plain”, as well as sediment-choked fluvial systems leading outward from the summit caldera. Deposits from fall, subordinate base surge and small-volume pyroclastic (scoria) flows dominate the volcaniclastic sequences in near vent regions. Frequent and high-intensity rainfall results in rapid erosion of freshly deposited tephra, forming small-scale debris flow- and modified grain flow-dominated deposits. Box-shaped channel systems are initially deep and narrow on the upper flanks of the composite cones and are filled bank-to-bank with lapilli-dominated debris flow deposits. These units spill out into larger channel systems forming debris aprons of thousands of overlapping and anastomosing long, narrow lobes of poorly sorted lapilli-dominated deposits. These deposits are typically remobilised by hyperconcentrated flows, debris-rich stream flows and rare debris flows that pass down increasingly shallower and broader box-shaped valleys. Lenses and lags of fines and primary fall deposits occur interbedded between the dominantly tabular hyperconcentrated flow deposits of these reaches. Aeolian sedimentation forms elongated sand dunes flanking the western rim of the ash-plain. Outside the caldera, initially steep-sided immature box-canyons are formed again, conveying dominantly hyperconcentrated flow deposits. These gradually pass into broad channels on lesser gradients in coastal areas and terminate at the coast in the form of prograding fans of ash-dominated deposits. The extra-caldera deposits are typically better sorted and contain other bedding features characteristic of more dilute fluvial flows and transitional hyperconcentrated flows. These outer flank volcaniclastics fill valleys to modify restricted portions of the dominantly constructional landscape (lava flows, and satellite cones) of Ambrym. Apparent maturity of the volcanic system has resulted in the subsidence of the present summit caldera at a similar rate to its infill by volcaniclastic deposits.  相似文献   

13.
《Precambrian Research》2004,128(1-2):105-142
The Kanowna Belle Gold Mine is a Late Archaean orogenic lode-gold deposit hosted by felsic volcaniclastic and intrusive rocks (porphyries) of the Kalgoorlie Terrane, Western Australia. Rare gold occurs in fragments of veins and alteration that form clasts within the Black Flag Group volcaniclastic rocks at the Kanowna Belle mine, indicating that epithermal gold mineralisation accompanied Black Flag Group volcanism. The SHRIMP U–Pb zircon age of the volcaniclastic unit is 2668±9 Ma, and xenocrystic zircons with ∼2.68, 2.70 and 2.71 Ga age groupings are common. The Black Flag Group rocks are faulted by a D1 thrust, and ∼2670 Ma is thus an older limit for regional D1 deformation. Although SHRIMP U–Pb zircon ages of felsic porphyries commonly give the best constraints on the timing of deformation and structurally controlled gold mineralisation, the data are complex and dates from single samples can be ambiguous. Four Porphyry samples from the Kanowna Belle Gold Mine were analysed. Backscattered electron and cathodoluminescence imaging show that most magmatic zircon in the porphyries is either high-U and metamict, or restricted to rims on older xenocrysts that are too narrow to be dated by SHRIMP. Some porphyries appear to have been saturated with zircon at source and contain only xenocrystic zircons. Zircons that are interpreted to be magmatic in a sample of the mineralised Kanowna Belle Porphyry gives a mean age of 2655±6 Ma. The Kanowna Belle Porphyry is cross cut by regional D2 fabrics and ∼2655 Ma is thus the maximum age for regional D2 deformation. This is a maximum age for epigenetic lode-gold mineralisation. The age of resetting of high-U zircon grains (2.63 Ga) and the age of ore-related Pb–Pb galenas (2.63 Ga) serves as an approximate date for lode-gold mineralisation. If the complex zircon history of the felsic porphyries at Kanowna Belle is typical of this suite throughout the Eastern Goldfields Province, it is clear that existing single zircon dates from this Province require reevaluation, backed up by careful backscattered and cathodoluminescence imaging and textural studies.  相似文献   

14.
Basic volcanic rocks from Tafresh, west Kashan, and west Nain volcanic successions in the central part of Urumieh-Dokhtar Magmatic Assemblage (UDMA) of Iran yield K–Ar ages ranging from 26.8 to 18.2 Ma. These ages indicate significant Late Oligocene–Early Miocene basic volcanism in the UDMA. These ages, combined with K–Ar ages of 26.0 and 14.1 Ma, respectively, for associated low-silica and high-silica adakites, help constrain reconstructions of the UDMA geodynamic evolution. Late Oligocene–Early Miocene slab roll-back associated with an asthenospheric mantle influx are suggested as the major processes responsible for concurrent volcanism showing Nb–Ta-depleted, Nb–Ta-enriched and low-silica adakite signatures. Slab roll-back, the likely consequence of a decrease in subduction velocity, led to partial melting of the subducted slab and produced Early–Middle Miocene high-silica (dacitic) adakites. Oligocene to Miocene volcanic rocks do not conform to the Oligocene continental collisional model for the UDMA, rather they suggest a decrease in the subduction rate that prompted the asthenospheric mantle influx.  相似文献   

15.
Upper Cretaceous volcano-sedimentary sequences of the Eastern Pontide orogenic belt, NE Turkey, are host to significant VMS mineralization, including near Tunca. The initial stages of felsic volcanism within the mineralized area are marked by the eruption of dacitic lavas and breccias of the Kızılkaya Formation. This was accompanied by the emplacement of domelike hematitic dacites. Autobrecciated and volcaniclastic rocks, both in situ and resedimented, were likely generated from extrusive portions of these dacite bodies. Basaltic volcanism is marked by the eruption of the lava flows and pillow lavas of the Çağlayan Formation. Hiatuses in basaltic activity are marked by thin horizons of volcaniclastics and mudstones. The uppermost felsic volcanic units were accompanied by resedimentation of autoclastic facies from previous volcanism and represent the latest phase of Upper Cretaceous volcanism in the area. The semi-massive sulfide mineralization is associated with a late stage of the initial felsic volcanism. U-Pb LA-ICP-MS zircon dating of a dacitic tuff breccia yielded an age of 88.1 ± 1.2 Ma (Coniacian-Upper Cretaceous), which is interpreted to be the age of the sulfide occurrences.A concentric zoned alteration pattern is observed in the footwall rocks. The alteration pattern is considered to have formed by lateral migration of hydrothermal fluids which had ascended along the discharge conduit. Fluid inclusion data indicate precipitation or mobilization processes within a relatively narrow temperature range of 152–255 °C (avg. 200 °C). The low-salinity fluids in the fluid inclusions, less than 5.9 wt% NaCl equivalent, are consistent with typical modified seawater-dominant hydrothermal vent fluids. Sulfur isotope analysis of the Tunca sulfides yields a narrow range of 1.5–4.1 per mil. These δ34S values are also typical of many VMS deposits. Most of the recorded δ18O values (+7.1 to +14.0 per mil) are greater than 9 per mil. The most intensely hydrothermally altered rocks tend to have lower δ18O values relative to the less altered rocks. Collectively, the geologic relationships, mineralization style, and the lack of seafloor ore facies suggest that mineralization is principally of sub-seafloor origin. The most geologically reasonable interpretation of the genesis of the Tunca mineralization is the continuous interaction between the host rocks and seawater-derived fluids, without significant involvement of a magmatic fluid.  相似文献   

16.
《Ore Geology Reviews》2008,33(3-4):471-499
The Rio das Velhas greenstone belt is located in the Quadrilátero Ferrífero region, in the southern extremity of the São Francisco Craton, central-southern part of the State of Minas Gerais, SE Brazil. The metavolcano–sedimentary rocks of the Rio das Velhas Supergroup in this region are subdivided into the Nova Lima and Maquiné Groups. The former occurs at the base of the sequence, and contains the major Au deposits of the region. New geochronological data, along with a review of geochemical data for volcanic and sedimentary rocks, suggest at least two generations of greenstone belts, dated at 2900 and 2780 Ma. Seven lithofacies associations are identified, from bottom to top, encompassing (1) mafic–ultramafic volcanic; (2) volcano–chemical–sedimentary; (3) clastic–chemical–sedimentary, (4) volcaniclastic association with four lithofacies: monomictic and polymictic breccias, conglomerate–graywacke, graywacke–sandstone, graywacke–argillite; (5) resedimented association, including three sequences of graywacke–argillite, in the north and eastern, at greenschist facies and in the south, at amphibolite metamorphic facies; (6) coastal association with four lithofacies: sandstone with medium- to large-scale cross-bedding, sandstone with ripple marks, sandstone with herringbone cross-bedding, sandstone–siltstone; (7) non-marine association with the lithofacies: conglomerate–sandstone, coarse-grained sandstone, fine- to medium-grained sandstone. Four generations of structures are recognized: the first and second are Archean and compressional, driven from NNE to SSW; the third is extensional and attributed to the Paleoproterozoic Transamazonian Orogenic Cycle; and the fourth is compressional, driven from E to W, is related to the Neoproterozoic Brasiliano Orogenic Cycle. Gold deposits in the Rio das Velhas greenstone belt are structurally controlled and occur associated with hydrothermal alterations along Archean thrust shear zones of the second generation of structures.Sedimentation occurred during four episodes. Cycle 1 is interpreted to have occurred between 2800 and 2780 Ma, based on the ages of the mafic and felsic volcanism, and comprises predominantly chemical sedimentary rocks intercalated with mafic–ultramafic volcanic flows. It includes the volcano–chemical–sedimentary lithofacies association and part of the mafic–ultramafic volcanic association. The cycle is related to the initial extensional stage of the greenstone belt formation, with the deposition of sediments contemporaneous with volcanic flows that formed the submarine mafic plains. Cycle 2 encompasses the clastic–chemical–sedimentary association and distal turbidites of the resedimented association, in the eastern sector of the Quadrilátero Ferrífero. It was deposited in the initial stages of the felsic volcanism. Cycle 2 includes the coastal and resedimented associations in the southern sector, in advanced stages of subduction. In this southern sedimentary cycle it is also possible to recognize a stable shelf environment. Following the felsic volcanism, Cycle 3 comprises sedimentary rocks of the volcaniclastic and resedimented lithofacies associations, largely in the northern sector of the area. The characteristics of both associations indicate a submarine fan environment transitional to non-marine successions related to felsic volcanic edifices and related to the formation of island arcs. Cycle 4 is made up of clastic sedimentary rocks belonging to the non-marine lithofacies association. They are interpreted as braided plain and alluvial fan deposits in a retroarc foreland basin with the supply of debris from the previous cycles.  相似文献   

17.
《Ore Geology Reviews》2008,33(3-4):500-510
Archean terrains of the Quadrilátero Ferrífero comprise a greenstone belt association surrounded by granitoid–gneiss complexes, mainly composed of banded TTG gneisses whose igneous protoliths are older than 2900 Ma. This early continental crust was affected by three granitic magmatic episodes during the Neoarchean: ca. 2780 to 2760 Ma; 2720 to 2700 Ma; and 2600 Ma. Dating of felsic volcanic and volcaniclastic rocks defines a felsic magmatic event within the greenstone belt association around 2772 Ma, contemporaneous with emplacement of several of the granitic plutons and constrains a major magmatic and tectonic event in the Quadrilátero Ferrífero. Lead isotopic studies of lode–gold deposits indicate that the main mineralization episode occurred at about 2800 to 2700 Ma.Proterozoic evolution of the Quadrilátero Ferrífero comprises deposition of a continental-margin succession hosting thick, Lake Superior-type banded iron formations, at ca. 2500 to 2400 Ma, followed by deposition of syn-orogenic successions after 2120 Ma. The latter is related to the Transamazonian Orogeny. The western part of the Quadrilátero Ferrífero was also affected by the Brasiliano Orogeny (600 to 560 Ma).  相似文献   

18.
An isotope-geochronological study has been performed to examine the products of Late Cenozoic collision volcanism on the northern coast of Van Lake, Turkey. We obtained 45 new K-Ar dates, based on which the principal time characteristics of volcanic activity in the region have been determined. The total duration of magmatic activity in the area of the northern coast of Van Lake has lasted ∼15 myr; it has had an expressed discrete nature, when periods of intense volcanic activity alternated with lasting breaks in eruptions. Four stages of Neogene-Quaternary volcanism have been identified: Middle Miocene (15.0–13.5 myr), Late Miocene (10–9 myr), Pliocene (5.8–3.7 myr), and Quaternary (1.0–0.4 Ma). The average duration of the stages has been 1–2 myr; the stages were separated from each other with periods of inactivity of approximately equal lengths (∼3 myr). For each of the Pliocene and Quaternary stages, three additional phases of volcanism have been identified, which were separated from each other with short time intervals (a few hundred thousand years). The last burst of volcanic activity in the area in question took place ∼400 ka; similar to Quaternary volcanism in general, it was not characterized by a high intensity. An important result of the studies performed was to confirm the existence of a separate Middle Miocene stage of collision volcanism for the Caucasian-Anatolian Segment of the Alpine Fold Belt. The data generated allow concluding that Neogene-Quaternary volcanism in this portion of the belt started much earlier (∼15 Ma) than assumed by the majority of the previous researchers.  相似文献   

19.
U–Pb SHRIMP results of 2672 ± 14 Ma obtained on hydrothermal monazite crystals, from ore samples of the giant Morro Velho and Cuiabá Archean orogenic deposits, represent the first reliable and precise age of gold mineralization associated with the Rio das Velhas greenstone belt evolution, in the Quadrilátero Ferrífero, Brazil. In the basal Nova Lima Group, of the Rio das Velhas greenstone belt, felsic volcanic and volcaniclastic rocks have been dated between 2792 ± 11 and 2751 ± 9 Ma, coeval with the intrusion of syn-tectonic tonalite and granodiorite plutons, and also with the metamorphic overprint of older tonalite–trondhjemite–granodiorite crust. Since cratonization and stable-shelf sedimentation followed intrusion of Neoarchean granites at 2612 + 3/− 2 Ma, it is clear that like other granite–greenstone terranes in the world, gold mineralization is constrained to the latest stages of greenstone evolution.  相似文献   

20.
Altar is a Cu-porphyry deposit related to several small plagioclase porphyry intrusions of the late Miocene formed on the margin of the Flat-Slab segment along the Andean Cordillera in north-west Argentina. New stratigraphic and structural mapping supported by geochemistry and geochronology of pre-ore volcanics at Altar has revealed that a period of ∼6–7 Ma of volcanism during the late Oligocene-early Miocene formed ∼4000 m of volcano-stratigraphic succession making up the Pachón Formation. It represents a period dominated by explosive to effusive eruption in a dynamic arc basin with local ash fall and flow deposition in lacustrine and fluvial sites. Volcanism is typified by medium- to high-K calc-alkaline arc magmatism with a shift from mafic compositions at the base to felsic rocks at the top of the formation containing zircons aged 21.9 ± 0.2 Ma (2 Std.Dev, U–Pb). A clear geochemical separation exists between early Miocene pre-ore volcanics that show signatures akin to non-adakitic, normal arc, extensional tectonic settings conducive of chemical differentiation at shallow crustal levels and correlate with intra-regional Abanico and Farellones Formations; and the middle to late-Miocene Cu-mineralised porphyry intrusions. After a break of ∼9 Ma in the geological record at Altar, these Cu-fertile bodies are emplaced entirely within the Pachón Rhyolite and represent adakite-like magmas with fractionation trends evolving from a lower crustal MASH zone. This distinction is controlled by a change from an extensional to compressive tectonic regime in the region during the middle Miocene in which magmas were stalled in the lower crust for an extended period, subsequently became enriched in metals and then formed several Cu-porphyry bodies which were emplaced during a relatively short period towards the late Miocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号