首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Sonoran Desert portion of the Basin and Range physiographic province contains a number of streams that now flow across once-closed basins. We explore here the research questions of if and how granitic rock pediments respond to the transition from rimming endorheic basins to bordering through-flowing streams. Granitic rock pediments of the northern Usery and eastern McDowell Mountains once graded to the closed Miocene–Pliocene Pemberton basin that occupied the present-day location of the confluence of the Salt and Verde Rivers. The process of lake overflow, which integrated these rivers, first aggraded fill terraces that, in turn, caused aggradation of a mantle of transported grus on bedrock pediments. Subsequent episodic incision of the Salt and Verde rivers lowered the base level; this led to the development of erosional features such as rolling topography of a degrading pediment mantle; exposure of the former piedmont angle and its associated zones of enhanced bedrock decay and regolith carbonate; and exposure of spheroidally weathered bedrock and emerging tors, some of which experienced 20th century erosion. The granitic pediments of the former Pemberton Basin, which now transport grus to the Salt and Verde rivers, have actively adjusted to aggradational and degradational events associated with drainage integration and do not appear to be inherited from an ancient wet climatic interval.  相似文献   

2.
The arctic islands of the Lofoten-Vesterålen archipelago in northern Norway have a wide distribution of weathered land surfaces commonly located above 250 m with several apparent similarities. In order to investigate the characteristics of (deep) weathering in this region, northern Langøya and Hadseløya were chosen for in-depth analyses. Eight weathering profiles were excavated from various surfaces, and the stratigraphies were logged in detail. Material was collected throughout the weathering horizons, and all samples were subsequently analysed for clay mineralogy (< 63 μm fraction) and grain size distribution. The sampling strategy was complemented by samples from additional saprolites and other landforms such as moraines and rock glaciers. The XRD results indicate that the presence of secondary minerals, such as gibbsite (Al(OH)3) and kaolinite (Al2Si2O5(OH)4), are very common throughout the profiles. Gibbsite is an extreme end product of silicate weathering and usually associated with a warmer and more humid climate, as found in Scandinavia during the Tertiary. The grain size analyses (< 63 μm) show that the finer silt fractions (< 8 μm) tend to be high in the profiles (20–40%), with significant amounts of clay (5–15%) demonstrating that the regolith itself is susceptible to frost sorting mechanisms.10Be exposure dates from in situ quartz knobs on tors and boulders of local origin suggest > 40,000 years of subaerial conditions. Considering the steady surface erosion, this figure should be viewed as an absolute minimum age estimate. Mapping of the superficial sediments and geomorphological features of the study areas has revealed several common morphological features, which indicate dominance of glacial and periglacial processes in the areas lying below the lower boundary of blockfields (c. 250 m). The weathering mantles are not a periglacial end product, but rather a relict tertiary landform that were modulated by permafrost processes as well as biological processes at later stages. The regolith cover constrain the vertical extension of warm-based Quaternary ice sheets challenging the notion of a parabolic ice mass consuming every mountain top of Lofoten and Vesterålen.  相似文献   

3.
To study the soil-geomorphology relationships and the effect of past and present climate on soil formation, 10 representative pedons on different landforms, including rock pediment, mantled pediment, piedmont plain, playa margin and playa, were studied. Non-saline clay flat, saline clay flat with and without puffy grounds, wet zone, and salt crust were among the geomorphic surfaces observed in Sirjan playa. Soil moisture varies from mesic (on rock and mantled pediments) to aridic regimes (on piedmont plain, playa margins, playa and mantled pediment). Soil temperature regime in the area is mesic except on playa surfaces and mantled pediment which are thermic. Results of the study showed that soil salinity increased from the rock pediment to playa surfaces. The maximum EC of 314 dS/m was observed in the puffy ground clay flat. Kaolinite, illite, smectite, chlorite and palygorskite clay minerals were identified using XRD analysis. Coatings and infillings of CaCO3 were observed in pediment and gypsum lenticels and interlocked plates were found on piedmont plain and playa. Clay coatings and infillings in the piedmont plain suggest the presence of a more humid paleoclimate in the history of the area.  相似文献   

4.
Understanding and quantifying sediment load is important in catchments draining highly erodible materials that eventually contribute to siltation of downstream reservoirs. Within this context, the suspended sediment transport and its temporal dynamics have been studied in the River Isábena (445 km2, south-central Pyrenees, Ebro basin) by means of direct sampling and turbidity recording during a 3-year dry period. The average flood-suspended sediment concentration was 8 g l− 1, with maximum instantaneous values above 350 g l− 1. The high scatter between discharge and suspended sediment concentrations (up to five orders of magnitude) has not permitted the use of rating curve methods to estimate the total load. Interpolation techniques yielded a mean annual sediment load of 184,253 t y− 1 for the study period, with a specific yield of 414 t km− 2 y− 1. This value resembles those reported for small torrents in nearby mountainous environments and is the result of the high connectivity between the badland source areas and stream courses, a fact that maximises sediment conveyance through the catchment. Floods dominated the sediment transport and yield. However, sediment transport was more constant through time than that observed in Mediterranean counterparts; this can be attributed to the role of base flows that entrain fine sediment temporarily stored in the channel and force the river to carry high sediment concentrations (i.e., generally in the order of 0.5 g l− 1), even under minimum flow conditions.  相似文献   

5.
Gully erosion is an important environmental hazard in the black soil region of northeastern China. It is a primary sediment source in the region which needs appropriate soil conservation practices. Gully incision in rolling hills typical of this region was monitored using real-time kinematic GPS to assess the rates of gully development and the resultant sediment production. From 2002 to 2005, gully heads in the study area retreated between 15.4 and 33.5 m, giving an average retreat rate of 8.4 m yr− 1. Field measurements showed that total sediment production due to gully erosion during the three years ranged between 257 and 1854 m3 yr− 1, which is equivalent to 326 to 2355 t yr− 1, with gully-head retreat accounting for 0 to 21.7% (4.4% in average). The sediment delivery ratio was especially high during the summer rainy season (56% in average). Sediment production by ephemeral gullies and permanent gullies was 1.5 times greater than that from surface erosion. Gully heads retreated faster in the spring freeze–thaw period than in the summer. The stage of gully development could be identified based on short-term changes in the gully erosion rate.  相似文献   

6.
Fire can alter sediment sources and transport rates in river basins, changing landforms and aquatic habitats and degrading downstream water quality. Variability in the response between environments, between fires, and with time since fire makes predicting the catchment-scale effect of individual fires difficult. This study applies the fallout radionuclides 137Cs and 210Pbxs to trace the sources and transport of fine sediment through a river network following a wildfire of moderate to extreme severity in the 629-km2 eucalypt-forested Nattai River water-supply catchment near Sydney, Australia. The tracer analysis showed that post-fire erosion caused a switch in fine (< 10 µm) sediment sources from 80% subsoil derived from gully and river bank erosion to 86% topsoil derived from hillslope surface erosion. The fine sediment phosphorus content increased 4–10 fold over pre-fire levels. Annual post-fire sediment yields estimated from suspended solids rating curves were 109–250 times higher than they would have been without fire. A large additional amount of sediment remained stored within the river network for at least four years, particularly in lower-gradient reaches. Analysis of a sediment core showed that surface erosion following a previous fire had supplied at least 29% of total catchment sediment yield over the past 36 years. It is concluded that wildfire can alter catchment sediment budgets in two ways. Firstly, a spatially-diffuse pulse of elevated erosion is associated with moderate or intense rainfall events in post-fire years. Secondly, pulses of elevated catchment sediment yield are driven by the timing and river sediment transport capacity of runoff events. Severe post-fire erosion and high interannual hydrologic variability can result in large sediment stores persisting within the river network for many years. Fallout radionuclide tracers are shown to be useful in quantifying fine sediment sources and transport dynamics following wildfire, and the contribution of wildfire to catchment sediment yield.  相似文献   

7.
Major climatic changes and rapid local and regional tectonic movements were common in New Zealand during the late Quaternary and caused a diversity of adjustments in the drainage-basin and piedmont reaches of the Charwell River, which are separated by the Hope Fault. The onset of semi-arid, frigid climates during the latest Pleistocene probably greatly increased hillslope sediment yields in a periglacial environment, and the piedmont reach aggraded as much as 42 m on top of a broad strath. With the return of humid, mesic climates in the Holocene sediment yields decreased as dense forests again mantled the slopes, and the piedmont reach degraded as mush as 81 m. Dating of eleven cut-and-strath terraces by radiocarbon-calibrated weathering rind measurements on greyawake cobbles shows the degradation rates varied greatly during the last 14 ka (1 ka = 1000 yr). Initial degradation rates of < 4 m ka−1 increased to 30 m ka −1 by 6 ka ago during a mid-Holocene climatic optimum. Since 4 ka ago degradation rates have been only 1.2 m ka−1, comparable to uplift rates in the piedmont reach inferred from marine-terrace studies, and the river is again cutting a broad strath. Each broad strath represents equilibrium conditions attained by this powerful stream during interglacial times despite episodes of being overwhelmed by climatically induced sediment-yield increases during full-glacial climates and having to maintain a long-term degradation rate equal to the uplift rate.The 75–81 m of degradation since formation of the latest Pleistocene fill-terrace tread is the sum of the amount of late Pleistocene valley-floor aggradation and the amount of regional uplift that occurred between the estimated times of major strath formation at about 30 and 0 ka. The 39 m of tectonically induced degradation below the pre-aggradation strath is sufficiently large that post-30 ka uplift may have doubled Holocene degradation rates.Each of the eleven degradation terraces represents pauses of a few centuries in Holocene downcutting. Brief equilibrium conditions were attained by streambed armoring and concurrent growth of riparian plants; both processes progressively increased hydraulic roughness and the shear stresses needed to entrain streambed materials. Occasional floods, possibly from rare cyclones derived from tropical moisture sources, destroyed streambed armor and channel downcutting was renewed. Thus the formation of eleven equilibrium terraces can be accounted for without postulating additional tectonic perturbations or secular climatic changes.  相似文献   

8.
《Basin Research》2018,30(4):613-635
Transient sediment storage and mixing of deposits of various ages during transport across alluvial piedmonts alter the clastic sedimentary record. We quantify buffering and mixing during cycles of aggradation–incision in the north piedmont of the Eastern Tian Shan. We complement existing chronologic data with 20 new luminescence ages and one cosmogenic radionuclide age of terrace abandonment and alluvial aggradation. Over the last 0.5 Myr, the piedmont deeply incised and aggraded many times per 100 kyr. Aggradation is driven by an increased flux of glacial sediment accumulated in the high range and flushed onto the piedmont by greater water discharge at stadial–interstadial transitions. After this sediment is evacuated from the high range, the reduced input sediment flux results in fluvial incision of the piedmont as fast as 9 cm year−1 and to depths up to 330 m. The timing of incision onset is different in each river and does not directly reflect climate forcing but the necessary time for the evacuation of glacial sediment from the high range. A significant fraction of sediments evacuated from the high range is temporarily stored on the piedmont before a later incision phase delivers it to the basin. Coarse sediments arrive in the basin with a lag of at least 7–14 kyrs between the first evacuation from the mountain and later basinward transport. The modern output flux of coarse sediments from the piedmont contains a significant amount of recycled material that was deposited on the piedmont as early as the Middle Pleistocene. Variations in temperature and moisture delivered by the Westerlies are the likely cause of repeated aggradation–incision cycles in the north piedmont instead of monsoonal precipitation. The arrival of the gravel front into the proximal basin is delayed relative to the fine‐grained load and both are separated by a hiatus. This work shows, based on field observations and data, how sedimentary systems respond to climatic perturbations, and how sediment recycling and mixing can ensue.  相似文献   

9.
The construction of multiple dams and barrages in many Indian River basins over the last few decades significantly reduced river flow to the sea and affected the sediment regime. More reservoir construction is planned through the proposed National River Linking Project (NRLP), which will transfer massive amounts of water from the North to the South of India. The impacts of these developments on fertile and ecologically sensitive deltaic environments are poorly understood and quantified at present. In this paper an attempt is made to identify, locate and quantify coastal erosion and deposition processes in one of the major river basins in India—the Krishna—using a time series of Landsat images for 1977, 1990 and 2001 with a spatial resolution ranging from 57.0 m to 28.5 m. The dynamics of these processes are analyzed together with the time series of river flow, sediment discharge and sediment storage in the basin. Comparisons are made with similar processes identified and quantified earlier in the delta of a neighboring similarly large river basin—the Godavari. The results suggest that coastal erosion in the Krishna Delta progressed over the last 25 years at the average rate of 77.6 ha yr− 1, dominating the entire delta coastline and exceeding the deposition rate threefold. The retreat of the Krishna Delta may be explained primarily by the reduced river inflow to the delta (which is three times less at present than 50 years ago) and the associated reduction of sediment load. Both are invariably related to upstream reservoir storage development.  相似文献   

10.
Sediment supply provides a fundamental control on the morphology of river deltas, and humans have significantly modified these supplies for centuries. Here we examine the effects of almost a century of sediment supply reduction from the damming of the Elwha River in Washington on shoreline position and beach morphology of its wave-dominated delta. The mean rate of shoreline erosion during 1939–2006 is ~ 0.6 m/yr, which is equivalent to ~ 24,000 m3/yr of sediment divergence in the littoral cell, a rate approximately equal to 25–50% of the littoral-grade sediment trapped by the dams. Semi-annual surveys between 2004 and 2007 show that most erosion occurs during the winter with lower rates of change in the summer. Shoreline change and morphology also differ spatially. Negligible shoreline change has occurred updrift (west) of the river mouth, where the beach is mixed sand to cobble, cuspate, and reflective. The beach downdrift (east) of the river mouth has had significant and persistent erosion, but this beach differs in that it has a reflective foreshore with a dissipative low-tide terrace. Downdrift beach erosion results from foreshore retreat, which broadens the low-tide terrace with time, and the rate of this kind of erosion has increased significantly from ~ 0.8 m/yr during 1939–1990 to ~ 1.4 m/yr during 1990–2006. Erosion rates for the downdrift beach derived from the 2004–2007 topographic surveys vary between 0 and 13 m/yr, with an average of 3.8 m/yr. We note that the low-tide terrace is significantly coarser (mean grain size ~ 100 mm) than the foreshore (mean grain size ~ 30 mm), a pattern contrary to the typical observation of fining low-tide terraces in the region and worldwide. Because this cobble low-tide terrace is created by foreshore erosion, has been steady over intervals of at least years, is predicted to have negligible longshore transport compared to the foreshore portion of the beach, and is inconsistent with oral history of abundant shellfish collections from the low-tide beach, we suggest that it is an armored layer of cobble clasts that are not generally competent in the physical setting of the delta. Thus, the cobble low-tide terrace is very likely a geomorphological feature caused by coastal erosion of a coastal plain and delta, which in turn is related to the impacts of the dams on the Elwha River to sediment fluxes to the coast.  相似文献   

11.
Rates and processes of rock weathering, soil formation, and mountain erosion during the Quaternary were evaluated in an inland Antarctic cold desert. The fieldwork involved investigations of weathering features and soil profiles for different stages after deglaciation. Laboratory analyses addressed chemistry of rock coatings and soils, as well as 10Be and 26Al exposure ages of the bedrock. Less resistant gneiss bedrock exposed over 1 Ma shows stone pavements underlain by in situ produced silty soils thinner than 40 cm and rich in sulfates, which reflect the active layer thickness, the absence of cryoturbation, and the predominance of salt weathering. During the same exposure period, more resistant granite bedrock has undergone long-lasting cavernous weathering that produces rootless mushroom-like boulders with a strongly Fe-oxidized coating. The red coating protects the upper surface from weathering while very slow microcracking progresses by the growth of sulfates. Geomorphological evidence and cosmogenic exposure ages combine to provide contrasting average erosion rates. No erosion during the Quaternary is suggested by a striated roche moutonnée exposed more than 2 Ma ago. Differential erosion between granite and gneiss suggests a significant lowering rate of desert pavements in excess of 10 m Ma− 1. The landscape has been (on the whole) stable, but the erosion rate varies spatially according to microclimate, geology, and surface composition.  相似文献   

12.
Granitic regolith, developed in the Boulder Creek catchment and adjacent areas, records a history of deep weathering, some of which may predate Quaternary time. Field and well-log measurements of weathering, chemical denudation and rates of erosion derived from 10Be cosmogenic radionuclide (CRN) data help to quantify rates of landscape change in the post-orogenic Rocky Mountains. The density of oxidized, fractured bedrock ranges from 2.7 to about 2.2 g cm− 3, saprolite and grus have densities between 2.0 and 1.8 g cm− 3, and 30 soil samples averaged 1.6 ± 0.2 g cm− 3. Highly weathered regolith in 540 wells averages 3.3 m thick, mean depth to bedrock in 1661 wells is 7 m, and the weathered thickness exceeds 10 m in relatively large local areas east of the late Pleistocene glacial limit. Thickness of regolith shows no simple relationship to rock type or structure, local slope, or distance from channels. Catchments in the vicinity of the Boulder Creek have an average CRN erosion rate of 2.2 ± 0.7 cm kyr− 1 for the past 10,000 to 40,000 yr. Annual losses of cations and SiO2 vary from about 2 to 5 g m− 2 over a runoff range of 10 to nearly 160 cm.Using measured rates in simple box models shows that if a substantial fraction of void space is created by volume expansion in the weathering rock materials, 7 m of weathered rock materials could form in as little as 230 kyr. If density loss results mainly from chemical denudation and some volume expansion, however, the same weathering profile would take > 1340 kyr to form. Rates of erosion measured by CRN could be balanced by the rate of soil formation from saprolite if the annual solute loss from soil is 2.0 g m− 2 and 70% of the density decrease from saprolite to grus and soil results from strain. Saprolite, however, forms from oxidized bedrock at a far slower rate and rates of saprolite formation cannot balance soil and grus losses to erosion. The zone of thick weathered regolith is likely an eroding relict landscape. The undulating surface marked by relatively low relief and tors is not literally a topographic surface of Eocene, Oligocene or Miocene age unless it was covered with deposits that were removed in Pliocene or Quaternary time.  相似文献   

13.
Previous studies of chemical weathering rates for soil developed on glacial moraines generally assumed little or no physical erosion of the soil surface. In this study, we investigate the influence of physical erosion on soil profile weathering rate calculations. The calculation of chemical weathering rates is based on the assumption that soil profiles represent the integrated amount of weathering since the time of moraine deposition. The weathering rate of a surface subjected to denudation is the sum of the weathering loss from the existing soil profile added to the weathering loss in the material removed by denudation, divided by the deposition age. In this study, the amount of weathered material removed since moraine deposition is calculated using the denudation rate estimated from cosmogenic nuclide data and the deposition age of the moraine. Weathering rates accounting for denudation since moraine deposition are compared to weathering rates based on the assumption of no physical erosion and on the assumption of steady-state denudation for the Type Pinedale moraine ( 21 ka) and the Bull Lake-age moraine ( 140 ka) in the Fremont Lake Area (Wind River Mountains, Wyoming, USA). The total weathering rates accounting for denudation are 8.15 ± 1.05 g(oxide) m 2 y 1 for the Type Pinedale moraine and 4.78 ± 0.89 g(oxide) m 2 y 1 for the Bull Lake-age moraine, which are  2 to 4 times higher, respectively, than weathering rates based on the assumption of no physical erosion. The weathering rates based on denudation since moraine deposition are comparable or smaller than weathering rates assuming steady-state denudation. We find the assumption of steady-state denudation is not valid in depositional landscapes with young deposition ages or slow denudation rates. The decrease in weathering rates over time between the Type Pinedale and Bull Lake-age soils that is observed in the case of no physical erosion is decreased when the influence of denudation on the total weathering rates is taken into account. Fresh unweathered material with high reactive mineral surface area is continuously provided to the surface layer by denudation diminishing the effect of decreasing weathering rate over time.  相似文献   

14.
Episodic wood loading in a mountainous neotropical watershed   总被引:1,自引:0,他引:1  
The Upper Rio Chagres drains 414 km2 of steep, mountainous terrain in central Panama. A tropical air mass thunderstorm on 10 July 2007 produced a flood across the basin that peaked at 720 m3 s− 1 at a headwaters gage draining 17.5 km2 and 1710 m3 s− 1 at a downstream gage draining 414 km2. The storm also triggered numerous landslides in the upper basin, which facilitated the formation of large logjams along portions of the channel where transport capacity of wood was reduced by a change in channel geometry such as a bend or channel expansion. During field work in February 2008, we characterized three jams with surface areas of 400–2450 m2; two of these jams resulted in storage of substantial (1100–8200 m3) sediment wedges upstream. We returned to these sites in March 2009 to document changes in the logjams and sediment storage. Drawing on observations made in the basin since 2002, and site visits during 2008 and 2009, we suggest that jams such as these last two years or less. We propose that wood dynamics in the Upper Chagres alternate between brief periods of moderate wood load in the form of large logjams and much longer periods of essentially no wood load, a situation that contrasts with the more consistent wood loads in catchments of similar size in temperate environments and with limited studies of more consistent wood load in tropical catchments with no landslides.  相似文献   

15.
In the Mediterranean area, forest fires have become a first-order environmental problem. Increased fire frequency progressively reduces ecosystem recovery periods. The fire season, usually followed by torrential rains in autumn, intensifies erosion processes and increases desertification risk. In this work, the effect of repeated experimental fires on soil response to water erosion is studied in the Permanent Field Station of La Concordia, Valencia, Spain. In nine 80 m2 plots (20 m long × 4 m wide), all runoff and sediment produced were measured after each rainfall event. In 1995, two fire treatments with the addition of different biomass amounts were applied. Three plots were burned with high fire intensity, three with moderate intensity, and three were unburned to be used as control. In 2003, the plots with the fire treatments were burned again with low fire intensities. During the 8-year interval between fires, plots remained undisturbed, allowing regeneration of the vegetation–soil system. Results obtained during the first 5 months after both fire experiments show the high vulnerability of the soil to erosion after a repeated fire. For the burned plots, runoff rates increased three times more than those of 1995, and soil losses increased almost twice. The highest sediment yield (514 g m− 2) was measured in 2003, in the plots of the moderate fire intensity treatment, which yielded only 231 g m− 2 of sediment during the corresponding period in 1995. Runoff yield from the control plots did not show significant temporal changes, while soil losses decreased from 5 g m− 2 in the first post-fire period to 0.7 g m− 2 in the second one.  相似文献   

16.
Beach–dune seasonal elevation changes, aeolian sand transport measurements, bathymetric surveys and shoreline evolution assessments were used to investigate annual and seasonal patterns of dune development on Sfântu Gheorghe beach, the Danube delta coast, from 1997 to 2004. Dune volume increased consistently (1.96 m3 m− 1 y− 1 to 5.1 m3 m− 1 y− 1) over this 7-year period with higher rates in the southward (downdrift) direction. Dune aggradation is periodically limited by storms, each of which marks a new evolutionary phase of the beach–dune system. As a consequence of the variable beach morphology and vegetation density during a year, foredune growth occurs during the April–December interval while between December and April a slightly erosive tendency is present. The pattern of erosion and deposition shown by the topographical surveys is in good agreement with the sand transport measurements and demonstrates the presence of a vigorous sand flux over the foredunes which is 20–50% smaller than on the beach. This high sand flux, due to low precipitation and sparse vegetation cover, creates an aerodynamically efficient morphology on the seaward dune slope. The seaward dune face accretes during low to medium onshore winds (5.5–12 m s− 1) and erodes during high winds (> 12 m s− 1).  相似文献   

17.
The landscape evolution in Neogene intramontane basins is a result of the interaction of climatic, lithologic, and tectonic factors. When sedimentation ceases and a basin enters an erosional stage, estimating erosion rates across the entire basin can offer a good view of landscape evolution. In this work, the erosion rates in the Guadix–Baza basin have been calculated based on a volumetric estimate of sediment loss by river erosion since the Late Pleistocene. To do so, the distribution of a glacis surface at ca. 43 kyr, characterised by a calcrete layer that caps the basin infilling, has been reconstructed. To support this age, new radiometric data of the glacis are presented. The volume of sediment loss by water erosion has been calculated for the entire basin by comparing the reconstructed geomorphic surface and the present-day topography. The resulting erosion rates vary between 4.28 and 6.57 m3 ha− 1 yr− 1, and are the consequence of the interaction of climatic, lithologic, topographic, and tectonic factors. Individual erosion rates for the Guadix and Baza sub-basins (11.80 m3 ha− 1 yr− 1 and 1.77 m3 ha− 1 yr− 1 respectively) suggest different stages of drainage pattern evolution in the two sub-basins. We attribute the lower values obtained in the Baza sub-basin to the down-throw of this sub-basin caused by very recent activity along the Baza fault.  相似文献   

18.
The Otranto–Leuca coastal tract is marked by the presence of numerous sea caves placed close to present sea level. They are located generally at the back of a shore platform covered by a sequence of breccia deposits, marine sediments and speleothems. At Grotta di Masseria dell'Orte, marine cemented sands rest on a narrow shore platform at about 6.2 m above mean sea level and are covered by speleothems older than 185 ka. At Grotta del Diavolo, which is mostly filled by breccia deposits, three beach levels have been detected at about 3.0, 3.5 and 5.9 m above msl. They are either covered by or overlie speleothems that yield an U/Th age of 340, 78 ka and between 170.3 and 146.5, respectively. Geomorphological evidence and radiometric ages indicate that the area after a period of uplift has been tectonically stable since the last part of the Middle Pleistocene so that marine landforms close to the present shoreline underwent a polycyclic evolution. The sedimentary fills of sea caves formed during Middle-Late Pleistocene glacial stages, when arid or semiarid conditions promoted the removal of regolith and the development of thick breccia deposits. During Marine Isotope Stages (MIS) 9.3, 5.5 and 5.1, cave sediments were partially eroded whereas beach layers and related speleothems developed. These are, in fact, the only marine isotope stages marked by a sea level position which in this Mediterranean region was either close to, or slightly higher than, the present one.  相似文献   

19.
This paper explores how, and to what extent, a phase of relief-rejuvenation modifies the mode of surface erosion in an approximately 63 km2 drainage basin located at the northern border of the Swiss Alps (Luzern area). In the study area, the retreat of the Alpine glaciers at the end of the Last Glacial Maximum (LGM) caused base level to lower by approximately 80 m. The fluvial system adapted to the lowered base level by headward erosion. This is indicated by knickzones in the longitudinal stream profiles and by the continuous upstream narrowing of the width of the valley floor towards these knickzones. In the headwaters above these knickzones, processes are still to a significant extent controlled by the higher base level of the LGM. There, frequent exposure of bedrock in channels and especially on hillslopes implies that sediment flux is to a large extent limited by weathering rates. In the knickzones, however, exposure of bedrock in channels implies that sediment flux is supply-limited, and that erosion rates are controlled by stream power.The morphometric analysis reveals the existence of length scales in the topography that result from distinct geomorphic processes. Along the tributaries where the upstream sizes of the drainage basins exceed 100,000–200,000 m2, the mode of sediment transport and erosion changes from predominantly hillslope processes (i.e., landsliding, creep of regolith, rock avalanches and to some extent debris flows) to processes in channels (fluvial processes and debris flows). This length scale reflects the minimum size of the contributing area for channelized processes to take over in the geomorphic development (i.e., threshold size of drainage basin). This threshold size depends on the ratio between production rates of sediment on hillslopes, and export rates of sediment by processes in channels. Consequently, in the headwaters, erosion rates and sediment flux, and hence landscape evolution rates, are to a large extent limited by weathering processes. In contrast, in the lower portion of the drainage basin that adjusts to the lowered base-level, rates of channelized erosion and relief formation are controlled mainly by stream power. Hence, this paper shows that base-level lowering, headward erosion and establishment of knickzones separate drainage basins in two segments with different controls on rates of surface erosion, sediment flux and relief formation.  相似文献   

20.
Modification of Lateglacial and Holocene talus sheets by debris flows and gully incision on Mynydd Du, Wales, has resulted in a convergence of upper slope form characterised by an upper rectilinear slope gradient of 36°±3° and a range of concavities of c. 0.1–0.2. In most cases, gully incision and accumulation of debris cones have led to an increase in slope concavity. Evidence for talus erosion, reworking and redeposition on the upper slope emphasises secondary reworking processes, as well as primary talus accumulation on the upper slope, and permits construction of a model of talus development at Mynydd Du. On the basis of talus volume, calculation of the first rockwall retreat data set for southern Britain suggests that c. 7.1 m (84%) of overall rockwall retreat (8.5 m) took place during the Lateglacial, and only c. 1.4 m (16%) occurred during the Holocene. These figures imply that Lateglacial retreat rates ranged from 1.01 to 2.44 m ka−1, with an overall mean rate of 1.23 m ka−1. In contrast, Holocene rockwall retreat rates range from 0.10 to 0.17 m ka−1, with a mean rate of 0.12 m ka−1. Approximately 27% of cliff retreat is attributed to microgelivation. While similar to Holocene and present-day alpine environments, these Lateglacial retreat rates are one order of magnitude higher than most equivalent values for arctic sites. This reflects both ‘alpine-style’ diurnal freeze–thaw activity on Mynydd Du during the Younger Dryas and paraglacial rock-mass instability following deglaciation. Assuming an exponential decline in rockwall sediment release, it is estimated that approximately half the talus had accumulated within c. 1 ka of deglaciation. At one site, paraglacial talus accumulation appears to have contributed significantly to the glacial sediment transport system of a subsequent ice advance. Present-day rates of rockwall retreat and talus accumulation by rockfall are estimated to be 0.014 and 0.022 mm yr−1 (m ka−1), respectively, similar to values for other British sites and markedly lower than Holocene rates of cliff recession due to microgelivation. By implication, the geomorphic significance of microgelivation may have been greatly underestimated in studies of inland rock-slope evolution in temperate, mid-latitude environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号