首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the Northern hemisphere, regions characterized by an enhanced frequency of atmospheric blocking overlap significantly with those associated with the major extra-tropical patterns of large-scale climate variability—namely the North Atlantic Oscillation (NAO) and the Pacific North American (PNA) pattern. There is likewise an overlap in the temporal band-width of blocks and these climate patterns. Here the nature of the linkage between blocks and the climate patterns is explored by using the ERA-40 re-analysis data set to examine (1) their temporal and spatial correlation and (2) the interrelationship between blocks and the NAO/PNA. It is shown that a strong anti-correlation exists between blocking occurrence and the phase of the NAO (PNA) in the North Atlantic (western North Pacific), and that there are distinctive inter-basin differences with a clear geographical (over North Atlantic) and quantitative (over North Pacific) separation of typical blocking genesis/lysis regions during the opposing phases of the climate patterns. An Empirical Orthogonal Function (EOF) analysis points to a significant influence of blocking upon the NAO pattern (identifiable as the leading EOF in the Euro-Atlantic), and a temporal analysis indicates that long-lasting blocks are associated with the development of negative NAO/PNA index values throughout their life-time. In addition an indication of a cause-and effect relationship is set-out for the North Atlantic linkage.  相似文献   

2.
The variability of the climate during the last millennium is partly forced by changes in total solar irradiance (TSI). Nevertheless, the amplitude of these TSI changes is very small so that recent reconstruction data suggest that low frequency variations in the North Atlantic Oscillation (NAO) and in the thermohaline circulation may have amplified, in the North Atlantic sector and mostly in winter, the radiative changes due to TSI variations. In this study we use a state-of-the-art climate model to simulate the last millennium. We find that modelled variations of surface temperature in the Northern Hemisphere are coherent with existing reconstructions. Moreover, in the model, the low frequency variability of this mean hemispheric temperature is found to be correlated at 0.74 with the solar forcing for the period 1001?C1860. Then, we focus on the regional climatic fingerprint of solar forcing in winter and find a significant relationship between the low frequency TSI forcing and the NAO with a time lag of more than 40?years for the response of the NAO. Such a lag is larger than the around 20-year lag suggested in other studies. We argue that this lag is due, in the model, to a northward shift of the tropical atmospheric convection in the Pacific Ocean, which is maximum more than four decades after the solar forcing increase. This shift then forces a positive NAO through an atmospheric wave connection related to the jet-stream wave guide. The shift of the tropical convection is due to the persistence of anomalous warm SST forcing the anomalous precipitation, associated with the advection of warm SST by the North Pacific subtropical gyre in a few decades. Finally, we analyse the response of the Atlantic meridional overturning circulation to solar forcing and find that the former is weakened when the latter increases. Changes in wind stress, notably due to the NAO, modify the barotropic streamfunction in the Atlantic 50?years after solar variations. This implies a wind-driven modification of the oceanic circulation in the Atlantic sector in response to changes in solar forcing, in addition to the variations of the thermohaline circulation.  相似文献   

3.
Bin Yu  Hai Lin 《Climate Dynamics》2013,40(5-6):1183-1200
The secular trends and interannual variability of wintertime temperatures over northern extratropical lands and circulations over the northern hemisphere are examined using the NCEP/NCAR reanalysis from 1961 to 2010. A primitive equation dry atmospheric model, driven by time-averaged forcing in each winter diagnosed from the NCEP reanalysis, is then employed to investigate the influences of tropical and extratropical forcing on the temperature and circulation variability. The model has no topography and the forcing is thus model specific. The dynamic and thermodynamic maintenances of the circulation and temperature anomalies are also diagnosed. Distinct surface temperature trends over 1961–1990 and 1991–2010 are found over most of the extratropical lands. The trend is stronger in the last two decades than that before 1990, particularly over eastern Canadian Arctic, Greenland, and Asia. The exchange of midlatitude and polar air supports the temperature trends. Both the diagnosed extratropical and tropical forcings contribute to the temperature and circulation trends over 1961–1990, while the extratropical forcing dominates tropical forcing for the trends over 1991–2010. The contribution of the tropical forcing to the trends is sensitive to the period considered. The temperature and circulation responses to the diagnosed tropical and extratropical forcings are approximately additive and partially offsetting. Covariances between the interannual surface temperature and 500-hPa geopotential anomalies for the NCEP reanalysis from 1961 to 2010 are dominated by two leading modes associated with the North Atlantic Oscillation (NAO) and Pacific-North American (PNA) teleconnection patterns. The diagnosed extratropical forcing accounts for a significant part of the NAO and PNA associated variability, including the interannual variability of stationary wave anomalies, as well as dynamically and thermodynamically synoptic eddy feedbacks over the North Atlantic and North Pacific. The tropical forcing contributes to the PNA related temperature and circulation variability, but has a small contribution to the NAO associated variability. Additionally, relative contributions of tropical Indian and Pacific forcings are also assessed.  相似文献   

4.
利用一个全球海气耦合模式(BCM),结合观测资料,讨论了热带太平洋强迫对北大西洋年际气候变率的影响。研究表明,BCM能够相对合理地模拟赤道太平洋的年际变率模态及相应的海温距平型和大气遥相关型,尽管其准3年的振荡周期过于规则。来自数值模式和观测上的证据都表明,北大西洋冬季海温的主导性变率模态,即自北而南出现的“- -”的海温距平型,受到来自热带太平洋强迫的显著影响,其正位相与赤道中东太平洋冷事件相对应。换言之,赤道太平洋暖事件的发生,在太平洋-北美沿岸激发出PNA遥相关型,进而通过在北大西洋产生类似NAO负位相的气压距平型,削弱本来与NAO正位相直接联系的三核型海温距平。北大西洋三核型海温距平对热带太平洋强迫的响应,要滞后2—3个月的时间。  相似文献   

5.
 The winter climatology of Northern Hemisphere cyclone activity was derived from 6-hourly NCEP/NCAR reanalysis data for the period from 1958 to 1999, using software which provides improved accuracy in cyclone identification in comparison to numerical tracking schemes. Cyclone characteristics over the Kuroshio and Gulfstream are very different to those over continental North America and the Arctic. Analysis of Northern Hemisphere cyclones shows secular and decadal-scale changes in cyclone frequency, intensity, lifetime and deepening rates. The western Pacific and Atlantic are characterized by an increase in cyclone intensity and deepening during the 42-year period, although the eastern Pacific and continental North America demonstrate opposite tendencies in most cyclone characteristics. There is an increase of the number of cyclones in the Arctic and in the western Pacific and a downward tendency over the Gulf Stream and subpolar Pacific. Decadal scale variability in cyclone activity over the Atlantic and Pacific exhibits south-north dipole-like patterns. Atlantic and Pacific cyclone activity associated with the NAO and PNA is analyzed. Atlantic cyclone frequency demonstrates a high correlation with NAO and reflects the NAO shift in the mid 1970s, associated with considerable changes in European storm tracks. The PNA is largely linked to the eastern Pacific cyclone frequencies, and controls cyclone activity over the Gulf region and the North American coast during the last two decades. Assessment of the accuracy of the results and comparison with those derived using numerical algorithms, shows that biases inherent in numerical procedures are not negligible. Received: 7 July 2000 / Accepted: 30 November 2000  相似文献   

6.
The link between the Pacific/North American pattern (PNA) and the North Atlantic Oscillation (NAO) is investigated in reanalysis data (NCEP, ERA40) and multi-century CGCM runs for present day climate using three versions of the ECHAM model. PNA and NAO patterns and indices are determined via rotated principal component analysis on monthly mean 500?hPa geopotential height fields using the varimax criteria. On average, the multi-century CGCM simulations show a significant anti-correlation between PNA and NAO. Further, multi-decadal periods with significantly enhanced (high anti-correlation, active phase) or weakened (low correlations, inactive phase) coupling are found in all CGCMs. In the simulated active phases, the storm track activity near Newfoundland has a stronger link with the PNA variability than during the inactive phases. On average, the reanalysis datasets show no significant anti-correlation between PNA and NAO indices, but during the sub-period 1973?C1994 a significant anti-correlation is detected, suggesting that the present climate could correspond to an inactive period as detected in the CGCMs. An analysis of possible physical mechanisms suggests that the link between the patterns is established by the baroclinic waves forming the North Atlantic storm track. The geopotential height anomalies associated with negative PNA phases induce an increased advection of warm and moist air from the Gulf of Mexico and cold air from Canada. Both types of advection contribute to increase baroclinicity over eastern North America and also to increase the low level latent heat content of the warm air masses. Thus, growth conditions for eddies at the entrance of the North Atlantic storm track are enhanced. Considering the average temporal development during winter for the CGCM, results show an enhanced Newfoundland storm track maximum in the early winter for negative PNA, followed by a downstream enhancement of the Atlantic storm track in the subsequent months. In active (passive) phases, this seasonal development is enhanced (suppressed). As the storm track over the central and eastern Atlantic is closely related to the NAO variability, this development can be explained by the shift of the NAO index to more positive values.  相似文献   

7.
Large-scale atmospheric patterns are examined on orbital timescales using a climate model which explicitly resolves the atmosphere–ocean–sea ice dynamics. It is shown that, in contrast to boreal summer where the climate mainly follows the local radiative forcing, the boreal winter climate is strongly determined by modulation of circulation modes linked to the Arctic Oscillation/North Atlantic Oscillation (AO/NAO) and the Northern/Southern Annular Modes. We find that during a positive phase of the AO/NAO the convection in the tropical Pacific is below normal. The related atmospheric circulation provides an atmospheric bridge for the precessional forcing inducing a non-uniform temperature anomalies with large amplitudes over the continents. We argue that this is important for mechanisms responsible for multi-millennial climate variability and glacial inception.  相似文献   

8.
North Atlantic decadal regimes in a coupled GCM simulation   总被引:7,自引:0,他引:7  
 The non-stationarity of the North Atlantic atmosphere-ocean coupling is investigated utilizing a long time integration of a coupled atmosphere-ocean general circulation model (GCM) and a consistent atmospheric experiment forced by the climatological sea surface temperature (SST) of the coupled GCM. The temporal behavior of the North Atlantic Oscillation (NAO) is non-stationary with two different decadal regimes being identified: (a) phases with enhanced (active) low-frequency variability of the NAO index are characterized by regional modes with a baroclinic Pacific-North America (PNA) and a dominant barotropic North Atlantic pattern; (b) in phases with reduced (passive) low-frequency variability a global mode connects tropics and midlatitudes. The characteristic space scales are similar in the coupled and the consistent atmospheric experiment; the time scales of the atmospheric eigenmodes are modified by ocean dynamics. In the active (passive) phase the corresponding atmospheric mode is reinforced by the North Atlantic (tropical Pacific) SST. Received: 15 September 2000 / Accepted: 30 March 2001  相似文献   

9.
Abstract

Past research has unveiled important variations in total precipitation, often related to large‐scale shifts in atmospheric circulation, and consistent with projected responses to enhanced greenhouse warming. More recently, however, it has been realized that important and influential changes in the variability of daily precipitation events have also occurred in the past, often unrelated to changes in total accumulation.

This study aims to uncover variations in daily precipitation intensity over Canada and to compare the observed variations with those in total accumulation and two dominant modes of atmospheric variability, namely the North Atlantic Oscillation (NAO) and the Pacific/North America teleconnection pattern (PNA). Results are examined on both annual and seasonal bases, and with regions defined by similarities in monthly variability.

Seasonally increasing trends in total precipitation that result from increases in all levels of event intensity during the 20th century are found in southern areas of Canada. During the latter half of the century increases are concentrated in heavy and intermediate events, with the largest changes occurring in Arctic areas. Variations in precipitation intensity can, however, be unrelated to variations in the total accumulation. Consistent with these differences, the precipitation responses to the NAO and PNA are often found to occur only at specific levels of event intensity. Precipitation responses to the NAO occur in northeastern regions in summer and winter with the intensity affected in both seasons. The PNA strongly influences precipitation in many regions of the country during autumn and winter. In particular, it strongly influences variations in southern British Columbia and the Prairies, affecting the intensity in only some areas. However, it only influences the frequency of heavier events in autumn and winter in Ontario and southern Quebec, where this response is actually more robust than the response in total accumulation. During these seasons a negative PNA generally leads to more extreme precipitation events.  相似文献   

10.
Huang  Ruping  Chen  Shangfeng  Chen  Wen  Yu  Bin  Hu  Peng  Ying  Jun  Wu  Qiaoyan 《Climate Dynamics》2021,56(11):3643-3664

Compared to the zonal-mean Hadley cell (HC), our knowledge of the characteristics, influence factors and associated climate anomalies of the regional HC remains quite limited. Here, we examine interannual variability of the northern poleward HC edge over western Pacific (WPHCE) during boreal winter. Results suggest that interannual variability of the WPHCE is impacted by the El Niño-Southern Oscillation (ENSO) Modoki, North Pacific Oscillation (NPO) and North Atlantic Oscillation (NAO). The WPHCE tends to shift poleward during negative phase of the ENSO Modoki, and positive phases of the NPO and NAO, which highlights not merely the tropical forcing but also the extratropical signals that modulate the WPHCE. ENSO modoki, NPO and NAO modulate the WPHCE via inducing atmospheric anomalies over the western North Pacific. We further investigate the climatic impacts of the WPHCE on East Asia. The poleward shift of the northern descending branch of the WPHC results in anomalous upward (downward) motions and upper-level divergence (convergence) anomalies over south-central China (northern East-Asia), leading to increased (decreased) rainfall there. Moreover, pronounced cold surface air temperature anomalies appear over south-central China when the sinking branch of the WPHC moves poleward. Based on the temperature diagnostic analysis, negative surface temperature tendency anomalies over central China are mostly attributable to the cold zonal temperature advection and ascent-induced adiabatic cooling, while the negative anomalies over South China are largely due to the cold meridional temperature advection. These findings could improve our knowledge of the WPHCE variability and enrich the knowledge of forcing factors for East Asian winter climate.

  相似文献   

11.
In this study, we investigated the features of Arctic Oscillation (AO) and Antarctic Oscillation (AAO), that is, the annular modes in the extratropics, in the internal atmospheric variability attained through an ensemble of integrations by an atmospheric general circulation model (AGCM) forced with the global observed SSTs. We focused on the interannual variability of AO/AAO, which is dominated by internal atmospheric variability. In comparison with previous observed results, the AO/AAO in internal atmospheric variability bear some similar characteristics, but exhibit a much clearer spatial structure: significant correlation between the North Pacific and North Atlantic centers of action, much stronger and more significant associated precipitation anomalies, and the meridional displacement of upper-tropospheric westerly jet streams in the Northern/Southern Hemisphere. In addition, we examined the relationship between the North Atlantic Oscillation (NAO)/AO and East Asian winter monsoon (EAWM). It has been shown that in the internal atmospheric variability, the EAWM variation is significantly related to the NAO through upper-tropospheric atmospheric teleconnection patterns.  相似文献   

12.
In a weakly nonlinear model how an initial dipole mode develops to the North Atlantic Oscillation (NAO) in a localized shifting jet under the prescribed eddy forcing is examined. It is found that the zonal structure of the eddy-driven NAO anomaly is not only dominated by the longitudinal distribution of the preexisting Atlantic storm track, but also by the initial condition of the NAO anomaly itself associated with the interaction between a localized shifting jet and a topographic standing wave over the Atlantic basin. When both the initial NAO anomaly and the eddy vorticity forcing in the prior Atlantic storm track are more zonally localized, the subsequent eddy-driven NAO anomaly can be more zonally isolated and asymmetric. But, it seems that the shape of the initial NAO anomaly associated with the latitudinal shift of a prior Atlantic jet plays a more important role in producing the zonal asymmetry of subsequent NAO patterns. The zonal asymmetry of the NAO anomaly can be enhanced as the height of topography increases. In addition, it is further found that blocking events occur easily over the Europe continent through the decaying of positive-phase NAO events. However, prior to the positive-phase NAO life cycle the variability in each of three factors: the Atlantic jet, the eddy vorticity forcing in the Atlantic storm track and the initial NAO anomaly can result in a variation in the blocking activity over the Europe sector in strength, duration, position and pattern.  相似文献   

13.
Observations show a multidecadal signal in the North Atlantic ocean, but the underlying mechanism and cause of its timescale remain unknown. Previous studies have suggested that it may be driven by the North Atlantic Oscillation (NAO), which is the dominant pattern of winter atmospheric variability. To further address this issue, the global ocean general circulation model, Nucleus for European Modelling of the Ocean (NEMO), is driven using a 2,000 years long white noise forcing associated with the NAO. Focusing on key ocean circulation patterns, we show that the Atlantic Meridional Overturning Circulation (AMOC) and Sub-polar gyre (SPG) strength both have enhanced power at low frequencies but no dominant timescale, and thus provide no evidence for a oscillatory ocean-only mode of variability. Instead, both indices respond linearly to the NAO forcing, but with different response times. The variability of the AMOC at 30°N is strongly enhanced on timescales longer than 90 years, while that of the SPG strength starts increasing at 15 years. The different response characteristics are confirmed by constructing simple statistical models that show AMOC and SPG variability can be related to the NAO variability of the previous 53 and 10 winters, respectively. Alternatively, the AMOC and the SPG strength can be reconstructed with Auto-regressive (AR) models of order seven and five, respectively. Both statistical models reconstruct interannual and multidecadal AMOC variability well, while on the other hand, the AR(5) reconstruction of the SPG strength only captures multidecadal variability. Using these methods to reconstruct ocean variables can be useful for prediction and model intercomparision.  相似文献   

14.
The potential role of tropical Pacific forcing in driving the seasonal variability of the Arctic Oscillation (AO) is explored using both observational data and a simple general circulation model (SGCM). A lead–lag regression technique is first applied to the monthly averaged sea surface temperature (SST) and the AO index. The AO maximum is found to be related to a negative SST anomaly over the tropical Pacific three months earlier. A singular value decomposition (SVD) analysis is then performed on the tropical Pacific SST and the sea level pressure (SLP) over the Northern Hemisphere. An AO-like atmospheric pattern and its associated SST appear as the second pair of SVD modes. Ensemble integrations are carried out with the SGCM to test the atmospheric response to different tropical Pacific forcings. The atmospheric response to the linear fit of the model’s empirical forcing associated with the SST variability in the second SVD modes strongly projects onto the AO. Idealized thermal forcings are then designed based on the regression of the seasonally averaged tropical Pacific precipitation against the AO index. Results indicate that forcing anomalies over the western tropical Pacific are more effective in generating an AO-like response while those over the eastern tropical Pacific tend to produce a Pacific-North American (PNA)-like response. The physical mechanisms responsible for the energy transport from the tropical Pacific to the extratropical North Atlantic are investigated using wave activity flux and vorticity forcing formalisms. The energy from the western tropical Pacific forcing tends to propagate zonally to the North Atlantic because of the jet stream waveguide effect while the transport of the energy from the eastern tropical Pacific forcing mostly concentrates over the PNA area. The linearized SGCM results show that nonlinear processes are involved in the generation of the forced AO-like pattern.  相似文献   

15.
 The realism of the Hadley Centre’s coupled climate model (HadCM2) is evaluated in terms of its simulation of the winter North Atlantic Oscillation (NAO), a major natural mode of the Northern Hemisphere atmosphere that is currently the subject of considerable scientific interest. During 1400 y of a control integration with present-day radiative forcing levels, HadCM2 exhibits a realistic NAO associated with spatial patterns of sea level pressure, synoptic activity, temperature and precipitation anomalies that are very similar to those observed. Spatially, the main model deficiency is that the simulated NAO has a teleconnection with the North Pacific that is stronger than observed. In a temporal sense the simulation is compatible with the observations if the recent observed trend (from low values in the 1960s to high values in the early 1990s) in the winter NAO index (the pressure difference between Gibraltar and Iceland) is ignored. This recent trend is, however, outside the range of variability simulated by the control integration of HadCM2, implying that either the model is deficient or that external forcing is responsible for the variation. It is shown, by analysing two ensembles, each of four HadCM2 integrations that were forced with historic and possible future changes in greenhouse gas and sulphate aerosol concentrations, that a small part of the recent observed variation may be a result of anthropogenic forcing. If so, then the HadCM2 experiments indicate that the anthropogenic effect should reverse early next century, weakening the winter pressure gradient between Gibraltar and Iceland. Even combining this anthropogenic forcing and internal variability cannot explain all of the recent observed variations, indicating either some model deficiency or that some other external forcing is partly responsible. Received: 20 August 1998 / Accepted: 12 May 1999  相似文献   

16.
张洁  董敏  吴统文  辛晓歌 《大气科学》2021,45(1):181-194
基于NCEP/NCAR、日本气象厅的JRA55以及欧洲中期预报中心(ECMWF)最新发布的ERA5三套逐日再分析资料数据,考察国家气候中心中等分辨率(约110 km)的气候系统模式BCC-CSM2-MR和单独大气模式BCC-AGCM3-MR对北半球中高纬度阻塞高压(阻高)的模拟能力。再分析数据分析结果表明:“北大西洋—欧洲地区”以及“北太平洋中部地区”分别为北半球阻高发生的最高频及次高频区域;冬春季为阻高高发季节,夏秋季阻高频率减少至冬春季的一半左右;ERA5再分析资料中各个季节的阻高频率均高于另两套资料结果,尤其在北太平洋地区。模拟评估结果显示,单独大气模式BCC-AGCM3-MR对北半球中高纬度阻高发生频率、空间分布和季节变化特征均有较好的模拟能力,其主要偏差表现为冬春欧亚大陆特别是乌拉尔山地区阻高频率偏高,而北大西洋地区阻高频率偏低;春季北太平洋阻高频率偏低。这与模式北半球高纬度地区500 hPa位势高度场气候态偏差有关。BCC-CSM2-MR耦合模式的阻高模拟偏差总体与大气模式类似。但耦合模式中冬季欧亚大陆特别是乌拉尔山地区阻高频率减小、北太平洋春季阻高频率增大,模拟偏差减小。同时,耦合模式能够再现夏季北太平洋东西阻高频率双峰值特征。因此,海气耦合过程有助于改善对欧亚及北太平洋地区阻高频率模拟。阻高频率年际变率受到气候系统内部变率不确定性的较大影响,这也是制约阻高预测水平的重要因素。  相似文献   

17.
Observations show that at middle and high latitudes, the magnitude of stochastic wind stress forcing due to atmospheric weather is comparable to that of the seasonal cycle and will likely exert a significant influence on the ocean circulation. The focus of this work will be the contribution of the North Atlantic Oscillation (NAO) to the stochastic forcing in the North Atlantic and its influence on the large-scale, wind-driven ocean circulation. To this end, a QG model of the North Atlantic Ocean was forced with the stochastic component of wind stress curl associated with the NAO signal. The ocean response is localized primarily in the western boundary region and can be conveniently understood using generalized stability analysis. Much of the variability is associated with the nonnormal influence of the bathymetry and inhomogeneities in the western boundary flow on the large-scale circulation. A more traditional statistical analysis of the circulation, however, reveals that there are very small and insignificant correlations between the NAO forcing and the ocean response within the western boundary region. This suggests that the dynamics of the ocean response to stochastic forcing may obscure any obvious coherence between the forcing and the response which is equally difficult to identify from observations.  相似文献   

18.
Observations show that at middle and high latitudes, the magnitude of stochastic wind stress forcing due to atmospheric weather is comparable to that of the seasonal cycle and will likely exert a significant influence on the ocean circulation. The focus of this work will be the contribution of the North Atlantic Oscillation (NAO) to the stochastic forcing in the North Atlantic and its influence on the large-scale, wind-driven ocean circulation. To this end, a QG model of the North Atlantic Ocean was forced with the stochastic component of wind stress curl associated with the NAO signal. The ocean response is localized primarily in the western boundary region and can be conveniently understood using generalized stability analysis. Much of the variability is associated with the nonnormal influence of the bathymetry and inhomogeneities in the western boundary flow on the large-scale circulation. A more traditional statistical analysis of the circulation, however, reveals that there are very small and insignificant correlations between the NAO forcing and the ocean response within the western boundary region. This suggests that the dynamics of the ocean response to stochastic forcing may obscure any obvious coherence between the forcing and the response which is equally difficult to identify from observations.  相似文献   

19.
The sea-ice concentration in the Northern Hemisphere, 500 hPa height, sea-level pressure and 1000-500 hPa thickness of monthly mean data are examined for the period 1953-1989, with emphasis on the winter season.Relationships between large-scale patterns of atmospheric variability and sea-ice variability are investigated, making use of the correlation method. The analysis is conducted for the Atlantic sectors. In agreement with earlier studies based upon monthly mean data on sea-ice concentration, the strongest sea-ice pattern is composed of a dipole with opposing centers of action in the Davis Straits / Labrador Sea region and the Greenland and Barents Seas. Its temporal variability is strongly coupled to the atmospheric North Atlantic Oscillation (NAO). The relationship between the two patterns is strongest with the atmosphere leading the ocean. The polarity of the NAO is associated with Greenland blocking episodes, during which the influence of the atmosphere is strong enough to temporarily halt the c  相似文献   

20.
The representation of the wintertime North Atlantic Oscillation (NAO) and its relationship with atmospheric blocking and the Atlantic jet stream is investigated in a set of CMIP5 models. It is shown that some state-of-the-art climate models are unable to correctly simulate the physical processes connected to the NAO. This is especially true for models with a strongly underestimated frequency of high-latitude blocking over Greenland. In these models the first empirical orthogonal function (EOF1) of the Euro-Atlantic sector can represent at least three different categories of dominant modes of variability associated with different prevalent regions of blocking occurrence and jet stream displacements. It is therefore possible to show that such “biased NAOs” are connected with different dynamical processes with respect to the canonical NAO seen in observations. Since the NAO is a widely used concept in scientific community, the consequent “dynamical misinterpretation” of the NAO that can result when climate models are analyzed may have important implications for the NAO-related studies. This may be especially relevant for the ones involving climate scenarios, since these modeled NAOs may react differently to greenhouse gas forcing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号