首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We construct and evaluate a new three-dimensional model of crust and upper mantle structure in Western Eurasia and North Africa (WENA) extending to 700 km depth and having 1° parameterization. The model is compiled in an a priori fashion entirely from existing geophysical literature, specifically, combining two regionalized crustal models with a high-resolution global sediment model and a global upper mantle model. The resulting WENA1.0 model consists of 24 layers: water, three sediment layers, upper, middle, and lower crust, uppermost mantle, and 16 additional upper mantle layers. Each of the layers is specified by its depth, compressional and shear velocity, density, and attenuation (quality factors, Q P and Q S ). The model is tested by comparing the model predictions with geophysical observations including: crustal thickness, surface wave group and phase velocities, upper mantle n velocities, receiver functions, P-wave travel times, waveform characteristics, regional 1-D velocities, and Bouguer gravity. We find generally good agreement between WENA1.0 model predictions and empirical observations for a wide variety of independent data sets. We believe this model is representative of our current knowledge of crust and upper mantle structure in the WENA region and can successfully be used to model the propagation characteristics of regional seismic waveform data. The WENA1.0 model will continue to evolve as new data are incorporated into future validations and any new deficiencies in the model are identified. Eventually this a priori model will serve as the initial starting model for a multiple data set tomographic inversion for structure of the Eurasian continent.  相似文献   

2.
We have produced a P-wave model of the upper mantle beneath Southeast (SE) Asia from reprocessed short period International Seismological Centre (ISC) P and pP data, short period P data of the Annual Bulletin of Chinese Earthquakes (ABCE), and long period PP-P data. We used 3D sensitivity kernels to combine the datasets, and mantle structure was parameterized with an irregular grid. In the best-sampled region our data resolve structure on scale lengths less than 150 km. The smearing of crustal anomalies to larger depths is reduced by a crustal correction using an a priori 3D model. Our tomographic inversions reveal high-velocity roots beneath the Archean Ordos Plateau, the Sichuan Basin, and other continental blocks in SE Asia. Beneath the Himalayan Block we detect high seismic velocities, which we associate with subduction of Indian lithospheric mantle. This structure is visible above the 410 km discontinuity and may not connect to the remnant of the Neo-Tethys oceanic slab in the lower mantle. Our images suggest that only the southwestern part of the Tibetan plateau is underlain by Indian lithosphere and, thus, that the upper mantle beneath northeastern Tibet is primarily of Asian origin. Our imaging also reveals a large-scale high-velocity structure in the transition zone beneath the Yangtze Craton, which could have been produced in multiple subduction episodes. The low P-wave velocities beneath the Hainan Island are most prominent in the upper mantle and transition zone; they may represent counter flow from the surrounding subduction zones, and may not be unrelated to processes beneath eastern Tibet.  相似文献   

3.
The surface wave tomography from ambient seismic noise recorded at stations in Western Europe (WE) and on the East European Platform (EEP) revealed the structure of the crust and upper mantle in the transitional zone from the Precambrian platform to the younger geological units in Western Europe. The Tornquist-Teisseyre Line separating these structures is clearly traced as a transition zone from the high velocities beneath EEP to the low velocities beneath WE in the crust and upper mantle, which extends to a depth of 150?C170 km. Below 200 km the relationship between the velocities beneath EEP and WE becomes the opposite. A similar relationship between the velocities in the upper mantle down to a depth of 300 km is observed on the southern boundary, where EEP borders on the northern segment of the Alpine-Himalayan seismic belt.  相似文献   

4.
Using arrival data of the body waves recorded by seismic stations, we reconstructed the velocity structure of the crust and upper mantle beneath the southeastern edge of the Tibetan Plateau and the northwestern continental margin of the South China Sea through a travel time tomography technique. The result revealed the apparent tectonic variation along the Ailao Shan-Red River fault zone and its adjacent regions. High velocities are observed in the upper and middle crust beneath the Ailao Shan-Red River fault zone and they reflect the character of the fast uplifting and cooling of the metamorphic belt after the ductile shearing of the fault zone, while low velocities in the lower crust and near the Moho imply a relatively active crust-mantle boundary beneath the fault zone. On the west of the fault zone, the large-scale low velocities in the uppermost mantle beneath western Yunnan prove the influence of the mantle heat flow on volcano, hot spring and magma activities, however, the upper mantle on the eas  相似文献   

5.
青藏高原上地幔速度结构及其动力学性质   总被引:3,自引:2,他引:1       下载免费PDF全文
利用地震层析成像结果分析了中国西部地区的上地幔速度结构,发现青藏高原北部至东南边缘上地幔顶部速度普遍偏低;随着深度的增加,低速区主要分布在羌塘、松潘—甘孜和云南西部地区,而印度大陆、塔里木、柴达木、鄂尔多斯和四川盆地均显示出较高的速度.上述速度分布与青藏高原及周边地区的岩石层结构和深部动力性质密切相关:其中羌塘地区的低速异常反映了青藏北部的地幔上涌和局部熔融,起因于印度大陆岩石层的向北俯冲;松潘—甘孜地区的低速异常与青藏东部的深层物质流动及四川盆地刚性岩石层的阻挡有关;而滇西地区的低速异常可能受到印缅块体向东俯冲作用的影响.以上三个区域构成青藏高原和周边地区的主要地幔异常区.相比之下,印度大陆、塔里木、柴达木、鄂尔多斯和四川盆地的高速异常反映了大陆构造稳定地区的岩石层地幔特点.根据速度变化推测,地幔上涌和韧性变形并非贯穿整个青藏高原,而是主要集中在羌塘、松潘—甘孜和滇西地区,上述构造效应不仅导致岩石层厚度减薄且引发了火山和岩浆活动.  相似文献   

6.
A two dimensional velocity model of the upper mantle has been compiled from a long-range seismic profile crossing the West Siberian young plate and the old Siberian platform. It revealed considerable horizontal and vertical heterogeneity of the mantle. A sharp seismic boundary at a depth of 400 km outlines the high-velocity gradient transition zone, its base lying at a depth of 650 km. Several layers with different velocities, velocity gradients and wave attenuation are distinguished in the upper mantle. They likewise differ in their inner structure. For instance, the uppermost 50–70 km of the mantle are divided into blocks with velocities from 7.9–8.1 to 8.4–8.6 km s?1.Comparison of the travel-time curves for the Siberian long-range profile with those compiled from seismological data for Europe distinguished large-scale upper mantle inhomogeneities of the Eurasian continent and allowed for the correlation of tectonic features and geophysical fields. The velocity heterogeneity of the uppermost 50–100 km of the mantle correlates with the platform age and heat flow, i.e., the young plates of Western Europe and Western Siberia have slightly lower velocities and higher heat flows than the ancient East European and Siberian platforms. At greater depths (150–250 km) the upper mantle velocities increase from the ocean to the inner parts of the continent. The structure of the transition zone differs significantly beneath Western Europe and the other parts of Eurasia. The sharp boundary at a depth of 400 km, traced throughout the whole continent as the boundary reflecting intensive waves, transforms beneath Western Europe into a gradient zone. This transition zone feature correlates with positions of the North Atlantic-west Europe geoid and heat-flow anomalies.  相似文献   

7.
环渤海地区的地震层析成像与地壳上地幔结构   总被引:36,自引:8,他引:28       下载免费PDF全文
利用环渤海地区的天然地震P波到时资料,采用纬度和经度方向分别为05°×06°的网格划分,反演了该地区地壳上地幔的三维P波速度结构.初步结果表明,环渤海地区地壳上地幔的速度结构具有明显的横向不均匀性:京津唐地区地壳中上部的速度异常反映了浅表层的地质构造特征,造山带和隆起区对应于高速异常,坳陷区和沉积盆地对应于低速异常;地壳下部出现大规模的低速异常与华北地区广泛存在的高导层相对应,估计与壳内的滑脱层和局部熔融、岩浆活动有关;莫霍面附近的速度异常反映了地壳厚度的变化及壳幔边界附近热状态的差异;上地幔顶部大范围的低速异常可能是上地幔软流层热物质大规模上涌所致.  相似文献   

8.
Summary The crustal structure beneath the Himalayas has been investigated using body wave data from near earthquakes having epicentres over the Himalayas and recorded by the observatories situated over, or very near, the foothills of the mountains. A three-layered crustal model, without the top sedimentary layer, with velocities for theP wave group in Granite I, Granite II and the Basaltic layer as 5.48, 6.00 and 6.45 and for theS wave group as 3.33, 3.56 and 3.90 km/sec respectively, has been interpreted. The upper mantle velocity for theP wave has been observed to be 8.07 km/sec and for theS wave as 4.57 km/sec. Average thickness for the Granite I layer has been computed as 22.7 km, for the Granite II layer as 16.3 km and for the Basaltic layer as 18.7 km. Crustal and sub-crustal velocities indicate a lower trend under the mountain. A thicker crust has been obtained beneath the Himalayas.  相似文献   

9.
Teleseismic data recorded by stations in the Swedish National Seismic Network (SNSN) are used for a study of upper mantle structure beneath the Baltic Shield using the receiver function technique. The data show very clear conversions from the 410 and 660 km discontinuities. The signals associated with P to S conversions at these discontinuities arrive 1-2 s earlier than predicted by global models such as IASP91 or PREM. We interpret this as a manifestation of higher than average velocities in the mantle beneath the shield, consistent with lower than average global temperatures. For a 1400 km profile along the network, we observe variations of around 1 second in delay times of P410s and slightly less for P660s. Under the assumption that the mantle discontinuities are at a given constant depth, the delay times of the mantle converted phases are tomographically inverted to reveal P and S velocity structure below the stations. Synthetic tests show that this tomographic inversion has the potential to resolve P and S velocity variations at structural scales adequate for upper mantle studies. Results from application to real data appear to be consistent with independently produced mantle velocity structures deduced from normal tomographic arrival time data. For the P velocity model, a north-dipping body of (relatively) low velocity is found for the central part of the profile at 58-64°N. A sharp contrast from low to high velocities that may be associated with the Proterozoic-Archean boundary is found at 66°N.  相似文献   

10.
Iceland is the type example of a ridge-centered hotspot. It is controversial whether the seismic anomaly beneath it originates in the lower mantle or the upper mantle. Some recent studies reported that the 660-km discontinuity beneath central Iceland is shallow relative to peripheral regions and this was interpreted as an effect of elevated temperature at that depth. We investigate topography of the major upper mantle discontinuities by separating the effects of the topography and volumetric velocity heterogeneity in P receiver functions from 55 seismograph stations. Our analysis demonstrates that a significant (at least 10-km) shallowing of the 660-km discontinuity is only possible in the case of improbably low seismic velocities in the mantle transition zone beneath central Iceland. If, as in previous studies, lateral velocity variations in the mantle transition zone are neglected, the data require a depressed rather than an uplifted 660-km discontinuity. For a reasonable S-wave velocity anomaly in the mantle transition zone (around − 3%) no topography on the 660-km discontinuity is required. This can be explained by the lack of temperature anomaly or an effect of two phase transitions with opposite Clapeyron slopes.  相似文献   

11.
本研究拾取了中国数字测震台网固定台站记录的2008—2019年期间发生在山西断陷带及邻区2级以上天然地震事件及陕西神木、府谷等3级以上非天然地震事件共25304条高质量Pn到时数据,反演了山西断陷带及邻区上地幔顶部高分辨率Pn波速度结构与各向异性.研究结果显示,山西断陷带及邻区Pn波速度结构差异较大,大同火山及以南区域、忻定盆地、太行山造山带、华北盆地南部和吕梁山局部地区表现为显著的低波速异常,而运城盆地、临汾盆地北部、太原盆地、大同盆地北部、华北盆地北部和鄂尔多斯块体呈现明显的高波速异常.大同火山下方上地幔顶部的低波速异常与Pn快波方向呈现以火山为中心的近发散状结构特征,结合已有的远震上地幔成像结果,暗示大同火山岩浆可能来源于地幔深部,岩浆的底侵或热侵蚀作用造成了该地区岩石圈的破坏以及整个华北克拉通的"活化",这一推论符合克拉通的热-化学侵蚀破坏模型.山西断陷带上地幔顶部速度异常形态较好的对应了研究区的地质构造,Pn快波速方向与地质构造的展布方向和SKS波各向异性的特征基本一致,说明变形形式以简单剪切为主,表明其形成和演化过程与上地幔物质运移过程有密切关系.  相似文献   

12.
中国西部及邻区岩石圈S波速度结构面波层析成像   总被引:7,自引:5,他引:2       下载免费PDF全文
黄忠贤  李红谊  胥颐 《地球物理学报》2014,57(12):3994-4004
本文利用瑞利波群速度频散资料和层析成像方法,研究了中国西部及邻近区域(20°N—55°N,65°E—110°E)的岩石圈S波速度结构.结果表明这一地区存在三个以低速地壳/上地幔为特征的构造活动区域:西蒙古高原—贝加尔地区,青藏高原,印支地区.西蒙古高原岩石圈厚度约为80 km,上地幔低速层向下延伸至300 km深度,说明存在源自地幔深部的热流活动.缅甸弧后的上地幔低速层下至200 km深度,显然与印度板块向东俯冲引起俯冲板片上方的热/化学活动有关.青藏高原地壳厚达70 km,边缘地区厚度也在50 km以上并且具有很大的水平变化梯度,与高原平顶陡边的地形特征一致.中下地壳的平均S波速度明显低于正常大陆地壳,在中地壳20~40 km深度范围广泛存在速度逆转的低速层,这一低速层的展布范围与高原的范围相符.这些特征说明青藏高原中下地壳的变形是在印度板块的北向挤压下发生塑性增厚和侧向流动.地幔的速度结构呈现与地壳显著不同的特点.在高原主体和川滇西部地区上地幔顶部存在较大范围的低速,低速区范围随深度迅速减小;100 km以下滇西低速消失,150 km以下基本完全消失.青藏高原上地幔速度结构沿东西方向表现出显著的分段变化.在大约84°E以西的喀喇昆仑—帕米尔—兴都库什地区,印度板块的北向和亚洲板块的南向俯冲造成上地幔显著高速;84°E—94°E之间上地幔顶部速度较低,在大约150~220 km深度范围存在高速板片,有可能是俯冲的印度岩石圈,其前缘到达昆仑—巴颜喀拉之下;在喜马拉雅东构造结以北区域,存在显著的上地幔高速区,可能阻碍上地幔物质的东向运动.川滇西部岩石圈底界深度与扬子克拉通相似,约为180 km,但上地幔顶部速度较低.这些现象表明青藏高原岩石圈地幔的变形/运动方式可能与地壳有本质的区别.  相似文献   

13.
Three-dimensional velocity images of the crust and upper mantle beneath orogenic belts and adjacent basins of the northwestern continent of China are reconstructed by seismic tomography, based on arrival data of P wave recorded in seismic networks in Xinjiang, Qinghai, Gansu of China and Kyrgyzstan. The velocity images of upper crust demonstrate the tectonic framework on the ground surface. High velocities are observed beneath orogenic belts, and low velocities are observed in the basins and depressions that are obviously related to unconsolidated sediments. The velocity image in mid-crust maintains the above features, and in addition low velocities appear in some earthquake regions and a low velocity boundary separates the western Tianshan Mts. from eastern Tianshan Mts. The orogenic belts and the northern Tibetan plateau have a Moho depth over 50 km, whereas the depths of the Moho in basins and depressions are smaller than 50 km. The velocity images of upper mantle clearly reveal the colliding relationship and location of deep boundaries of the continental blocks in northwestern China, indicating a weakness of the upper mantle structure of orogenic belts. The top depth of upper mantle asthenosphere varies from place to place. It seems shallower under the northern Tibetan plateau, Altay and Qilian Mts., and deeper under the Tarim and Tianshan regions. Hot mantle probably rose to the bottom of some orogenic belts along tectonic boundaries when continental blocks collided to each other. Therefore their dynamic features are closely correlated to the formation and evolution of orogenic belts in northwestern China.  相似文献   

14.
The long-range seismic profile Quartz, measured by the GEON Center (Ministry of Geology of the USSR), crosses a few large geostructures: the East European platform, Timan-Pechora plate, Northern Urals, West Siberian plate (WSP), and Altai. Observations of nuclear and chemical explosions were conducted on the profile. Joint processing of records from sources of both types provided detailed structures of the crust and upper mantle. They have confirmed the known patterns in the structure of these shells of the Earth and revealed new ones. Mountain roots are observed beneath the Urals and Altai, and areas of a higher heat flow are matched by lower velocity zones in the upper mantle. Moreover, it is shown that the Timan-Pechora plate is characterized by a two-layer crust untypical of other young plates of central Eurasia and the upper mantle has the same velocities beneath the ancient East European platform and the young Altai orogen. It is also shown that the vast region including the Timan-Pechora plate, Urals, and WSP is bounded on both sides by deep faults in the upper mantle dipping toward the center of Western Siberia. A few nearly continuous reflectors traceable in the upper mantle are represented by thin-layered heterogeneous beds. The largest horizontal heterogeneity is observed in the upper 100-km layer, often underlain by a lower velocity zone. The asthenosphere, as a layer of lower seismic velocities at the depth of a possible solidus (200–250 km), has not been revealed. The latter is evidently a feature specific to inner parts of the Eurasian continent; in marginal regions, e.g., in Western Europe, the asthenospheric layer is identified almost ubiquitously.  相似文献   

15.
研究青藏高原东缘地区的深部物质结构对于理解青藏高原的隆升及扩张机制具有重要的科学意义.本文将青藏高原东缘实测大地电磁测深剖面反演所得的岩石圈电性结构模型与高温高压岩石物理实验测得的上地幔矿物和熔融体导电性定量关系相结合,通过Hashin-Shtrikman(HS)边界条件建立上地幔电导率与温度、熔融百分比等参数的定量关系,在此基础上计算得到了青藏高原东缘上地幔热结构及熔融百分比分布模型.研究结果表明在青藏高原东缘地区通过大地电磁测深方法所探测到的上地幔低阻体可以解释为由高温作用所产生的局部熔融区域.其中,松潘—甘孜地块上地幔高导体对应的温度介于1300~1500℃之间,熔融百分比可高达10%,支持前人将松潘—甘孜地块内部的低阻体解释为局部熔融的观点.龙门山断裂带以东、四川盆地西缘的上地幔高导体温度介于1200~1400℃之间,熔融百分比介于1%~5%左右,表明扬子克拉通的西缘可能正在经历一定程度的活化作用.龙门山断裂带下方的上地幔高阻体温度介于1100℃附近,基本没有发生局部熔融,具有较冷的刚性块体特征,与该区域频发的地震活动相吻合.四川盆地东部的扬子上地幔温度介于800~900℃之间,没有发生局部熔融,符合古老稳定的克拉通块体的基本特征.  相似文献   

16.
Group velocities estimated from fundamental mode Love and Rayleigh waves are used in a tomography process in central-southern Africa. The waves were generated by eighteen earthquakes, which occurred along the East African Rift and recorded at BOSA, LBTB and SLR seismic stations in southern Africa. The group velocities from Love and Rayleigh waves were isolated using the Multiple Filter Technique (MFT) at the period range of 10 to 50 seconds. The tomography method developed by Ditmar and Yanovskaya (1987) and Yanovskaya and Ditmar (1990), was applied to calculate the lateral distribution of surface wave group velocities in central-southern Africa. The results of the tomographic inversion were plotted as distribution maps. In addition to the maps, I also produced two velocity cross-sections across the area of study. The velocity distribution maps show the regional tectonic units, though with poor resolution. The azimuthal bias of the surface wave paths is reflected in the distribution of the group velocities. The Moho depth appears to correlate with velocities at a period of about 30 s. A low velocity feature observed beneath the Zimbabwe craton implies a thickening upper asthenosphere and lithospheric thinning beneath the Zimbabwe craton. Also estimated was a shear wave velocity model beneath the Zimbabwe craton.  相似文献   

17.
本文利用30个基准台所记录的238条长周期面波资料,经过适配滤波和分格频散反演,得到中国大陆及邻区147个分格10-105s的纯路径频散,进而反演出青藏高原及邻近地区深至170km的剪切波三维速度结构.研究表明,青藏高原中西部地区和东部地区的地壳平均厚度分别为70±7km和65±7km,地壳平均剪切波速度分别为3.55和3.62km/s,上地幔顶盖平均速度分别为4.63和4.61km/s; 岩石层厚度均为120±10km;东部地区下地壳内30-40km深度处普遍存在低速层;青藏高原及其东侧的上地幔低速层内有横贯东西且明显向上隆起的低速腔.滇西缅北地区的地壳厚45±5km,上地壳及下地壳内都有低速层;上地幔顶盖的速度为4.42km/s,比青藏高原本体及恒河平原都低.恒河平原地壳厚34±2km,速度平均为3.45km/s;上地幔顶盖厚86±10km,速度平均为4.63km/s,顶盖内55-83km深处有一个低速夹层.  相似文献   

18.
We have constrained the shear-wave structure of crust and upper mantle beneath Iceland by analyzing fundamental mode Rayleigh waves recorded at the ICEMELT and HOTSPOT seismic stations in Iceland. The crust varies in thickness from 20 to 28 km in western and northern Iceland and from 26 to 34 km in eastern Iceland. The thickest crust of 34–40 km lies in central Iceland, roughly 100 km west to the current location of the Iceland hotspot. The crust at the hotspot is ∼32 km thick and is underlain by low shear-wave velocities of 4.0–4.1 km/s in the uppermost mantle, indicating that the Moho at the hotspot is probably a weak discontinuity. This low velocity anomaly beneath the hotspot could be associated with partial melting and hot temperature. The lithosphere in Iceland is confined above 60 km and a low velocity zone (LVZ) is imaged at depths of 60 to 120 km. Shear wave velocity in the LVZ is up to 10% lower than a global reference model, indicating the influence of the Mid-Atlantic Ridge and the hotspot in Iceland. The lowest velocities in the LVZ are found beneath the rift zones, suggesting that plume material is channeled along the Mid-Atlantic Ridge. At depths of 100 to 200 km, low velocity anomalies appear at the Tjornes fracture zone to the north of Iceland and beneath the western volcanic zone in southwestern Iceland. Interestingly, a relatively fast anomaly is imaged beneath the hotspot with its center at ∼135 km depth, which could be due to radial anisotropy associated with the strong upwelling within the plume stem or an Mg-enriched mantle residual caused by the extensive extraction of melts.  相似文献   

19.
Detailed information about the crustal structure is essential for better understanding the occurrence and mechanisms of earthquakes and volcanoes. Here we present a study of the upper crustal P-wave velocity structure of two seismically and volcanically active areas in northern Iran using the two-dimensional Pg travel time tomography method. The imaging results suggest low velocities in the upper crust beneath the Damavand and Sahand-Sabalan volcanic areas in the central and western parts of northern Iran, respectively. The upper crustal low velocities in these two areas roughly coincide with previously imaged low Pn velocity anomalies, suggesting that the Late Cenozoic volcanic activity was probably caused by the upwelling of hot materials from the mantle. The image feature of the Pg velocity structure beneath the Sahand-Sabalan volcanic area further indicates that the hot materials stored in the upper crust beneath Sahand may be larger in size than those stored beneath Sabalan. Comparison of the Pg velocity images with the earthquake distribution in north Iran suggests that earthquakes mainly occur at moderately low velocity or low to high velocity boundary areas instead of significantly low or high velocity regions. The anisotropy results show that the Pg wave fast direction is consistent with the GPS direction at high Pg velocity areas and the fast direction is inconsistent with the GPS direction but consistent with the strike direction of faults at low velocity areas. Our new upper crustal structural images provide the basic observation for better understanding of the regional seismicity and volcanism, and link the surface geological phenomena to deep crustal and mantle processes associated with the active tectonics in northern Iran.  相似文献   

20.
全球地幔垂直流动速度研究   总被引:5,自引:0,他引:5       下载免费PDF全文
用高分辨率地震体波速度成像以及相关的地球物理资料,计算地幔垂直流动形式及流动速度,得到全球地幔流垂直运动模式.从全球尺度来看,地幔流基本可划分为以下几个区域:欧亚大陆—澳大利亚、北美洲—南美洲为两个大规模下降流区域,西印度洋—非洲及大西洋、中南太平洋及东太平洋为两个大规模地幔上升流区域.地幔上升流起源于核幔边界,主要表现在地幔中部和上地幔下部.地幔垂直流动速度约每年1~4cm.地幔流动对地表板块运动、海洋中脊和中隆、俯冲带和碰撞带的分布起着控制作用.地幔上升流与地表现代热点有密切关系.从东亚尺度看,地幔流大体分为三个区域:东亚边缘裂谷系和西太平洋边缘海为上升流、西伯利亚地幔深度表现为物质下降流、青藏高原—缅甸—印度尼西亚特提斯俯冲带地幔下降流,这三个区域地幔流动与地表的西太平洋构造域、亚洲构造域和特提斯构造域相吻合.勾勒出南海地区构造特征:从上到下的大体结构是上部呈“工"字型、中间为圆柱型、底部呈盾形的地幔上升流.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号