首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高密度电阻率法在岩溶区找水具有较好的效果,但其成像效果和工作效率易受装置和电极距的影响。为了提高岩溶区高密度电法找水的勘探效果,文章采用高密度电阻率法微测系统,利用铜柱体模拟地下岩溶管道,研究不同装置及电极距对高密度电法探测岩溶管道的影响。结果表明:矩形AMN装置和滚动MNB装置比α_2装置对异常的响应更灵敏,对确定异常体的顶部埋深优于α_2装置;而α_2装置对异常的定位及确定异常体的大小优于前二者;岩溶管道低阻异常体的高密度电阻率联合剖面法的响应特征为高阻正交点,利用该方法能精确地对异常体进行定位;电极距越小,分辨率越高,反演异常顶部埋深和横向宽度越接近真实异常,但反演异常投影中心越偏离真实异常。  相似文献   

2.
不同深度岩溶管道的高密度电阻率法反演特征   总被引:2,自引:8,他引:2  
郑智杰  甘伏平  曾洁 《中国岩溶》2015,34(3):292-297
高密度电法在岩溶区找水具有很好的效果,岩溶山区岩溶管道深度各异,为了探寻岩溶管道深度变化下高密度电阻率的响应规律,本文以高密度电阻率法原理为基础,采用高密度电阻率法微测系统,利用铜柱体模型,模拟均匀介质下不同深度岩溶管道的高密度电阻率响应特征。结果表明:当岩溶管道深度大于15倍电极距时,矩形AMN装置和滚动MNB装置未能探测到该深度的岩溶管道;当岩溶管道深度小于10~11倍电极距时,矩形AMN和滚动MNB装置联合能较精准地定位岩溶管道在平面上的投影位置;岩溶管道反演异常的横向宽度始终大于真实异常横向宽度,反演异常顶部埋深小于或等于真实异常顶部埋深,且岩溶管道深度越浅,反演异常体的形态、大小、埋深越接近真实异常;随岩溶管道深度的增加,岩溶管道的矩形AMN装置和滚动MNB装置异常反演形态由椭圆向半椭圆、弓形变化,直至消失。   相似文献   

3.
通过对75条高密度电阻率法勘探测线及57眼钻孔验证情况的总结分析,研究渝东南地区岩溶储水构造的高密度电法异常特征。渝东南岩溶储水构造划分为三类地质模型:浅表层岩溶带、溶洞及岩溶管道、构造裂隙。根据渝东南地区找水高密度电法成果统计总结出该地区常见的四类高密度电法异常形态:浅表层横向条带状低阻异常、UV型低阻异常、团状或囊状低阻异常、串珠状低阻异常,每一类异常对应1~3种岩溶储水构造地质模型。高密度电法是渝东南岩溶山区找水的首选物探方法,总结地区勘探经验及合理解译高密度异常后推荐孔位可以提高岩溶石山地区找水的成井率。  相似文献   

4.
倾斜煤层由于受构造挤压,往往地表形成比较陡的单面斜坡,高密度电阻率法在勘探陡倾斜煤层采空区过程中受地形及采空区充填状态的影响,数据反演的多解性给资料解释造成一定的困难。根据倾斜煤层采空区充填状态及断层破碎带设计模型,对模型进行的高密度电阻率法正反演结果表明,电阻率值受背景电阻率值影响较大;高密度电阻率法探测到的倾斜煤系地层采空区实际位置和空间分布范围及形态与实际有一定差异;对断层或采空区的探测,其浅部分辨率好,深部分辨率较低,异常体倾向大于实际目标地质体走向;受体积效应影响,异常响应范围往往大于实际采空区范围。实例证明了高密度电阻率法在倾斜煤层采空区勘探中是可行的。  相似文献   

5.
本文通过对高密度电法(温纳α装置)受地形影响的研究与分析,通过地形二维空间数据假设,建立视电阻率异常数据处理正反演模型计算公式,得出带地形的二维联合改正方法能够有效消除地形影响。并结合《2015年乌蒙山区(贵州毕节)1∶5万水文地质环境地质调查》项目物探工作研究实例,对高密度剖面的视电阻率数据进行地形改正前后结果对比分析,与瞬变电磁法成果资料进行对比,经部分钻探结果对比,充分证明了高密度电法的地形改正方法的有效性,将以往的根据视电阻率异常分布特征点进行经验性定孔改变成以异常中心为目标的理论性定孔。为提高高密度电法在山区找水命中率,提供了例证。  相似文献   

6.
岩溶山区水文地质条件复杂,地下水的分布规律对不同的物探方法可能存在不同的响应特征。综合采用高密度电阻率法和音频大地电磁法,在湖南怀化长塘村进行找水勘探,综合勘探结果很好地指示出异常特征和比较具体的异常位置。推断结果与钻井结果基本一致,最大涌水量大于146.88 m~3/d/。此次成果表明:对称四极反演结果能有效对地下横向电阻率的变化进行响应,且纵向上能够利用电阻率测深曲线(单支曲线)进行分层;音频大地电磁法探测深度大,能有效对地下断层构造进行响应。  相似文献   

7.
地面核磁共振方法是目前唯一能直接找水的地球物理方法,高密度电阻率法则是当前应用较广泛的找水方法,2种方法的联合使用能为解决找水问题提供不同的地球物理依据,可以在找水功能上达到优势互补:高密度电阻率法反演得到的地层电阻率分布,为地面核磁共振方法反演时电阻率参数的设定提供了信息,使反演的结果更加准确;地面核磁共振方法可以识别高密度电阻率法确定的低阻异常是否因含水而引起,并能定量地反演出含水层的深度、厚度、单位体积含水量等信息。同时,高密度电阻率法兼具电剖面法和电测深法的功能,其结果可以弥补地面核磁共振方法横向分辨率上的不足。2种方法的工作原理不同,对工作环境的要求也不同,其联合使用能在一定程度上解决单独使用某种方法时的工作环境限制问题。在湖北安陆某找水工作中,2种方法的组合使用取得了良好的效果,证明了这种组合模式的有效性和实用性。  相似文献   

8.
在山区进行音频大地电磁测深(AMT)时,电磁场易受地形起伏影响发生畸变。为研究起伏地形对AMT数据的影响,采用WinGlink软件基于有限差分算法的正演模块,建立二维起伏地形和平地地电模型,并对比分析了两个理论模型的正演响应。结果表明:TE模式的视电阻率曲线在高频段受干扰程度相对较大,在低频段影响减小甚至消失;TM模式的视电阻曲线变化正好相反;二者相位受地形影响则较小。对含异常体的带地形地电模型进行正演计算,在正演响应中加入2.5%的随机误差模拟实测数据,利用WinGlink软件基于非线性共轭梯度(NLCG)算法的反演模块,分别进行带地形和不带地形的TE、TM和TE+TM模式的二维反演。各反演结果的对比表明,带地形的二维反演结果明显优于不带地形的反演结果,能够较好地反映出异常体的位置、形态及电阻率值。依据得到的认识,对青海祁连隧道工程的AMT实测数据进行带地形二维反演,取得了理想的应用效果。  相似文献   

9.
以内蒙某露天煤矿的地质特征为依据,建立二维正演模型,利用改进的高密度电法装置——多梯度剖面装置进行采空区在埋深、充水性、规模等不同条件下的正演响应分析,总结出高、低阻模式下异常响应都会随采空区深度的增加表现为幅度减少,且埋深大于采空区直径的3~5倍时,其正演剖面上难以显示出异常特征。以煤层顶板为30m的数据进行反演,发现高阻异常的反演结果与理论模型在位置、宽度、顶部埋深和电阻率值方面吻合程度较高;而充水采空区,异常的规模存在一定误差。内蒙某露天煤矿的勘探实例,验证了多梯度剖面装置在浅埋采空区勘探中,可以取得较理想效果,特别是对不充水采空区,其准确度更高。  相似文献   

10.
高密度电阻率勘测方法分辨率研究与探讨   总被引:2,自引:0,他引:2  
随着高密度电阻率法在工程中的应用日益广泛,对分辨率的影响因素分析研究也受到重视。论文以均匀半空间局部直立异常体为探测目标,建立多个基于温纳高密度电法装置的地电模型,采用有限元等方法进行正反演数值模拟分析,对高密度电阻率法探测分辨率的影响规律进行探讨。分析表明,地形起伏会引起异常体的位置与形态发生畸变和位移,分辨率降低; 电阻率差异增大,分辨率提高; 深径比增大,分辨率降低; 当异常体的水平范围一定时,探测分辨率随纵深的增大而提高。  相似文献   

11.
高密度电阻率法四电极系横向分辨率探讨   总被引:2,自引:0,他引:2  
用高密度电阻率法探测地下目标地质体,已经成为近几年常用的方法。随着电法仪器的发展,野外工作方法的改进,以及反演软件的不断更新,高密度电阻率法分辨率已有了长足的提高。这里针对目前市场上常用的RES2DMOD电法模型正演软件和RES2DINV反演软件,对高密度电阻率法四电极系横向分辨率进行了初步探讨,并对野外工作方法选择和反演解释提出部份建议。  相似文献   

12.
沈礼锋  宋倩  郑晓阳 《地下水》2014,(4):151-152
电法勘探是物探找水勘查中重要而有效的方法,而直流电法中的电剖面法与高密度电阻率成像更是电法勘探的常用手段。综合电法就是电剖面法、高密度电阻率法二者的结合,可提高探测解译的准确度。常规电剖面法在寻找异常体时具有简单、直观的优点。高密度电法作为一种阵列勘探方法,野外测量时只需将全部电极置于测点上,然后利用程控电极转换器和微机工程电测仪就可实现数据的快速自动采集。  相似文献   

13.
对于碳酸盐岩地层中的多层岩溶、溶洞洞高较小或顺层岩溶,直接从高密度电阻率拟断面图和反演电阻率断面图上难以将其区分。通过从高密度电法数据中抽取电测深曲线,对一系列测点的电测深视电阻率曲线进行解释,同时结合其视电阻率拟断面图和反演电阻率断面图作出推断,能有效地将上述岩溶进行区分。在湖南省某高速公路跨线桥墩台桩基工程基础勘探中的实践表明,使用该方法可获得较好的地质解释效果。  相似文献   

14.
高密度电阻率法在莱芜市泉河地区岩溶地质勘查中的应用   总被引:2,自引:2,他引:0  
吴亚楠 《中国岩溶》2018,37(4):617-623
岩溶不仅会导致基岩面起伏很大,而且会产生较多的溶蚀带、溶洞、土洞等岩溶地质特征,灰岩分布区发生的地面塌陷等地质灾害,对建筑物安全及社会经济发展造成了严重的危害,高密度电阻率法是岩溶地质调查的重要物探手段。文章根据高密度电阻率法的基本原理及特点,对莱芜市泉河地区进行了岩溶地质勘查,通过对视电阻率二维成像图异常形态、高低阻等的反演分析,推断了该地区岩溶分布范围、大小和埋深。经钻探验证,推断结果与钻探资料吻合,为该地区岩溶塌陷地质灾害防治提供参考价值。   相似文献   

15.
榆林地区浅埋煤层采空区电法综合勘探技术   总被引:2,自引:0,他引:2  
徐慧 《地质与勘探》2020,56(4):792-801
为探明榆林地区浅埋煤层不明采空区,分析了其浅埋煤岩层垂向、横向正常电性特征以及存在采空区时的异常电性差异特征,从而确定榆林地区具备使用瞬变电磁法和高密度电法探测采空区的电性基础。然后开展了瞬变电磁法和高密度电阻率法探测的施工参数试验,建立相应的施工技术体系,实现了榆林地区浅埋煤层采空区的有效综合勘探。结果表明:(1)榆林地区正常地层垂向电性呈稳定的"低阻-高阻-低阻"趋势特征,而当煤层中存在地质异常体时,横向差异明显,出现不连续的高阻或低阻特征;(2)瞬变电磁法采用240 m×240 m发射线框、14 A发射电流、25 Hz发射频率、2048次叠加次数,高密度电阻率法采用20 m接收极距,这些施工参数可以满足榆林地区浅埋煤层采空区的电磁法探测要求;(3)瞬变电磁法、高密度电阻率法探测的异常区范围基本一致,在两种方法重合异常区打钻揭露采空区,说明两种方法可互相补充、验证,为应用于榆林地区煤层采空区综合物探的合理手段。  相似文献   

16.
高密度电法在渝东南地区找水勘察中的应用   总被引:1,自引:0,他引:1  
程光贵 《地下水》2013,(3):106-109
高密度电法原理与常规电阻率法相比,有成本低、效率高、信息丰富、解释方便和勘探能力显著提高等优点,它在岩溶地区水文地质调查应得到广泛采用。以渝东南岩溶地区水文地质调查中一个工程实例,根据高密度电法原理和仪器,以及在岩溶石山地区探测岩溶地下水工作布置、数据处理和探测效果,说明高密度电法在岩溶地区来寻找含水低阻异常体的位置和形态是可行的,可为岩溶地区水文地质勘查物探方法选取和利用。  相似文献   

17.
贵州岩溶石山区物探找水方法综合集成趋势分析   总被引:2,自引:0,他引:2  
席义明  杨涛毅 《贵州地质》2012,29(2):108-111
贵州岩溶山区上世纪70年代至本世纪初物探找水,主要采用普通电法的电剖面、电测深、激电测深、以及放射性a卡法等。近10年来由于物探电法仪器的发展,物探找水工作主要采取高密度电法,虽然上述工作方法找水工作中都取得较好的成果,但是由于工作方法单一,且岩溶山区受地形、岩性、构造等多因素影响,成井率仅在85%左右,且存在下降趋势。为此,物探找水必须向科技化、方法综合集成化发展。  相似文献   

18.
复杂地形下高密度激电法2.5维有限单元法数值模拟   总被引:1,自引:0,他引:1  
目前三维有限元模拟计算量大,计算效率低,对计算机要求较高,2.5维模拟是三维问题的简化,较好地克服了上述问题。在高密度激电法模拟中,模拟的点数一般较大,要求程序计算效率高,因此对高密度激电法2.5维模拟研究是必要的。首先给出了2.5维稳定电流场的边值问题及对应的变分问题;为了能更好模拟复杂地形对极化率异常的影响,采用三角形网格,有利于模拟复杂地形又有利于将其应用于反演计算。推导了基于连续电性介质的2.5维稳定电流场的有限元法,利用等效电阻率法,编制了2.5维高密度激电法有限元模拟程序,计算了水平地形及起伏地形下的极化率异常模型,并验证了方法的可行性,分析得出了山谷地形比山脊地形对极化率观测的影响大的结果。  相似文献   

19.
针对太原市蒙山煤矿采空区地形起伏较大、需弯线测量等因素制约的特殊场地条件,提出了阵列形式观测的高密度电阻率法和单点测量方式的瞬变电磁法相结合的综合物探方法.前者二维异常反演分辨率较高,可弥补瞬变电磁法浅部探测盲区,后者具有探测深度大的优势,采用一维异常反演方式可弥补高密度电阻率法受剖面折线展布和地形起伏影响的缺点.由此查明了该矿区采空区的位置及分布情况,后期钻探验证表明所采用的综合物探方法是行之有效的.该综合物探方法组合模式实现了两种物探方法的优势互补,可为同类场地条件下探测煤层采空区提供有意义的借鉴.  相似文献   

20.
高密度电法在岩溶探测中的应用   总被引:2,自引:0,他引:2  
灰岩分布区岩溶发育易引发地面塌陷.从而形成地质灾害。高密度电法近年来被应用于灾害地质调查及工程勘察中。以某一段穿越岩溶发育区的高速公路为例,应用高密度电法对区内第四系土洞、岩溶、断裂发育等灾害地质体进行了探测。结果显示,电阻率断面图上显示的异常区与实际灾害地质体吻合,展示了其工程应用前景。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号