首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Luconia Province – offshore Sarawak – is a key geological unit for understanding the distribution of hydrocarbon resources in Malaysia. Nevertheless, little effort has been made to address the palaeoenvironmental characteristics of the Tertiary carbonates in the key sector of Central Luconia. We study the sedimentology and petrography of core samples from a well in Central Luconia, for which thirteen microfacies have been identified reflecting different depositional settings. This is the first microfacies scheme elaborated for Luconian carbonates. Lithofacies and microfacies distribution are compatible with deposition in a reef complex, originating around a framework reef, within the euphotic zone. Sediments were deposited in environments of backreef, reef crest, and forereef. The fair weather wave base is marked by the presence of coralline red algae, foraminifera, decreasing degree of bioclast fragmentation and other microfacies features. As a result, a depositional-environmental model is constructed, depicting a reef complex built around a framework reef developed on the margin of an isolated platform. In addition, an innovative, preliminary time series analysis of facies, microfacies and depositional environment data reveal the existence of seasonal cycles in the stacking patterns of facies and microfacies.  相似文献   

2.
Platform carbonates of the Upper Triassic Dachstein Limestone in Naszály Hill have been karstified extensively over the past 200 million years. They provide an excellent example of polyphase karstic diagenesis that is probably typical of many subaerially exposed carbonate sequences. Seven karstic phases are recognized in the area, each of which include polyphase karstic events. The first karst phase was associated with the Löfer cycles. Meteoric waters caused dissolution; enlarged fractures and cavities, were filled by marine and/or vadose silts and cement. The second karst phase was caused by local tectonic movements. Bedding-plane-controlled phreatic caves were formed, and filled by silts. The third karst phase lasted from the end of the Triassic to the Eocene. This was a regional, multiphase karstic event related to younger composite unconformities. Bauxitic fill is the most characteristic product of this phase. The karst terrain reached its mature or senile stage with very little porosity. Narrow veins and floating rafts of white calcite marks karst phase 4, which resulted from hydrothermal activity associated with Palaeogene magmatism. The early Rupelian phase of Alpine uplift caused large-scale rejuvenation of the former karst terrain (karst phase 5). Subsequently Naszály Hill was buried as an area of juvenile karst with significant porosity. A second period of hydrothermal activity in the area (karst phase 6) was induced by Miocene volcanism, which resulted in wide, pale green calcite veins. Finally karst phase 7 was of tectonic origin. Following the most recent, Miocene uplift of the Naszály Hill, the carbonates have again become the site of vadose karst development.  相似文献   

3.
This study presents a method of two‐dimensional scanning electron microscope image analysis that directly quantifies microporosity abundance in clay‐rich, fine‐grained sediments. The method is novel in that it is specifically designed to circumvent the challenge to porosity quantification posed by mineral surface charging and topographical artifacts created during Ar‐ion cross‐section polishing. It utilizes the finding that differences in circularity values can be used to distinguish micropores from blemishes in a thresholded image. This method is powerful because it is fast and provides a direct microporosity estimation technique to augment or replace experimental data. The pore size range to which the method is applicable is clear and can be selected depending on the application of the analysis. When used appropriately, the method can be implemented on microporous sediments and sedimentary rock in general. The method is developed using marine muds of Pliocene and Miocene ages from the Nankai margin (burial depths from approximately 200 to 1100 m). The close match between imaging‐derived microporosity and bulk N2 microporosity measurements shows that porosity in these young and relatively shallowly buried sediments is dominated by pores of sizes that can be imaged by scanning electron microscopy. In Kumano, forearc basin sediments of the Nankai Trough, results of this method show a significant increase in microporosity with burial depth, probably due to microporosity preservation during compaction and possibly early volcanic ash diagenesis.  相似文献   

4.
The primary goals of seismic interpretation and quantification are to understand and define reservoir architecture and the distribution of petrophysical properties. Since seismic interpretation is associated with major uncertainties, outcrop analogues are used to support and improve the resulting conceptual models. In this study, the Miocene carbonates of Cerro de la Molata (Las Negras, south‐east Spain) have been selected as an outcrop analogue. The heterogeneous carbonate rocks of the Cerro de la Molata Platform were formed by a variety of carbonate‐producing factories, resulting in various platform morphologies and a wide range of physical properties. Based on textural (thin sections) and petrophysical (porosity, density, carbonate content and acoustic properties) analyses of the sediments, eleven individual facies types were determined. The data were used to produce synthetic seismic profiles of the outcrop. The profiles demonstrate that the spatial distribution of the facies and the linked petrophysical properties are of key importance in the appearance of the synthetic seismic sections. They reveal that carbonate factory and facies‐specific reflection patterns are determined by porosity contrasts, diagenetic modifications and the input of non‐carbonate sediment. The reflectors of the seismograms created with high‐frequency wavelets are coherent with the spatial distribution of the predefined facies within the depositional sequences. The synthetic seismograms resulting from convolution with lower frequency wavelets do not show these details – the major reflectors coincide with: (i) the boundary between the volcanic basement and the overlying carbonates; (ii) the platform geometries related to changes in carbonate factories, thus sequence boundaries; and (iii) diagenetic zones. Changes in seismic response related to diagenesis, switching carbonate producers and linked platform geometries are important findings that need to be considered when interpreting seismic data sets.  相似文献   

5.
本文通过对京山地区寒武—奥陶系碳酸盐岩成岩作用和孔隙演化的研究,认为本区寒武—奥陶系普遍经历了海底、大气淡水、埋藏及表生成岩环境,其间发生的成岩作用主要有胶结作用、白云岩化、压实-压溶、溶蚀和破裂作用。在这些成岩作用的改造下,岩石孔隙度从大于20%下降到1.5~5%,其中在中新生代孔隙相对较发育。  相似文献   

6.
通过对钻井岩心的镜下观察并结合压汞分析测试研究表明,塔里木盆地巴楚-麦盖提地区泥盆系东河塘组储层砂体孔隙类型以原生孔隙为主,其次为次生孔隙; 其中原生孔隙以剩余粒间孔隙为主,次生孔隙以溶蚀孔隙为主。孔隙喉道细,孔渗条件差,属于特低孔超低渗、超低孔超低渗储层。孔隙结构可分为3 类,以第Ⅲ种类型为主( 75%) 。储层孔隙结构特征受成岩作用及沉积作用的影响,其中成岩作用是主要的影响因素。  相似文献   

7.
8.
Carbonate macrofaunal remains and diagenetic tubes collected from a number of structures in the Central Barents Sea area during the 18th TTR (Training Through Research) cruise were subdivided into three groups according to the results of stable carbon and oxygen isotopes analysis. The first group includes carbonates that were formed from bicarbonate only from surrounding sea waters. The carbonates of the second group were formed during diagenesis with use of mixed sources of bicarbonate. The fourth group includes methane-derived carbonates that were formed as a result of anaerobic oxidation of methane (AOM).  相似文献   

9.
Small angle scattering techniques (SAXS and SANS) have been used to investigate the microstructural properties of the subbituminous coals (Rmax 0.42–0.45%) from the Huntly Coalfield, New Zealand. Samples were collected from the two thick (> 5 m) coal seams in the coalfield and have been analysed for methane and carbon dioxide sorption capacity, petrography, pore size distribution, specific surface area and porosity.Specific surface area (SSA) available for carbon dioxide adsorption, extrapolated to a probe size of 4 Å, ranged from 1.25 × 106 cm? 1 to 4.26 × 106 cm? 1 with total porosity varying from 16% to 25%. Porosity was found to be predominantly composed of microporosity, which contributed the majority of the available SSA. Although considerable variation was seen between samples, the results fit well with published rank trends.Gas holding capacity at the reservoir pressure (approximately 4 MPa) ranged from 2.63 to 4.18 m3/t for methane on a dry, ash-free basis (daf) and from 22.00 to 23.72 m3/t daf for carbon dioxide. The resulting ratio of CO2:CH4 ranged from 5.7 to 8.6, with an average of 6.7:1.Holding capacities for both methane and carbon dioxide on a dry ash free basis (daf) were found to be correlated with sample microporosity. However, holding capacities for the two gases on an as analysed (aa) basis (that is including mineral matter and moisture), showed no such correlation. Carbon dioxide (aa) does show a negative correlation with both specific surface area and microporosity. As the coals have low inorganic matter content, the reversal is thought to be related to moisture which is likely concentrated in the pore size range 12.5–125 Å. Methane holding capacity, both daf and aa, correlates with macroporosity, thus suggesting that the holding capacity of micropores is diminished by the presence of moisture in the pores.  相似文献   

10.
The Paleocene of the Campo section, Spain has different sedimentological characteristics above and below the Mid-Paleocene Unconformity. Beneath the unconformity sediments are dominated by evaporitic carbonates and collapse breccias. Above it they are characterized by continental detrital beds alternating with paleosols. Different subaerial features are observed and correspond to different porosity values, pore–throat sizes and micrite morphologies. Unexposed or intertidal facies have low porosity, low throat–pore size (mesoporosity) and well preserved rhombic crystals. Intermediate exposed facies (paleosols) possess medium porosity, medium pore–throat size (microporosity) and mainly micro-rhombic crystals. Finally, the facies corresponding to high exposure intensity and to evaporitic original facies presents high porosity, permeability, large pore–throat size and rounded micritic crystals. These observations show that the emersion phase caused important dissolution, especially when associated with an easily dissolved original lithofacies.  相似文献   

11.
Deeply buried Lower Cretaceous Bashijiqike sandstones are important gas exploration targets in the Kelasu thrust belt, Kuqa Depression of Tarim Basin in China. The sandstones are characterized by low porosity, low permeability and strong microscopic heterogeneity due to diagenesis during their geologic history. Mineralogical, petrographic, and geochemical analyses combined with high‐pressure mercury injection analysis have been used to investigate the diagenesis, diagenetic minerals, and their impact on reservoir quality. This article addresses the controls exerted by depositional parameters and diagenetic modifications on pore‐network characteristics (porosity, pore types, sizes, shapes, and distribution), with the aim to unravel the formation mechanisms of this complex pore structures, and to improve the characterization and classification evaluation for the Bashijiqike sandstone reservoirs. The Bashijiqike sandstones are dominated by lithic arkoses and feldspathic litharenite. The pore system consists of intergranular macropores, intergranular micropores, and intragranular pores. Framework grains are generally heavily compacted. Authigenic quartz, authigenic feldspar, clay minerals and carbonates are the major pore‐filling constituents. The pore structure is characterized by small pore radius and poor interconnectivity. Entry pressure reflects the microscopic pore network and macroscopic reservoir property characteristics. Pore structure characteristics are linked to the depositional parameters, type and degree of diagenesis. Clays do not control reservoir pore networks alone, and pores and pore throats are wider in coarser grained sandstones. Entry pressure decreases with the content of the rigid quartz. Compaction and cementation continue to decrease the pore‐throat size, while dissolution enlarges pores and pore‐throats radius. Considerable amounts of microporosity associated with clay minerals and altered grains contribute to the high entry pressure. Comprehensive Coefficient of Diagenesis (CCD), which considers the integrative effect of diagenesis, shows strong statistical correlations with entry pressure. CCD is an integrative modulus of diagenesis and physical property, and generally the higher the values are, the better the pore structure. It is suitable for quantitatively characterizing pore structure in tight gas sandstones. The results of this work can help assess pore‐network characteristics like the Bashijiqike sandstones which had experienced strong diagenetic modifications during their geological history.  相似文献   

12.
川东三叠系飞仙关组碳酸盐岩的阴极发光特征与成岩作用   总被引:16,自引:0,他引:16  
四川盆地东部三叠系飞仙关组是近年来我国发现的重要天然气储层, 高孔隙度、高渗透率的碳酸盐储层都分布于白云岩地层中, 因而碳酸盐的成岩作用, 尤其是白云岩化作用和白云岩的成因为石油地质学家和沉积学家高度关注.对四川盆地东部罗家寨构造三叠系飞仙关组42个碳酸盐岩样品进行了阴极发光分析, 结合与之有关的Mn、Fe、Mg元素分析和岩石学研究, 讨论了包括白云岩化作用在内的碳酸盐岩成岩过程中可能的成岩流体性质及来源.四川盆地东部三叠系飞仙关组碳酸盐岩普遍具有很弱的阴极发光性, 这与其很低的Mn、Fe含量有关, 说明沉积期后非海相流体对飞仙关组碳酸盐岩的影响非常有限, 海源流体在成岩过程中发挥了主导作用; 不同石灰岩类型和不同白云岩类型仍然具有不同的阴极发光性, 成岩组分含量越高的碳酸盐岩, 或者说与沉积期后流体(主要是孔隙流体) 关系越密切的碳酸盐岩的阴极发光强度越低, 说明随着埋藏成岩作用的进行, 四川盆地东部三叠系碳酸盐岩孔隙流体受海源流体的影响是逐渐增强的; 阴极发光分析结果表明, 作为四川盆地东部主要储集岩的结晶白云岩形成机制与埋藏过程中的深循环流体有关, 这种深循环流体没有或很少穿越铝硅酸盐地层, 但穿越了三叠系内部的某些海相地层, 这些海相地层可能是广泛存在于四川盆地三叠系的蒸发盐地层, 由蒸发盐成岩过程提供的海源流体参与了结晶白云岩的白云岩化作用.   相似文献   

13.
《Sedimentology》2018,65(1):235-262
Chemostratigraphic studies on lacustrine sedimentary sequences provide essential insights on past cyclic climatic events, on their repetition and prediction through time. Diagenetic overprint of primary features often hinders the use of such studies for palaeoenvironmental reconstruction. Here the potential of integrated geochemical and petrographic methods is evaluated to record freshwater to saline oscillations within the ancient marginal lacustrine carbonates of the Miocene Ries Crater Lake (Germany). This area is critical because it represents the transition from shoreline to proximal domains of a hydrologically closed system, affected by recurrent emergent events, representing the boundaries of successive sedimentary cycles. Chemostratigraphy targets shifts related to subaerial exposure and/or climatic fluctuations. Methods combine facies changes with δ 13C–δ 18O chemostratigraphy from matrix carbonates across five closely spaced, temporally equivalent stratigraphic sections. Isotope composition of ostracod shells, gastropods and cements is provided for comparison. Cathodoluminescence and back‐scatter electron microscopy were performed to discriminate primary (syn‐)depositional, from secondary diagenetic features. Meteoric diagenesis is expressed by substantial early dissolution and dark blue luminescent sparry cements carrying negative δ 13C and δ 18O. Sedimentary cycles are not correlated by isotope chemostratigraphy. Both matrix δ 13C and δ 18O range from ca −7·5 to +4·0‰ and show clear positive covariance (R  = 0·97) whose nature differs from that of previous basin‐oriented studies on the lake: negative values are here unconnected to original freshwater lacustrine conditions but reflect extensive meteoric diagenesis, while positive values probably represent primary saline lake water chemistry. Noisy geochemical curves relate to heterogeneities in (primary) porosity, resulting in selective carbonate diagenesis. This study exemplifies that ancient lacustrine carbonates, despite extensive meteoric weathering, are able to retain key information for both palaeoenvironmental reconstruction and the understanding of diagenetic processes in relation to those primary conditions. Also, it emphasizes the limitation of chemostratigraphy in fossil carbonates, and specifically in settings that are sensitive for the preservation of primary environmental signals, such as lake margins prone to meteoric diagenesis.  相似文献   

14.
The oxygen isotope compositions of diagenetic carbonate minerals from the Lower Jurassic Inmar Formation, southern Israel, have been used to identify porewater types during diagenesis. Changes in porewater composition can be related to major geological events within southern Israel. In particular, saline brines played an important role in late (Pliocene-Pleistocene) dolomitization of these rocks. Diagenetic carbonates included early siderite (δ18OSMOW=+24.4 to +26.5‰δ13CPDB=?1.1 to +0.8‰), late dolomite, ferroan dolomite and ankerite (δ18OSMOW=+18.4 to +25.8‰; δ13CPDB=?2.1 to +0.2‰), and calcite (δ18OSMOW=+21.3 to +32.6‰; δ13CPDB=?4.2 to + 3.2‰). The petrographic and isotopic results suggest that siderite formed early in the diagenetic history at shallow depths. The dolomitic phases formed at greater depths late in diagenesis. Crystallization of secondary calcite spans early to late diagenesis, consistent with its large range in isotopic values. A strong negative correlation exists between burial depth (temperature) and the oxygen isotopic compositions of the dolomitic cements. In addition, the δ18O values of the dolomitic phases in the northern Negev and Judea Mountains are in isotopic equilibrium with present formation waters. This behaviour suggests that formation of secondary dolomite post-dates the tectonic activity responsible for the present relief of southern Israel (Upper Miocene to Pliocene) and that the dolomite crystallized from present formation waters. Such is not the case in the Central Negev. In that locality, present formation waters have much lower salinities and δ18O values, indicating invasion of freshwater, and are out of isotopic equilibrium with secondary dolomite. Recharge of the Inmar Formation by meteoric water in the Central Negev occurred in the Pleistocene, and halted formation of dolomite.  相似文献   

15.
This paper investigates the isotopic composition (O, D, Sr, OSO4, SSO4, Cl, He) of a present saline fluid sample collected at the sediment/basement interface in the Permian continental formation at 634 m depth in the SE margin of the Massif Central shield (Ardèche margin of the Southeast basin of France). The fluid sample shows clear water–rock interaction processes, such as feldspar dissolution and kaolinite precipitation, which have led to high Na concentrations and water stable isotopes above the local meteoric water line. The geological formations of the SE margin of the Massif Central shield show that intensive fluid circulation phases occurred across the margin from the late Triassic to the middle Jurassic. The fluids most probably originated from fluid expulsion during burial of the thick Permo-Carboniferous sedimentary succession. These circulation phases were responsible for cementation of the margin and for the solutes in the matrix microporosity which were extracted by leaching core samples.The chemical and isotopic composition of the saline fluid sample at 634 m in the Permian rock is very similar to that of fluids in the microporosity of the rock matrix. Their SSO4, OSO4 and Sr isotopic compositions are close to those of cements investigated in fracture fillings in the same geological formations. Simple diffusion computations and comparison of the chemical composition of the present free fluid sample with matrix porosity fluids indicate that the solutes in the present free fluid sample are related to solutes originating from fluid circulation events which occurred 160–200 Ma ago through their diffusion from the matrix microporosity.A two-stage fluid flow regime is proposed to interpret the chemistry of present and paleo-fluids. (1) During the extensional context (Permian to Cretaceous), basinal brines migrated along the basement/sediment interface after expulsion from the subsiding basin. This fluid migration would be responsible for the solutes in the rock matrix microporosity and the solutes in the present free fluid sample. (2) Following the Alpine and Pyrenean compressive phases, gravity-driven meteoritic fluids slowly migrated from the surface down to the basement along major faults. This fluid regime would be responsible for the meteoric water collected in the present free fluid sample. Several investigations in Europe have shown that the existence of other saline fluids sampled elsewhere could be explained by these phases of fluid circulation related to specific geodynamic events.  相似文献   

16.
The Eocene rock units of the Qadirpur field, Central Indus Basin (Pakistan), are investigated petrophysically for their detailed reservoir characterization. The different petrophysical parameters determined include the following: true resistivity, shale volume, total porosity, effective porosity, density and neutron porosity, water and hydrocarbon saturation, bulk volume of water, lithology, gas effect, P-wave velocity, movable hydrocarbon index and irreducible water saturation and integrated with different cross-plots. The Eocene reservoirs are excellent with high effective porosity (2–32 %) and hydrocarbon saturation (10–93 %). Among these, the Sui Upper Limestone is an overall a poor reservoir; however, it has some hydrocarbon-rich intervals with high effective porosity and better net pay. All the net pay zones identified show low and variable shale volume (5–30 %). The secondary porosity has added to the total and effective porosities in these reservoirs. The main contributors to the porosity are the chalky, intercrystalline and vuggy/fracture types. The thickness of the reservoirs zones ranges from 4.5 to 62 m. These reservoirs are gas-producing carbonates with almost irreducible water saturation (0.002–0.01) and are likely to produce water-free hydrocarbons. The lower values of moveable hydrocarbon index (0.07–0.9) show that the hydrocarbons are moveable spontaneously to the well bore. The proposed correlation model shows that the reservoirs have an inclined geometry and are a part of an anticlinal trap.  相似文献   

17.
冷家沙三段砂岩成岩序列与孔隙演化   总被引:3,自引:0,他引:3       下载免费PDF全文
笔者以辽河盆地冷家地区冷94井为例,通过铸体薄片、电镜扫描、能谱 阴极发光等分析和实验手段,对沙三段砂岩的成岩历史、成岩序列与孔隙演化及发展趋势刊物, 出成岩阶段可划分为同生期→早成岩阶段早期→早成岩阶段晚期→晚成岩阶段早期。孔隙演化主要在压实作用,粘土矿物的包膜作用,方解石、白云石的胶结作用,长石溶蚀作用、石英的次生加大和微晶石英的沉淀作用等方面进行了研究,阐述并总结了它们互相之间的内在联系。  相似文献   

18.
青藏高原北部东昆仑地区八宝山盆地作为高原页岩气成藏特征探索的典型区域之一,对影响储层储集性能的关键因素——成岩作用的研究程度很低,不足以更大限度地发挥其勘探价值。基于岩性观察及薄片、铸体薄片、扫描电镜、X-射线衍射等实验分析资料,对该区三叠系页岩成岩作用及对储层的影响开展研究,结果显示,三叠系八宝山组页岩成岩作用共有6类:压实、胶结、黏土矿物转化、交代、溶蚀及有机质热成熟作用。综合有机质成熟度、岩石热解最高峰温、伊蒙混层比中蒙皂石占比、黏土矿物组合、孔隙类型等指标得出:研究区页岩处于中成岩B期-晚成岩阶段。结合各成岩作用对储层孔隙度的影响,研究区压实作用、胶结作用、黏土矿物转化作用易于造成孔隙度的减小,溶蚀作用、有机质热成熟作用易于孔隙度的增大,而交代作用对孔隙影响小。  相似文献   

19.
Diatomite associated with the Kolubara Coal Basin was studied to better understand early stage silica diagenesis of shallow water deposits. The Kolubara Basin consists of Neogene siliciclastic rocks, diatomite, marlstone and rare carbonates. Palaeozoic metamorphic and Mesozoic sedimentary and igneous basement rocks are transgressively overlain by Upper Miocene sandstone, siltstone, shale and mudstone. This Upper Miocene section is transgressively overlain by the Pontian section, which contains diatomite and coal beds. White and grey diatomite forms beds 0.7-2.2 m thick that are continuous over an area of about 2 km2. Siliceous rocks vary in composition from diatomite (81-89 per cent SiO2) to diatom-bearing shale (58-60 per cent SiO2). Siliceous deposits are laminated in places, with the laminae defined by variations in clay minerals, organic matter and diatoms. Diatomite shows only incipient diagenesis characterized by the fragmentation of diatom frustules, the minor to moderate corrosion of frustules and the formation of minor amounts of opal-A' (X-ray amorphous inorganic opal) cement. The low degree of diagenesis results from the young age of the deposits, low burial temperatures and possibly also from the presence of abundant organic matter and the dissolution of kaolinite. The presence of only weak diagenesis is also reflected by the characteristically poor consolidation of the rocks and low rank of the associated coal.  相似文献   

20.
In this paper, several mechanical deformation curves of limestone are reviewed, and the effects of temperature, confining pressure, and fluid are discussed. Generally, Mohr–Coulomb is used for limestone brittle fracture. The characteristic of low temperature cataclastic flow and the conditions and constitutive equations of intracrystal plastic deformation such as dislocation creep, diffusion creep, and superplastic flow are discussed in detail. Specifically, from the macroscopic and microscopic view, inelastic compression deformation (shear-enhanced compaction) of large porosity limestone is elaborated. Compared with other mechanics models and strength equations, the dual porosity (macroporosity and microporosity) model is superior and more consistent with experimental data. Previous research has suffered from a shortage of high temperature and high pressure limestone research; we propose several suggestions to avoid this problem in the future: (1) fluid-rock interaction research; (2) mutual transition between natural conditions and laboratory research; (3) the uniform strength criterion for shear-enhanced compaction deformation; (4) test equipment; and (5) superplastic flow mechanism research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号