首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examines slip recurrence patterns in a two-block spring-slider model with rate- and state-dependent friction. Both weak and strong heterogeneities are considered with different settings of coupling stiffness. The results show that the recurrence pattern of slips strongly depends on the degree of coupling between the two blocks. With strong coupling between the two blocks (e.g., kc/ki max >~1), the slip pattern of the system is simple and characterized by periodical stick-slips, with the two blocks slipping together. With strong heterogeneity in friction strength, period-2 motion is found for moderate coupling stiffness (kc/ki max=0.4) between the two blocks. More complicated patterns are found with weak coupling stiffness (kc/ki max=0.2) and strong heterogeneity. With strong heterogeneity, very weak coupling leads to chaotic slip patterns. With coupling stiffness kc=5 ki max and strong heterogeneity, chaotic slip patterns are not found, in contrast with the results by Huang and Turcotte who employed the classical static/kinetic friction law.  相似文献   

2.
Numerical simulations of complex earthquake cycles are conducted using a two-degree-of-freedom spring-block model with a rate- and state-friction law, which has been supported by laboratory experiments. The model consisted of two blocks coupled to each other and connected by elastic springs to a constant-velocity, moving driver. By widely and systematically varying the model parameters, various slip patterns were obtained, including the periodic recurrence of seismic and aseismic slip events, and several types of chaotic behaviour. The transition in the slip pattern from periodic to chaotic is examined using bifurcation diagrams. The model system exhibits typical period-doubling sequences for some parameter ranges, and attains chaotic motion. Simple relationships are found in iteration maps of the recurrence intervals of simulated earthquakes, suggesting that the simulated slip behaviour is deterministic chaos. Time evolutions of the cumulative slip distance in chaotic slip patterns are well approximated by a time-predictable model. In some cases, both seismic and aseismic slip events occur at a block, and aseismic slip events complicate the earthquake recurrence patterns.  相似文献   

3.
断层滑动速率,地震重复时间和平均应力降   总被引:5,自引:0,他引:5  
本文综述了国内外大地震复发间隔研究的现状,系统整理了中国大陆活断层滑运速率,已发现的古地震遗迹及古地震复发间隔,结果表明,在滑动速率较在的活断层发现的古地震复发间隔较短,Kanamori和Alle(1985)研究了具有大范围重复时间(20年到几千年)的板内大地震的震源参数,发现复发间隔较长的大地震具有较高的平均应力降,我们在实验室内研究了应变速率不同时固体围压三轴压缩下完整花岗岩破裂后的粘滑现象。  相似文献   

4.
Seismic force reduction factor(SFRF) spectra of shear-type multi-degree-of-freedom(MDOF) structures are investigated. The modified Clough model, capable of considering the strength-degradation/hardening and stiffnessdegradation, is adopted. The SFRF mean spectra using 102 earthquake records on a typical site soil type(type C) are constructed with the period abscissa being divided into three period ranges to maintain the peak features at the two sitespecific characteristic periods. Based on a large number of results, it is found that the peak value of SFRF spectra may also exist for MDOF, induced by large high-mode contributions to elastic base shear, besides the mentioned two peak values. The variations of the stiffness ratio λk and the strength ratio λF of the top to bottom story are both considered. It is found that the SFRFs for λF≤λk are smaller than those for λF λk. A SFRF modification factor for MDOF systems is proposed with respect to SDOF. It is found that this factor is significantly affected by the story number and ductility. With a specific λF(= λk0.75), SFRF mean spectra are constructed and simple solutions are presented for MDOF systems. For frames satisfying the strong column/weak beam requirement, an approximate treatment in the MDOF shear-beam model is to assign a post-limit stiffness 15%-35% of the initial stiffness to the hysteretic curve. SFRF spectra for MDOF systems with 0.2 and 0.3 times the post-limit stiffness are remarkably larger than those without post-limit stiffness. Thus, the findings that frames with beam hinges have smaller ductility demand are explained through the large post-limit stiffness.  相似文献   

5.
Incorporating rate and state friction laws, stability of linearly stable (i.e., with stiffness greater than the critical value) spring-slider systems subjected to triggering perturbations was analyzed under variable normal stress condition, and comparison was made between our results and that of fixed normal stress cases revealed in previous studies. For systems associated with the slip law, the critical magnitude of rate steps for triggering unstable slips are found to have a similar pattern to the fixed normal stress case, and the critical velocity steps scale with a/(b - a) when k = kcr for both cases. The rate-step boundaries for the variable normal stress cases are revealed to be lower than the fixed normal stress case by 7 %–16 % for a relatively large α = 0.56 with (b - a)/a ranging from 0.25 to 1, indicating easier triggering under the variable normal stress condition with rate steps. The difference between fixed and variable normal stress cases decreases when the α value is smaller. In the same slip-law-type systems, critical displacements to trigger instability are revealed to be little affected by the variable normal stress condition. When kkcr(V*), a spring-slider system with the slowness law is much more stable than with the slip law, suggesting that the slowness law fits experimental data better when a single state variable is adopted. In stick-slip motions, the variable normal stress case has larger stress drops than the constant normal stress case. The variable normal stress has little effect on the range of slip velocity in systems associated with the slowness law, whereas systems associated with the slip law have a slowest slip velocity immensely smaller than the fixed normal stress case, by ~10 orders of magnitude.  相似文献   

6.
7.
8.
-- In order to understand the earthquake nucleation process, we need to understand the effective frictional behavior of faults with complex geometry and fault gouge zones. One important aspect of this is the interaction between the friction law governing the behavior of the fault on the microscopic level and the resulting macroscopic behavior of the fault zone. Numerical simulations offer a possibility to investigate the behavior of faults on many different scales and thus provide a means to gain insight into fault zone dynamics on scales which are not accessible to laboratory experiments. Numerical experiments have been performed to investigate the influence of the geometric configuration of faults with a rate- and state-dependent friction at the particle contacts on the effective frictional behavior of these faults. The numerical experiments are designed to be similar to laboratory experiments by Dieterich and Kilgore (1994) in which a slide-hold-slide cycle was performed between two blocks of material and the resulting peak friction was plotted vs. holding time. Simulations with a flat fault without a fault gouge have been performed to verify the implementation. These have shown close agreement with comparable laboratory experiments. The simulations performed with a fault containing fault gouge have demonstrated a strong dependence of the critical slip distance Dc on the roughness of the fault surfaces and are in qualitative agreement with laboratory experiments.  相似文献   

9.
模拟地震的弹簧滑块模型的混沌运动   总被引:2,自引:0,他引:2  
我们构造了一种自由度为2的双弹簧滑块系统,讨论模型参数的不均匀性和滑块间的相互作用与复杂现象的关系。假定滑块在所受力小于其静摩擦力时保持静止,因此,只有发生了滑动,两滑块所受力之差才改变。如果我们以两滑块受力之差为变量,就可以构造一种一维的映射。这种映射直观地显示了系统的演化,反映了方程终态解的形态。结果表明,用混沌运动来描述地震现象可能是较为合理的。  相似文献   

10.
— Along the Nankai trough in southwest Japan, due to the subduction of the Philippine Sea plate, great earthquakes have occurred repeatedly. The rupture zone is divided into five segments. Historical documents show the characteristic features of the past several earthquake cycles, such as almost simultaneous rupture occurrence in segments in spite of different convergence rates, the recurrence time of 90 to 150 years, the existence of segment pairing in earthquake ruptures and the different coseismic slip behaviors in respective segments. Based on the rate and state friction law, we simulate these features with a simple block-spring model to investigate the physical mechanisms of earthquake cycle. Considering the actual fault parameters related to the geometry and the kinematics of the convergent plate in five segments, we calculate the model parameters for the corresponding blocks in the simulation. The features of the observed earthquake cycle are successfully reproduced by assigning the other following model parameters; (1) the stick-slip periods are the same (more than 150 years) for non-interacting blocks, (2) the different pairs of frictional parameters a-b and D c are assigned in each segment, (3) the interactions between segments are large, (4) the convergence rate in the eastern Tokai segment is about half of those in the other segments.  相似文献   

11.
Previous studies have demonstrated the good performance of friction dampers in symmetric frame structures subjected to earthquake excitation. This paper examines their effectiveness in asymmetric structures where lateral-torsional coupling characterizes the behaviour. A parametric study is first performed employing an idealized single-storey structure; this is followed by the example of a three-dimensional 5-storey prototype structure equipped with friction dampers. The parametric results show that it is necessary to tune the friction damped braces with respect to both the stiffness of the braces and the slip load of the devices. For properly tuned structures, maximum response for all magnitudes of eccentricity between the centres of stiffness and mass is reduced to levels equal to or less than that of the corresponding symmetric structure. Compared to this prediction, the prototype structure with friction damped bracing exhibits the desired improvement in performance; namely, the devices slip at all storey levels while the frames remain elastic.  相似文献   

12.
In this paper, fluid flow is examined for a mature strike‐slip fault zone with anisotropic permeability and internal heterogeneity. The hydraulic properties of the fault zone were first characterized in situ by microgeophysical (VP and σc) and rock‐quality measurements (Q‐value) performed along a 50‐m long profile perpendicular to the fault zone. Then, the local hydrogeological context of the fault was modified to conduct a water‐injection test. The resulting fluid pressures and flow rates through the different fault‐zone compartments were then analyzed with a two‐phase fluid‐flow numerical simulation. Fault hydraulic properties estimated from the injection test signals were compared to the properties estimated from the multiscale geological approach. We found that (1) the microgeophysical measurements that we made yield valuable information on the porosity and the specific storage coefficient within the fault zone and (2) the Q‐value method highlights significant contrasts in permeability. Fault hydrodynamic behavior can be modeled by a permeability tensor rotation across the fault zone and by a storativity increase. The permeability tensor rotation is linked to the modification of the preexisting fracture properties and to the development of new fractures during the faulting process, whereas the storativity increase results from the development of micro‐ and macrofractures that lower the fault‐zone stiffness and allows an increased extension of the pore space within the fault damage zone. Finally, heterogeneities internal to the fault zones create complex patterns of fluid flow that reflect the connections of paths with contrasting properties.  相似文献   

13.
An appreciation of the physical mechanisms which cause observed seismicity complexity is fundamental to the understanding of the temporal behaviour of faults and single slip events. Numerical simulation of fault slip can provide insights into fault processes by allowing exploration of parameter spaces which influence microscopic and macroscopic physics of processes which may lead towards an answer to those questions. Particle-based models such as the Lattice Solid Model have been used previously for the simulation of stick-slip dynamics of faults, although mainly in two dimensions. Recent increases in the power of computers and the ability to use the power of parallel computer systems have made it possible to extend particle-based fault simulations to three dimensions. In this paper a particle-based numerical model of a rough planar fault embedded between two elastic blocks in three dimensions is presented. A very simple friction law without any rate dependency and no spatial heterogeneity in the intrinsic coefficient of friction is used in the model. To simulate earthquake dynamics the model is sheared in a direction parallel to the fault plane with a constant velocity at the driving edges. Spontaneous slip occurs on the fault when the shear stress is large enough to overcome the frictional forces on the fault. Slip events with a wide range of event sizes are observed. Investigation of the temporal evolution and spatial distribution of slip during each event shows a high degree of variability between the events. In some of the larger events highly complex slip patterns are observed.  相似文献   

14.
This paper reports stick-slip behaviors of Indian gabbro as studied using a new large-scale biaxial friction apparatus, built in the National Research Institute for Earth Science and Disaster Prevention (NIED), Tsukuba, Japan. The apparatus consists of the existing shaking table as the shear-loading device up to 3, 600 kN, the main frame for holding two large rectangular prismatic specimens with a sliding area of 0.75 m2 and for applying normal stresses σn up to 1.33 MPa, and a reaction force unit holding the stationary specimen to the ground. The shaking table can produce loading rates v up to 1.0 m/s, accelerations up to 9.4 m/s2, and displacements d up to 0.44 m, using four servocontrolled actuators. We report results from eight preliminary experiments conducted with room humidity on the same gabbro specimens at v = 0.1-100 mm/s and σn = 0.66-1.33 MPa, and with d of about 0.39 m. The peak and steady-state friction coefficients were about 0.8 and 0.6, respectively, consistent with the Byerlee friction. The axial force drop or shear stress drop during an abrupt slip is linearly proportional to the amount of displacement, and the slope of this relationship determines the stiffness of the apparatus as 1.15×108 N/m or 153 MPa/m for the specimens we used. This low stiffness makes fault motion very unstable and the overshooting of shear stress to a negative value was recognized in some violent stick-slip events. An abrupt slip occurred in a constant rise time of 16-18 ms despite wide variation of the stress drop, and an average velocity during an abrupt slip is linearly proportional to the stress drop. The use of a large-scale shaking table has a great potential in increasing the slip rate and total displacement in biaxial friction experiments with large specimens.  相似文献   

15.
A two degree-of-freedom earthquake model with static/dynamic friction   总被引:3,自引:0,他引:3  
Can a simple multi-block-spring model with total symmetry make interesting predictions for fault behaviour? Our model consists of a symmetric, slowly driven, two degree-of-freedom block-spring system with static/dynamic friction. The simple friction law and slow driving rate allow the state of this fourth order system to be described between slip events by a single variable, the difference in the stretch of the driving springs. This stretch difference measures the locked-in stress and is closely related to fault stress inhomogeneity. In general,smoothing is not observed. A spatially homogeneous stress state is found to almost always be unstable, in that the system tends toward an inhomogeneous state after many slip events. The system evolves either to a cycle that alternates between two types of earthquakes, or to a cycle with repeating but identical asymmetric earthquakes. One type of alternating earthquake solution is structurally unstable, which implies a great sensitivity to model perturbations. For this simple model, spatial asymmetry necessarily occurs, despite the symmetry in the model, thus suggesting that spatial structure in seismicity patterns may be a consequence of earthquake dynamics, not just fault heterogeneity.  相似文献   

16.
斜俯冲板块边界变形分配的力学分析   总被引:4,自引:1,他引:4       下载免费PDF全文
本文研究斜俯冲板块边界由俯冲的逆掩断层和平行于火山弧的走滑断层所切割出的岩石层窄条的宏观力学状态.分析计算表明,当断层强度小而构造压应力大时,海沟处板块俯冲形成的逆掩断层地震滑动方向与斜收敛板块运动方向将不一致,震源机制反映的主压应力和断层错动方向变得近乎垂直于海沟;板块间的强耦合和大陆板块边缘软弱带的存在为窄条滑动提供了有利条件.给定俯冲倾角和震源机制滑动角的观测值,可以计算逆掩和走滑断层上的有效摩擦系数.计算结果表明,两种断层上的有效摩擦系数一般都不大于0.2,反映或存在着高孔隙水压,或存在断层泥之类弱物质,或两者兼而有之.  相似文献   

17.
采用速度和状态摩擦本构控制的一维弹簧滑块模型研究断裂分段间相互作用对运动特征的影响,为研究东昆仑活动断裂带库赛湖段和西大滩段2个断裂分段之间的相互影响,采用由弹簧相连的2个滑块模拟断裂分段,通过弹簧滑块系统的动力学分析,将断裂运动性质的描述归结为一组微分方程,数值求解该微分方程组,最终得到断裂运动性质的参数,从而达到确定断裂未来强震复发周期的目的。通过位错模型计算、借鉴前人研究成果以及古地震资料确定模型相关参数。研究断裂分段在不同相互作用下的强震复发周期,模拟表明断裂间不同相互作用对地震复发周期和地震时断裂错动位移的大小没有规律性的影响;只是对地震发生时断裂错动的速度有明显的影响,作用强时,地震发生时断裂错动速度大;反之,地震发生时断裂错动速度小。  相似文献   

18.
Recent observations made by Kanamori and Allen about earthquake recurrence time and average stress drop revealed a very interesting relation: earthquakes with longer recurrence times have higher average stress drops. They attributed the difference in stress drop to the difference in long-term average slip rate. To interpret their result in terms of the healing effect, we simulated earthquake recurrence with a one-dimensional mass-spring model, incorporating a recently developed rate-and-state dependent friction law for different loading rates and heterogeneous strength distributions. We first calculated the stress drop and recurrence time as functions of loading rate for a homogenous fault model. We found that the stress drop increases up to 30% when the loading rate decreases from 10 cm/yr to 0.01 mm/yr. Thus, the observed great variability of stress drop, from a few bars to a few hundred bars, which is obtained by replotting the data of Kanamori and Allen in the form of stress drop versus long-term slip rate, may not be attributable to the healing effect alone. Our numerical simulation shows that the variability may be due primarily to the spatial heterogeneity of strength on the fault. Our simulation also suggests that of the two empirical laws that were inferred from the same laboratory friction data, called the power law and the logarithmic law by Shimamoto and Logan, the former can explain the observed relation between stress drop and slip rate better than can the latter, at least for strike-slip fault. The logarithmic law is an earlier and simpler version of the rate-state-dependent friction law.  相似文献   

19.
20.
We investigate the evolution of wear and friction along experimental faults composed of solid rock blocks. This evolution is analyzed through shear experiments along five rock types, and the experiments were conducted in a rotary apparatus at slip velocities of 0.002–0.97 m/s, slip distances from a few millimeters to tens of meters, and normal stress of 0.25–6.9 MPa. The wear and friction measurements and fault surface observations revealed three evolution phases: A) An initial stage (slip distances <50 mm) of wear by failure of isolated asperities associated with roughening of the fault surface; B) a running-in stage of slip distances of 1–3 m with intense wear-rate, failure of many asperities, and simultaneous reduction of the friction coefficient and wear-rate; and C) a steady-state stage that initiates when the fault surface is covered by a gouge layer, and during which both wear-rate and friction coefficient maintain quasi-constant, low levels. While these evolution stages are clearly recognizable for experimental faults made from bare rock blocks, our analysis suggests that natural faults “bypass” the first two stages and slip at gouge-controlled steady-state conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号