首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The Oylat spa is located 80 km southeast of Bursa and 30 km south of Ineg?l in the Marmara region. With temperature of 40°C and discharge of 45 l/s, the Oylat main spring is the most important hot water spring of the area. Southeast of the spa the Forest Management spring has a temperature of 39.4°C and discharge of 2 l/s. The G?z spring 2 km north of the spa, which is used for therapy of eye disease, and cold waters of the Saadet village springs with an acidic character are the further important water sources of the area. EC values of Main spring and Forest Management hot spring (750–780 μS/cm) are lower than those of Saadet and G?z spring waters (2,070–1,280 μS/cm) and ionic abundances are Ca > Na + K > Mg and SO4 > HCO3 > Cl. The Oylat and Sızı springs have low Na and K contents but high Ca and HCO3 concentrations. According to AIH classification, these are Ca–SO4–HCO3 waters. Based on the results of δ18O, 2H and 3H isotope analyses, the thermal waters have a meteoric origin. The meteoric water infiltrates along fractures and faults, gets heated, and then returns to surface through hydrothermal conduits. Oylat waters do not have high reservoir temperatures. They are deep, circulating recharge waters from higher enhanced elevations. δ13CDIC values of the Main spring and Forest Management hot spring are −6.31 and −4.45‰, respectively, indicating that δ13C is derived from dissolution of limestones. The neutral pH thermal waters are about +18.7‰ in δ34S while the sulfate in the cold waters is about +17‰ (practically identical to the value for the neutral pH thermal waters). However, the G?z and Saadet springs (acid sulfate waters) have much lower δ34S values (~+4‰).  相似文献   

2.
Unplanned exploitation of groundwater constitutes emerging water-related threats to MayoTsanaga River Basin. Shallow groundwater from crystalline and detrital sediment aquifers, together with rain, dams, springs, and rivers were chemically and isotopically investigated to appraise its evolution, recharge source and mechanisms, flow direction, and age which were used to evaluate the groundwater susceptibility to contamination and the basin’s stage of salinization. The groundwater which is Ca–Na–HCO3 type is a chemically evolved equivalent of surface waters and rain water with Ca–Mg–Cl–SO4 chemistry. The monsoon rain recharged the groundwater preferentially at an average rate of 74 mm/year, while surface waters recharge upon evaporation. Altitude effect of rain and springs show a similar variation of −0.4‰ for δ18O/100 m, but the springs which were recharged at 452, 679, and 773 m asl show enrichment of δ18O through evaporation by 0.8‰ corresponding to 3% of water loss during recharge. The groundwater which shows both local and regional flow regimes gets older towards the basins` margin with coeval enrichment in F and depletion in NO3 . Incidentally, younger groundwaters are susceptible to anthropogenic contamination and older groundwaters are sinks of lithologenic fluoride. The basins salinization is still at an early stage.  相似文献   

3.
The forest ecosystem in the Maolan karst forest, southwest China is the only concentrated, intact, and relatively stable karst forest ecosystem which has survived in the area at the same latitude in the world, and is a valuable karst forest plant resource as well. Groundwater samples from Maolan karst forest were collected from wells and springs during summer; and concentrations of major ions and dissolved inorganic carbon (DIC) isotopic compositions were measured. The pH values range from 7.2 to 8.3 results from the dissolution of carbonate, HCO3 is the dominant species of DIC in groundwater. Calcium and HCO3 , followed by Mg2+ and SO4 2− dominate the chemical composition of major ions in the groundwaters. Groundwater samples have δ13C values in the range from −8.1‰ to −16.6‰, which are lower than that of the other karst city groundwaters in the southwest China. Combining δ13CDIC ratios with measurements of HCO3 and pH clearly distinguishes the principal processes underlying the geochemical evolution of groundwater in Carboniferous carbonate aquifers, where processes can be both degradation of organic matters in the soil and the carbonate dissolution.  相似文献   

4.
Many cities around the world are developed at alluvial fans. With economic and industrial development and increase in population, quality and quantity of groundwater are often damaged by over-exploitation in these areas. In order to realistically assess these groundwater resources and their sustainability, it is vital to understand the recharge sources and hydrogeochemical evolution of groundwater in alluvial fans. In March 2006, groundwater and surface water were sampled for major element analysis and stable isotope (oxygen-18 and deuterium) compositions in Xinxiang, which is located at a complex alluvial fan system composed of a mountainous area, Taihang Mt. alluvial fan and Yellow River alluvial fan. In the Taihang mountainous area, the groundwater was recharged by precipitation and was characterized by Ca–HCO3 type water with depleted δ18O and δD (mean value of −8.8‰ δ18O). Along the flow path from the mountainous area to Taihang Mt. alluvial fan, the groundwater became geochemically complex (Ca–Na–Mg–HCO3–Cl–SO4 type), and heavier δ18O and δD were observed (around −8‰ δ18O). Before the surface water with mean δ18O of −8.7‰ recharged to groundwater, it underwent isotopic enrichment in Taihang Mt. alluvial fan. Chemical mixture and ion exchange are expected to be responsible for the chemical evolution of groundwater in Yellow River alluvial fan. Transferred water from the Yellow River is the main source of the groundwater in the Yellow River alluvial fan in the south of the study area, and stable isotopic compositions of the groundwater (mean value of −8.8‰ δ18O) were similar to those of transferred water (−8.9‰), increasing from the southern boundary of the study area to the distal end of the fan. The groundwater underwent chemical evolution from Ca–HCO3, Na–HCO3, to Na–SO4. A conceptual model, integrating stiff diagrams, is used to describe the spatial variation of recharge sources, chemical evolution, and groundwater flow paths in the complex alluvial fan aquifer system.  相似文献   

5.
There are 59 springs at the Gevas–Gurp?nar–Güzelsu basins, 38 of these springs emerge from the fractured karst aquifers (recrystallized limestone and travertine) and 21 emerge from the Yuksekova ophiolites, K?rkgeçit formation and alluvium. The groundwater samples collected from 38 out of the total of 59 springs, two streams, one lake and 12 wells were analyzed physico-chemically in the year 2002. EC and TDS values of groundwater increased from the marble (high altitude) to the ophiolites and alluvium (toward Lake Van) as a result of carbonate dissolution and connate seawater. Five chemical types of groundwater are identified: Ca–Mg–HCO3, Mg–Ca–HCO3, Mg–Na–HCO3, Na–Ca–HCO3 and Mg–Ca–Na–HCO3. The calculations and hydrochemical interpretations show that the high concentrations of Ca2+, Mg2+ and HCO3 ? as predominant ions in the waters are mainly attributed to carbonate rocks and high pCO2 in soil. Most of the karst springs are oversaturated in calcite, aragonite and dolomite and undersaturated in gypsum, halite and anhydrite. The water–rock interaction processes that singly or in combination influence the chemical composition of each water type include dissolution of carbonate (calcite and dolomite), calcite precipitation, cation exchange and freshening of connate seawater. These processes contribute considerably to the concentration of major ions in the groundwater. Stable isotope contents of the groundwater suggest mainly direct integrative recharge.  相似文献   

6.
Precipitation, soil and spring waters from an outlier of Chalk were analysed over a one year period for field pH, and contents of Ca+2, Mg+2, HCO3? and other dissolved solids. Measured soil log PCO2 (atm) varied between a minimum of ?2.60 and maximum of ?1.46, and could be predicted from measurements of soil temperature. Soil waters evolved under open system conditions with respect to soil CO2, and were undersaturated with calcite during the winter recharge period.The chemistry of the springs is related to their topographic position. Group 1 springs, located below a feather edge of chalk, had both their minimum and maximum PCO2s predicted by the soil CO2 data, suggesting open system CO2 evolution. Group 2 springs, located along the scarp slope had minimum PCO2s predicted by the soil data, but maximum PCO2s which could only be explained by a closed system evolution from the maximum soil CO2 observed. Group 1 springs were close to calcite saturation, whereas Group 2 springs were significantly undersaturated with calcite. The two groups could be identified by linear discriminant analysis of measured Ca2+, pH and HCO3? concentrations.  相似文献   

7.
The Zhangye Basin, located in arid northwest China, is an important agricultural and industrial center. In recent years rapid development has created an increased demand for water, which is increasingly being fulfilled by groundwater abstraction. Detailed knowledge of the geochemical evolution of groundwater and water quality can enhance understanding of the hydrochemical system, promoting sustainable development and effective management of groundwater resources. To this end, a hydrochemical investigation was conducted in the Zhangye Basin. Types of shallow groundwater in the Zhangye Basin were found to be HCO3 , HCO3 –SO4 2−, SO4 2−–HCO3 , SO4 2−–Cl, Cl–SO4 2− and Cl. The deep aquifer groundwater type was found to be HCO3–SO42− throughout the entire area. Ionic ratio and saturation index calculations suggest that silicate rock weathering and evaporation deposition are the main processes that determine the ionic composition in the study area. The suitability of the groundwater for irrigation was assessed based on the US Salinity Laboratory salinity classification and the Wilcox diagram. In the study area, the compositions of the stable isotopes δ18O and δD in groundwater samples were found to range from −4.00 to −9.28‰ and from −34.0 to −65.0‰, respectively. These values indicate that precipitation is the main recharge source for the groundwater system; some local values indicate high levels of evaporation. Tritium analysis was used to estimate the ages of the different groundwaters; the tritium values of the groundwater samples varied from 3.13 to 36.62 TU. The age of the groundwater at depths of less than 30 m is about 5–10 years. The age of the groundwater at depths of 30–50 m is about 10–23 years. The age of the groundwater at depths of 50–100 m is about 12–29 years. For groundwater samples at depths of greater than 100 m, the renewal time is about 40 years.  相似文献   

8.
Natural and anthropogenic impacts on karst ground water, Zunyi, Southwest China, are discussed using the stable isotope composition of dissolved inorganic carbon and particulate organic carbon, together with carbon species contents and water chemistry. The waters can be mainly characterized as HCO3–Ca type, HCO3 · SO4–Ca type, or HCO3 · SO4–Ca · Mg type, according to mass balance considerations. It is found that the average δ13CDIC values of ground waters are higher in winter (low-flow season) than in summer (high-flow season). Lower contents of dissolved inorganic carbon (DIC) and lower values of δ13CDIC in summer than in winter, indicate that local rain events in summer and a longer residence time of water in winter play an important role in the evolution of ground water carbon in karst flow systems; therefore, soil CO2 makes a larger contribution to the DIC in summer than in winter. The range of δ13CDIC values indicate that dissolved inorganic carbon is mainly controlled by the rate of carbonate dissolution. The concentrations of dissolved organic carbon and particulate organic carbon in most ground water samples are lower than 2.0 mg C L−1 and 0.5 mg C L−1, respectively, but some waters have slightly higher contents of organic carbon. The waters with high organic carbon contents are generally located in the urban area where lower δ13CDIC values suggest that urbanization has had an effect on the ground water biogeochemistry and might threaten the water quality.  相似文献   

9.
The report discusses the stable isotope values and major solute compositions of 16 springs and river-water samples along a topographic gradient in the main rift valley of southern Ethiopia. Most of the springs used for drinking water supplies discharge from local flow systems at scales of only tens of meters. The δ18O and δD values of waters unaffected by shallow evaporation form a local meteoric water line of δD=8.1δ18O+19.0, almost identical to that for the eastern Mediterranean area. The δ18O values show an altitude effect of –0.5‰ per 100-m elevation rise. Total dissolved nitrogen concentrations locally exceed 6 mg/L (as N), and phosphate concentrations were elevated above background levels in some springs, exceeding 0.2 mg/L PO4, probably due to agricultural practices upgradient of the springs. Modest well-head protection should be considered to protect public health from the effects of pollution by agricultural waste, given the very local scale of the flow systems providing spring water to Ethiopian villages. Electronic Publication  相似文献   

10.
Water resources are a key factor, particularly for the planning of the sustainable regional development of agriculture, as well as for socio-economic development in general. A hydrochemical investigation was conducted in the Friuli Venezia Giulia aquifer systems to identify groundwater evolution, recharge and extent of pollution. Temperature, pH, electric conductivity, total dissolved solids, alkalinity, total hardness, SAR, Ca2+, Na+, K+, Mg2+, Cl, SO4 2−, NO3 , HCO3 , water quality and type, saturation indexes and the environmental stable isotope δ18O were determined in 149 sampling stations. The pattern of geochemical and oxygen stable isotope variations suggests that the sub-surface groundwater (from phreatic and shallow confined aquifers) is being recharged by modern precipitations and local river infiltrations. Four hydrogeological provinces have been recognised and mapped in the Friuli Venezia Giulia Plain having similar geochemical signatures. These provinces have different degrees of vulnerability to contamination. The deep confined groundwater samples are significantly less impacted by surface activities; and it appears that these important water resources have very low recharge rates and would, therefore, be severely impacted by overabstraction.  相似文献   

11.
Isotopes of deuterium and oxygen-18 in thermal groundwater in China   总被引:1,自引:0,他引:1  
Compositions of deuterium and 18O isotopes of 90 representative samples indicate that thermal groundwater in most parts of China is meteoric in origin. Latitude, altitude, and continent effects have significant bearing on the values of δD and δ18O of the hot water samples. Oxygen-18 shift is not significant in most of the thermal groundwater, especially the hot water of low-to-moderate temperature. Slight oxygen-18 shift is only found in some hot springs of high temperature in Tibet and western Yunnan and in thermal groundwater of low-to-moderate temperature in the deep-seated carbonate aquifers in the northern North China Plain (including the Tianjin area). Near-surface boiling may causes the shift of the former and the latter may be attributed to exchange of oxygen-18 between water and carbonates in the geothermal systems of taphrogenic basin-type. Hot springs in Tibet and western Sichuan have very low contents of δD and δ18O, possibly due to recharge of precipitation and snow-melting water of extremely depleted δD and δ18O values at high latitudes of several thousands of meters.  相似文献   

12.
In the Rocca Busambra area (mid-west Sicily, Italy), from November 1999 to July 2002, 23 water points including wells and springs were sampled and studied for their chemical and isotopic compositions. Two rain gauges were also installed at different altitudes, and rainwater was collected monthly to determine the isotopic composition. The obtained results revealed the Rocca Busambra carbonate complex as being the main recharge area on account of its high permeability value. From a chemical view point, two main groups of water can be distinguished: calcium–magnesium–bicarbonate-type and calcium–magnesium–chloride–sulphate-type waters. The first group reflects the dissolution of the carbonate rocks; the second group probably originates from circulation within flyschoid sediments. Three water wells differ from the other samples due to their relatively high Na and K content, which probably is to be referred to a marked interaction with the “Calcareniti di Corleone” formation, which is rich in glauconite [(K, Na)(Fe3+, Al, Mg)2(Si, Al)4O10(OH)2]. In accordance with WHO guidelines for drinking water (2004), almost all the samples collected can be considered drinkable, with the exception of four of them, whose NO3 , F and Na+ contents exceed the limits. On the contrary, the sampled groundwater studied is basically suitable for irrigation.  相似文献   

13.
A long mining history and unscientific exploitation of Jharia coalfield caused many environmental problems including water resource depletion and contamination. A geochemical study of mine water in the Jharia coalfield has been undertaken to assess its quality and suitability for domestic, industrial and irrigation uses. For this purpose, 92 mine water samples collected from different mining areas of Jharia coalfield were analysed for pH, electrical conductivity (EC), major cations (Ca2+, Mg2+, Na+, K+), anions (F, Cl, HCO3 , SO4 2−, NO3 ), dissolved silica (H4SiO4) and trace metals. The pH of the analysed mine water samples varied from 6.2 to 8.6, indicating mildly acidic to alkaline nature. Concentration of TDS varied from 437 to 1,593 mg L−1 and spatial differences in TDS values reflect the variation in lithology, surface activities and hydrological regime prevailing in the region. SO4 2− and HCO3 are dominant in the anion and Mg2+ and Ca2+ in the cation chemistry of mine water. High concentrations of SO4 2− in the mine water of the area are attributed to the oxidative weathering of pyrites. Ca–Mg–SO4 and Ca–Mg–HCO3 are the dominant hydrochemical facies. The drinking water quality assessment indicates that number of mine water samples have high TDS, total hardness and SO4 2− concentrations and needs treatment before its utilization. Concentrations of some trace metals (Fe, Mn, Ni, Pb) were also found to be above the desirable levels recommended for drinking water. The mine water is good to permissible quality and suitable for irrigation in most cases. However, higher salinity, residual sodium carbonate and Mg-ratio restrict its suitability for irrigation at some sites.  相似文献   

14.
Geochemical modeling of coal mine drainage, Summit County, Ohio   总被引:4,自引:1,他引:4  
A. Foos 《Environmental Geology》1997,31(3-4):205-210
 Geochemical modeling was used to investigate downstream changes in coal mine drainage at Silver Creek Metro-park, Summit County, Ohio. A simple mixing model identified the components that are undergoing conservative transport (Cl, PO4 3–, Ca2+, K+, Mg2+ and Na+) and those undergoing reactive transport (DO, HCO3 , SO4 2–, Fe2+, Mn2+ and Si). Fe2+ is removed by precipitation of amorphous iron-hydroxide. Mn2+ are removed along with Fe2+ by adsorption onto surfaces of iron-hydroxides. DO increases downstream due to absorption from the atmosphere. The HCO3 concentration increases downstream as a result of oxidation of organic material. The rate of Fe2+ removal from the mine drainage was estimated from the linear relationship between Fe+2 concentration and downstream distance to be 0.126 mg/s. Results of this study can be used to improve the design of aerobic wetlands used to treat acid mine drainage. Received: 4 June 1996 · Accepted: 17 September 1996  相似文献   

15.
 At the northern part of the Portuguese mainland, the upflow zone of several hot and cold HCO3/Na/CO2-rich mineral waters is mainly associated with important NNE–SSW faults. Several geochemical studies have been carried out on thermal and non-thermal hydromineral manifestations that occur along or near these long tectonic alignments. The slight chemical differences that exist between these meteoric hot and cold HCO3/Na/CO2-rich mineral waters seem to be mainly caused by CO2. δ13C(TIDC) values observed in these groundwaters range between –6.00 and –1.00‰ versus V-PDB (V denotes Vienna, the site of the International Atomic Energy Agency; PDB originates from the CaCO3 of the rostrum of a Cretaceous belemnite, Belemnitella americana, collected in the Peedee formation of South Carolina, USA) indicating a deep-seated (mantle) origin for most of the CO2. Nevertheless, in the case of the heavier δ13C(TIDC) values, the contribution of metamorphic CO2 or the dissolution of carbonate rock levels at depth cannot be excluded. Concerning the hot waters, the lack of a positive 18O-shift should be attributed to water-rock interaction in a low temperature environment, rather than to the isotopic influence of CO2 on the δ18O-value of the waters. Received: 9 August 1999 · Accepted: 8 March 2000  相似文献   

16.
An integrated study has been carried out to elucidate the distribution and occurrence of arsenic in selected groundwater samples in the area of Sherajdikhan, Bangladesh. Arsenic and other parameters (T, pH, EC, Na+, K+, Ca2+, Mg2+, Cl, NO3 , SO4 2−, HCO3 , PO4 3−, Fe, Mn and DOC) have been measured in groundwater samples collected from shallow/deep tube wells at different depths. Hydrogeochemical data suggest that the groundwaters are generally Ca–Mg–HCO3 and Mg–Ca–HCO3 types with bicarbonate (HCO3 ) as the dominant anion, though the other type of water has also been observed. Dissolved arsenic in groundwater ranged from 0.006 to 0.461 mg/l, with 69% groundwater samples exceeded the Bangladesh limit for safe drinking water (0.05 mg/l). Correlation and principal component analysis have been performed to find out possible relationships among the examined parameters in groundwater. Low concentrations of NO3 and SO4 2−, and high concentrations of DOC, HCO3 and PO4 3− indicate the reducing condition of subsurface aquifer where sediments are deposited with abundant organic matter. Distinct relationship of As with Fe and Mn, and strong correlation with DOC suggests that the biodegradation of organic matter along with reductive dissolution of Fe–Mn oxyhydroxides has being considered the dominant process to release As in the aquifers studied herein.  相似文献   

17.
Geochemical processes that take place in the aquifer have played a major role in spatial and temporal variations of groundwater quality. This study was carried out with an objective of identifying the hydrogeochemical processes that controls the groundwater quality in a weathered hard rock aquifer in a part of Nalgonda district, Andhra Pradesh, India. Groundwater samples were collected from 45 wells once every 2 months from March 2008 to September 2009. Chemical parameters of groundwater such as groundwater level, EC and pH were measured insitu. The major ion concentrations such as Ca2+, Mg2+, Na+, K+, Cl, and SO4 2− were analyzed using ion chromatograph. CO3 and HCO3 concentration was determined by acid–base titration. The abundance of major cation concentration in groundwater is as Na+ > Ca2+ > Mg2+ > K+ while that of anions is HCO3  > SO4 2− > Cl > CO3 . Ca–HCO3, Na–Cl, Ca–Na–HCO3 and Ca–Mg–Cl are the dominant groundwater types in this area. Relation between temporal variation in groundwater level and saturation index of minerals reveals the evaporation process. The ion-exchange process controls the concentration of ions such as calcium, magnesium and sodium. The ionic ratio of Ca/Mg explains the contribution of calcite and dolomite to groundwater. In general, the geochemical processes and temporal variation of groundwater in this area are influenced by evaporation processes, ion exchange and dissolution of minerals.  相似文献   

18.
 The Sanggok mine used to be one of the largest lead-zinc mines in the Hwanggangri mining district, Republic of Korea. The present study characterizes the heavy metal contamination in the abandoned Sanggok mine creek on the basis of physico-chemical properties of various kinds of water samples (mine, surface and groundwater). Hydrochemistry of the water samples is characterized by the relatively significant enrichment of Ca2+, HCO3 , NO3 and Cl in the surface and groundwaters, whereas the mine water is relatively enriched in Ca2+, Mg2+, heavy metals, and HCO3 and SO4 2–. The more polluted mine water has a lower pH and higher Eh, conductivity and TDS values. The concentrations of some toxic elements (Al, As, Cd, Cu, Fe, Mn, Pb, Se, Sr, Pb and Zn) are tens to hundreds of times higher in the mine water than in the unpolluted surface and groundwaters. However, most immobile toxic pollutants from the mine drainage were quickly removed from the surface water by the precipitation of Al and Fe oxyhydroxides. Geochemical modeling showed that potentially toxic heavy metals might exist largely in the forms of MSO4 2– and M2+ in the mine water. These metals in the surface and groundwaters could form M2+, CO3 2– and OH complex ions. Computer simulation indicates that the saturation indices of albite, alunite, anhydrite, chlorite, fluorite, gypsum, halloysite and strontianite in the water samples are undersaturated and have progressively evolved toward the saturation condition. However, barite, calcite, chalcedony, dolomite, gibbsite, illite and quartz were in equilibrium, and only clay minerals were supersaturated. Ground and mine waters seemed to be in equilibrium with kaolinite field, but some surface water were in equilibrium with gibbsite and seceded from the stability field of quartz. This indicates that surface water samples in reaction with carbonate rocks would first equilibrate with carbonate minerals, then gibbsite to kaolinite. Investigations on water quality and environmental improvement of the severely polluted Sanggok creek, as well as remediation methods on the possible future pollution of the groundwater by the acid mine drainage from the abandoned metal mines, are urgently required. Received: 4 February 2000 · Accepted: 9 May 2000  相似文献   

19.
 The environmental conditions prevailing in the Chicam-Toctina drainage system (approx. 138 km2 in Córdoba, Argentina) are considered representative of a number of catchments in Argentina's Sierras Pampeanas Range. Two groups of ions reflect the sources of dissolved species in the catchment: a) a group (Cl, SO2– 4, and Na+) which recognizes natural and anthropogenic sources, and which exhibits significant correlations with N 3 and NO 2, and b) another group of components (Ca2+, Mg2+, and HCO 3) which is clearly controlled by carbonate rocks and their waste rock products. In the headwaters, stockpiled marble quarry mining wastes provide a more open system to CO2 gaseous exchange than the outcropping rocks, thus promoting the increase of carbonate dissolution (up to 4.88 g km–2 s–1 during the rainy season). This specific yield was 20% higher than the amount estimated for an area with fewer extended mining activities. The dissolved load delivered by the upper reaches is subjected in the lower drainage area to various processes, mainly controlled by the presence of the city of Alta Gracia (approx. 40,000 inhabitants). In the dry season, due to nutrient inputs supplied by the city, photosynthetic activity plays a major role controlling stream pH. Hence, the high values of calcite saturation indexes and the increase of CaCO3 concentration in bed sediments can be explained by calcite precipitation. Such a process could be accompanied by the coprecipitation on calcium carbonate of low solubility heavy metal carbonates. Received : 17 January 1997 · Accepted : 31 March 1997  相似文献   

20.
This paper presents a study on Manasbal lake, which is one of the high altitude lakes in the Kashmir Valley, India. Eighteen water samples were analysed for major ions and trace elements to assess the variability of water quality of the lake for various purposes. Geostatistics, the theory of regionalized variables, was then used to enhance the dataset and estimate some missing spatial values. Results indicated that the concentration of major ions in the water samples in winter was higher than in summer. The scatter diagrams suggested the dominance of alkaline earths over the alkali elements. Three types of water were identified in the lake that are referred to as Ca–HCO3, Mg–HCO3 and hybrid types. The lake water was found to be controlled by rock–water interaction with carbonate lithology as a dominant source of the solutes. The major (Ca2 + , Mg2 + , Na + , K + , NO3 and HCO3-{\rm{HCO}}_{3}^{-}, CO3 and Cl) and trace elements of the lake water were within the World Health Organization standards, therefore the lake water was considered chemically safe for drinking purposes. Although NO3 concentration (ranging from 1.72 to 2 mg/L), is within the permissible limit and not very alarming, the gradually increasing trend is not acceptable. It is however, important to guard its spatio-temporal variability as the water is used for domestic as well as agricultural purposes. This study is significant as hydrogeological information on such high altitude lakes in India is scanty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号