首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Measurements of perturbations in the atmospheric potential gradient around volcanic plumes at multiple (from two to five) sites, and measurements of the charge-mass ratio of ash particles falling from volcanic plumes, were carried out at Sakurajima Volcano, Japan. Results from 28 and 29 October 1995, show that the nature of the perturbations depends on the intensity of plume activity. Although plume activity was vigorous on 28 October, negative perturbations were predominant. As plume activity peaked, the magnitude of negative perturbations decreased just below the plume and increased at an off-axis site. During the peak period, positively charged ash particles fell out from the plume. This suggests that the active plume dominantly contained negatively charged materials, and that positively and negatively charged materials were added to the lower and upper parts of the plume, respectively, during the peak period. On the other hand, as plume activity became less vigorous on 29 October, the perturbations were characterized by a positive anomaly followed by a negative anomaly. Because wind velocity increased with altitude that day, we infer that positive and negative charges were distributed in the upper and lower parts of the plume, respectively. The differences in perturbations observed on 28 and 29 October suggest that volcanic plumes are generally composed of three parts: an upper part with positively charged gas and aerosol, a middle part with negatively charged fine ash particles, and a lower part with positively charged coarse ash particles. The compilation of present and previous results from Sakurajima and other volcanoes indicates that the effect of the negative charge in the middle part was predominant in most cases, although positive perturbations caused by the upper part were observed around some weak plumes. The effect of positively charged particles in the lower part was observable only when plume activity was sufficiently strong because positively charged coarse particles tended to fall out near the vent.  相似文献   

2.
Vertical ash plumes were imaged at Santiaguito (Guatemala) using a thermal camera to capture plume ascent dynamics. The plumes comprised a convecting plume front fed by a steady feeder plume. Of the 25 plumes imaged, 24 had a gas thrust region within which ascent velocities were 15–50 m s−1. A transition to buoyant ascent occurred 20 to 50 m above the vent, where ascent velocities declined to 4–15 m s−1. Plumes that attained greater heights had higher heat contents, wider feeder plumes and higher buoyant ascent velocities.  相似文献   

3.
Volcanic lightning, perhaps the most spectacular consequence of the electrification of volcanic plumes, has been implicated in the origin of life on Earth, and may also exist in other planetary atmospheres. Recent years have seen volcanic lightning detection used as part of a portfolio of developing techniques to monitor volcanic eruptions. Remote sensing measurement techniques have been used to monitor volcanic lightning, but surface observations of the atmospheric electric Potential Gradient (PG) and the charge carried on volcanic ash also show that many volcanic plumes, whilst not sufficiently electrified to produce lightning, have detectable electrification exceeding that of their surrounding environment. Electrification has only been observed associated with ash-rich explosive plumes, but there is little evidence that the composition of the ash is critical to its occurrence. Different conceptual theories for charge generation and separation in volcanic plumes have been developed to explain the disparate observations obtained, but the ash fragmentation mechanism appears to be a key parameter. It is unclear which mechanisms or combinations of electrification mechanisms dominate in different circumstances. Electrostatic forces play an important role in modulating the dry fall-out of ash from a volcanic plume. Beyond the local electrification of plumes, the higher stratospheric particle concentrations following a large explosive eruption may affect the global atmospheric electrical circuit. It is possible that this might present another, if minor, way by which large volcanic eruptions affect global climate. The direct hazard of volcanic lightning to communities is generally low compared to other aspects of volcanic activity.  相似文献   

4.
Intracloud (IC) lightning is used to mean those lightning flashes which channels do not strike the ground. It is an important scientific problem to inves-tigate the IC flash features and the discharge physics.Measurements from the electric field change arrange-ment[1,2] and VHF radiation events[3,4] have provided ample evidence that IC flashes have branches with substantial horizontal extents. The VHF interferomet-662 Science in China: Series D Earth Sciences ric observations[5] also s…  相似文献   

5.
Sweet chestnut leaves (Castanea sativa) collected from the flanks of Mt Etna volcano in 2005–2007 were analysed by inductively-coupled plasma mass spectrometry to investigate the spatial and temporal variability of element concentrations. The aim of this work was to determine whether these leaves are a bio-indicator for volcanic gas, aerosol and ash deposition and to gain new insights into the environmental effects of quiescent and eruptive volcanic plumes. Results show a positive correlation between sample variability in the concentration of elements in Castanea sativa and enrichment factors of elements in the plume. The spatial and temporal variability of chalcophilic elements (As, Cd, Cu, Mo, Tl, Zn) is consistent with prevailing winds transporting eruptive plumes to the south-east of the summit, resulting in enhanced plume deposition onto the flanks of the volcano. Similar spatial and temporal variability was found for the halide-forming elements (Cs, K, Rb) and intermediate elements (Al, Co, Mn). The spatial variability of chalcophilic, intermediate and halide-forming elements during quiescent periods was diminished (relative to eruptive periods) and could not be explained by plume deposition. In contrast, the concentrations of lithophilic elements (Ba, Ca, Mg, Sr) did not show any clear spatial variability even during eruptive periods. Comparisons between enrichment factors for elements in Castanea sativa and literature values for enrichment factors of the volcanic plume, groundwater and lichen were made. Whilst Castanea sativa offers insights into the spatial and temporal variability of deposition, the species may not be a bio-indicator for plume composition due to biological fractionation.  相似文献   

6.
The 273 ka Poris Formation in the Bandas del Sur Group records a complex, compositionally zoned explosive eruption at Las Cañadas caldera on Tenerife, Canary Islands. The eruption produced widespread pyroclastic density currents that devastated much of the SE of Tenerife, and deposited one of the most extensive ignimbrite sheets on the island. The sheet reaches ~ 40-m thick, and includes Plinian pumice fall layers, massive and diffuse-stratified pumiceous ignimbrite, widespread lithic breccias, and co-ignimbrite ashfall deposits. Several facies are fines-rich, and contain ash pellets and accretionary lapilli. Eight brief eruptive phases are represented within its lithostratigraphy. Phase 1 comprised a fluctuating Plinian eruption, in which column height increased and then stabilized with time and dispersed tephra over much of the southeastern part of the island. Phase 2 emplaced three geographically restricted ignimbrite flow-units and associated extensive thin co-ignimbrite ashfall layers, which contain abundant accretionary lapilli from moist co-ignimbrite ash plumes. A brief Plinian phase (Phase 3), again dispersing pumice lapilli over southeastern Tenerife, marked the onset of a large sustained pyroclastic density current (Phase 4), which then waxed (Phase 5), covering increasingly larger areas of the island, as vents widened and/or migrated along opening caldera faults. The climax of the Poris eruption (Phase 6) was marked by widespread emplacement of coarse lithic breccias, thought to record caldera subsidence. This is inferred to have disturbed the magma chamber, causing mingling and eruption of tephriphonolite magma, and it changed the proximal topography diverting the pyroclastic density current(s) down the Güimar valley (Phase 7). Phase 8 involved post-eruption erosion and sedimentary reworking, accompanied by minor down-slope sliding of ignimbrite. This was followed by slope stabilization and pedogenesis. The fines-rich lithofacies with abundant ash pellets and accretionary lapilli record agglomeration of ash in moist ash plumes. They resemble phreatomagmatic deposits, but a phreatomagmatic origin is difficult to establish because shards are of bubble-wall type, and the moisture may have arisen by condensation within ascending thermal co-ignimbrite ash plumes that contained atmospheric moisture enhanced by that derived from the evaporation of seawater where the hot pyroclastic currents crossed the coast. Ash pellets formed in co-ignimbrite ash-clouds and then fell through turbulent pyroclastic density currents where they accreted rims and evolved into accretionary lapilli.Editorial Responsibility: J. Stix  相似文献   

7.
The 1963–65 eruption of Irazú, like all others of this volcano during the historic period, produced only ash and other fragmental ejecta without lava. The initial outbreak on March 13, 1963 started with a series of great explosions that hurled out much ash, blocks, and bombs, but the activity soon settled down to alternating periods of explosive cruptions and quiet emission of steam. Ash was deposited mostly along a zone that extended westward from the summit to and beyond the city of San Jose, 24 km away. The prolonged ashfall severely damaged dairy, vegetable, and coffee farms, and for a while made daily life in the affected cities extremely difficult. Accelerated runoff of rainwater from the ash-covered slopes of the volcano caused destructive floods, mudflows, and landslides. The climax of the cruption probably occurred during December 1963 and January 1964, when ash and incandescent scoria were erupted voluminously and the magma rose to within 100 meters of the lip of the vent. Precise levelling along the highway to the summit in May 1964 by the Geographic Institute revealed the upper part of the volcano upheaved as much as 11 cm above levels determined in 1949. A repetition of the levelling in September 1964 showed a subsidence to approximately the 1949 configuration, indicating a distinct reduction of pressure in the magma chamber. Substantial amounts of pulverized wallrock were present in the ash along with fragments of scoria and pumice. Progressive caving of the vent walls, which enlarged the diameter of the vent from 200 meters to 525 meters, kept dropping wallrock down onto the exploding magma, and at times stopped the eruption for a day or two by plugging the vent. The scoriaceous and pumiceous bombs were porphyritic two-pyroxene olivine basaltic andesite, and their composition remained remarkably constant throughout the eruption. The ash section was about 2 meters thick, 800 meters downwind from the vent in June 1964. In the section, deposits of the rainy season could be distinguished by their well developed stratification from those of the dry season. A zone containing three persistent pumice horizons represents the climactic period of December 1963 to January 1964. The cloudburst of December 10, 1963 is recorded by a highly rilled surface, and the strong winds of the dry season of 1964 are indicated by a rippled lag deposit.  相似文献   

8.
The 2013 eruption of Pavlof Volcano, Alaska began on 13 May and ended 49 days later on 1 July. The eruption was characterized by persistent lava fountaining from a vent just north of the summit, intermittent strombolian explosions, and ash, gas, and aerosol plumes that reached as high as 8 km above sea level and on several occasions extended as much as 500 km downwind of the volcano. During the first several days of the eruption, accumulations of spatter near the vent periodically collapsed to form small pyroclastic avalanches that eroded and melted snow and ice to form lahars on the lower north flank of the volcano. Continued lava fountaining led to the production of clastogenic lava flows that extended to the base of the volcano, about 3–4 km beyond the vent. The generation of fountain-fed lava flows was a dominant process during the 2013 eruption; however, episodic collapse of spatter accumulations and formation of hot spatter-rich granular avalanches was a more efficient process for melting snow and ice and initiating lahars. The lahars and ash plumes generated during the eruption did not pose any serious hazards for the area. However, numerous local airline flights were cancelled or rerouted, and trace amounts of ash fall occurred at all of the local communities surrounding the volcano, including Cold Bay, Nelson Lagoon, Sand Point, and King Cove.  相似文献   

9.
 Four co-ignimbrite plumes were generated along the flow path of the pyroclastic flow of 7 August 1980 at Mount St. Helens. Three of the plumes were generated in discrete pulses which can be linked to changes in slope along the channel. One plume was generated at the mouth of the channel where the flow decelerated markedly as it moved onto the lower slopes of the pumice plain. Plume generation here may be triggered by enhanced mixing due to a hydraulic jump associated with an abrupt slope change. Measurements of plume ascent velocity and width show that the co-ignimbrite plumes increased in velocity with height. The plumes have initial velocities of 1–2 m/s. Two of the plumes reached a velocity maximum (4.6 and 8.8 m/s, respectively, at heights of 270 and 315 m above the flow) and thereafter decelerated. The other plumes reached velocities of 6.2 and 13 m/s. The four plumes become systematically less energetic downstream as measured by their ascent rates, which can be interpreted as a consequence of decreasing interaction of the pyroclastic flow front with the atmosphere. Theoretical models of both co-ignimbrite plumes and discrete co-ignimbrite clouds assume that there is no initial momentum, and both are able to predict the observed acceleration stage. The rising plumes mix with and heat air and sediment out particles causing their buoyancy to increase. Theoretical models agree well with observations and suggest that the initial motion of the ascending material is best described as a discrete thermal cloud which expands as it entrains air, whereas the subsequent motion of the head may become influenced by material supplied from the following plume. The models agree well with observations for an initial temperature of the ash and air mixture in the range of 500–600 K, which is in turn consistent with the measured initial ash temperature of around 920 K. Ash masses of 3.4×105 to 1.8×106 kg are estimated. Received: 11 January 1996 / Accepted: 7 October 1996  相似文献   

10.
A new approach to self-potential (SP) data interpretation for the recognition of a buried causative SP source system is presented. The general model considered is characterized by the presence of primary electric sources or sinks, located within any complex resistivity structure with a flat air-earth boundary. First, using physical considerations of the nature of the electric potential generated by any arbitrary distribution of primary source charges and the related secondary induced charges over the buried resistivity discontinuity planes, a general formula is derived for the potential and the electric field component along any fixed direction on the ground surface. The total effect is written as a sum of elementary contributions, all of the same simple mathematical form. It is then demonstrated that the total electric power associated with the standing natural electric field component can be written in the space domain as a sum of cross-correlation integrals between the observed component of the total electric field and the component of the field due to each single constitutive elementary charge. By means of the cross-correlation bounding inequality, the concept of a scanning function is introduced as the key to the new interpretation procedure. In the space domain, the scanning function is the unit strength electric field component generated by an elementary positive charge. Next, the concept of charge occurrence probability is introduced as a suitable function for the tomographic imaging of the charge distribution geometry underground. This function is defined as the cross-correlation product of the total observed electric field component and the scanning function, divided by the square root of the product of the respective variances. Using this physical scheme, the tomographic procedure is described. It consists of scanning the section, through any SP survey profile, by the unit strength elementary charge, which is given a regular grid of space coordinates within the section, at each point of which the charge occurrence probability function is calculated. The complete set of calculated grid values can be used to draw contour lines in order to single out the zones of highest probability of concentrations of polarized, primary and secondary electric charges. An extension to the wavenumber domain and to three-dimensional tomography is also presented and discussed. A few simple synthetic examples are given to demonstrate the resolution power of the new SP inversion procedure.  相似文献   

11.
The Eyjafjallajökull volcanic eruption, which occurred on April 14, 2010, caused many environmental, air traffic and health problems. An attempt has been made to demonstrate for the first time that certain improvements could be made in the quantitative prediction of the volcanic ash parameters, and in the accounting of the processes in the immediate vicinity of the volcano, using a cloud-resolving model. This type of explicit modeling by treatment of volcanic ash and sulfate chemistry parameterization, with input of a number parameters describing the volcanic source, is the way forward for understanding the complex processes in plumes and in the future plume dispersion modeling. Results imply that the most significant microphysical processes are those related to accretion of cloud water, cloud ice and rainwater by snow, and accretion of rain and snow by hail. The dominant chemical conversion rates that give a great contribution to the sulfate budget are nucleation and dynamic scavenging and oxidation processes. A three-dimensional numerical experiment has shown a very realistic simulation of volcanic ash and other chemical compounds evolution, with a sloping structure strongly influenced by the meteorological conditions. In-cloud oxidation by H2O2 is the dominant pathway for SO2 oxidation and allows sulfate to be produced within the SO2 source region. The averaged cloud water pH of about 5.8 and rainwater pH of 4.5 over simulation time show quantitatively how the oxidation may strongly influence the sulfate budget and acidity of volcanic cloud. Compared to observations, model results are close in many aspects. Information on the near field volcanic plume behavior is essential for early preparedness and evacuation. This approach demonstrates a potential improvement in quantitative predictions regarding the volcanic plume distribution at different altitudes. It could be a useful tool for modeling volcanic plumes for better emergency measures planning.  相似文献   

12.
Explosive activity at Arenal and associated tephra fall that has occurred over the 14-year period from 1987–2001 is described. Explosions have been notably variable in both frequency and size. A marked decrease in both frequency and quantity of tephra fallout occurred in early 1998 until the end of 2001. Grainsize distributions of cumulative tephra samples collected once a month are typically bimodal. Aggregation causing premature fallout of fine ash and possibly fallout from ash plumes produced by pyroclastic flows are considered responsible for the bimodality of fallout. Scanning electron microscopy of the glass component of tephra from single explosions show predominantly blocky and blocky/fluidal clast types, interpreted as being the product of vulcanian type explosions. Fragmentation of a mainly rigid, degassed magma body, and a minor molten component is inferred for these explosions. Pyroclastic flows were produced either associated with the larger explosions by a mechanism of column collapse (1987–1990), or unrelated to explosions by partial collapse of the crater wall (1993, 1998, 2000, 2001). Pyroclastic flow activity has migrated from west to north during the period reported. Pyroclastic flow deposits are variable in the quantity of juvenile material and any associated surge component. Large juvenile blocks were partially molten on emplacement and many have a typical cauliform texture. Blocks with both juvenile and lithic textures indicate that at the summit magma was in intimate contact with the pre-existing edifice, rather than as a simple open crater or lava pool. Crater wall collapse may have been promoted by the reduction in explosive activity, which has increased the lava accumulation at the summit and in turn increased instability of the summit region. Thus although explosive activity has waned, if the lava output is maintained, the hazard of pyroclastic flows is likely to continue.Editorial responsibility: R. Cioni  相似文献   

13.
In the Seventh cruise of R/V “Professor Logatchev” anomalies of natural electric field (EF), Eh and pS were discovered using a towed instrument package (RIFT) at 14°45′N on the MAR (Logatchev hydrothermal field). The anomalous zone (AZ) is situated close (10–35 m) to two low-temperature venting areas of degrading sulphides and a black smoker (Irina-Microsmoke) forming a distinct buoyant plume. Over or close to the main area of high-temperature venting situated to the south-east from the AZ, no EF or Eh anomalies were observed. According to the results of Mir dives the highly mineralised solutions from smoking craters at the main mound mostly form non-buoyant plumes (reverse-plumes). The buoyant plume structure shows the differentiation of the electrical and Eh fields within the plume. Maxima of the EF, Eh and EH2S anomalies were revealed in the lower part (15 m) of the plume. The negative redox potential plume coupled with a sulphide anomaly is more localized in comparison with the EF. This observation indicates a distinct change in the composition of buoyant plume water, which may be due to the formation and fallout of early formed Fe sulphide particles soon after venting.  相似文献   

14.
The 5 April 2003 paroxysmal explosion at Stromboli volcano was one of the strongest explosive events of the last century. It occurred while the effusive eruption, begun on 28 December 2002 and finished on 22 July 2003, was still on going and the summit craters of the volcano were obstructed. In this paper, we present a reconstruction of the sequence of events based on thermal and visual images collected from helicopter before, during and immediately after the paroxysm. One month before the blast, ash emission and temperature increase at the bottom of the summit craters were observed. An increasing amount of juvenile components in the emitted ash during March suggested that the magma level within the crater was rising accordingly. Hot degassing vents at the bottom of the summit craters were not persistent, and the craters remained almost entirely obstructed by talus accumulation until the paroxysm occurred. Three minutes before the explosion, we recorded a significant increase in temperature inside Crater 1, accompanied by a thicker gas plume. Thirty-two seconds before the blast, reddish ash was emitted from Crater 1. The paroxysm produced a vulcanian explosion that opened the feeder conduit, obstructed for over three months. The blast was accompanied by a shock wave recorded by the INGV seismic network at 07:13:37 GMT. Explosions with hot material started from Crater 1, and after 15 s propagated to Crater 3, about 100 m away. The velocity of ejecta was ∼80 m s 1, and increased when the eruptive plumes from both craters merged together during the vulcanian phase. An eruptive column rose 1 km above the top of the volcano, and explosions continued mainly at Crater 3. The paroxysm lasted about 9 min, with bombs up to 4 m wide falling on the village of Ginostra, on the west flank of the island, and destroying two houses. This event signalled the start of the declining phase of the effusive eruption, suggesting that the feeder conduit was returning to its former steady conditions, with open vents and continuous, mild strombolian activity.  相似文献   

15.
16.
Equatorial spread-F (ESF) backscatter plumes are often observed in radar range-time-intensity (RTI) maps at low latitude. Except case studies, few statistical investigations on the onset locations of scintillation-producing ESF plumes at given sites have been conducted. In this study, a statistical analysis is carried out on onset locations of ESF backscatter plumes observed at a low-latitude location Sanya (18.4°N, 109.6°E; dip lat 12.8°N) during equinoctial months of 2013. By employing a tracing method to locate backscatter plumes, we estimate the onset longitudes of periodic plumes obtained from the Sanya VHF radar five-beam steering measurements. The results show that the inter-plume distances (in longitude) are mostly confined within 200–600 km, and the ESF plumes producing ionospheric scintillations over Sanya are almost exclusively generated at the longitudes of 94°–110°E. The results indicate the necessity to monitor ESF plume initial generation in the longitude region of 94°–110°E to better understand the day-to-day variability in the occurrence of ionospheric scintillations over Sanya.  相似文献   

17.
We use magnetic field-aligned mapping between the ionosphere and the magnetosphere to intercompare ground-based observations of storm enhanced density (SED), and plasmasphere drainage plumes imaged from space by the IMAGE EUV imager, with the enhanced inner-magnetosphere/ionosphere SAPS electric field which develops during large storms. We find that the inner edge of the SAPS electric field overlaps the erosion plume and that plume material is carried sunward in the SAPS overlap region. The two phenomena, SED in the ionosphere and the erosion plume at magnetospheric heights, define a common trajectory for sunward-propagating cold plasma fluxes in the midnight—dusk–postnoon sector. The SAPS channel at ionospheric heights and its projection into the equatorial plane serve to define the sharp outer boundary of the erosion plume. The SAPS electric field abuts and overlaps both the plasmasphere boundary layer and the plasmasphere erosion plume from pre-midnight through post-noon local times.  相似文献   

18.
A model is developed for estimating location of a volcano relative to sample points in an associated ashfall, cloud height during eruption, and mean wind velocity during ash deposition. The ash deposit must cover a large area and have an elongate axis. The model appears to be applicable both to recent and to unobserved ashfalls in the past, provided adequate and representative ash samples are available. The opportunity to test the diagnostic model on volcanic ashfalls is limited by sparsity of the necessary input data. From more than 20 ashfalls described in the literature, the 1947 Hekla (Iceland) eruption is the only one which includes suitable particle size analyses taken from samples related to a well-defined axis. The application of the model to the Hekla ashfall is discussed.  相似文献   

19.
The dispersal of an ash plume as it propagates downwind with the ash settling under gravity is presented. It is shown that wind shear, the initial plume height and the plume grain size distribution have an important role in the dispersal of the ash, in particular in determining the evolution of the upper surface and the leading edge of the ash cloud. Once the ash has thermally equilibrated with the atmosphere, the temperature of the upper surface of the ash plume is directly related to its altitude. As a result we can use the model to interpret satellite images of the temperature of the upper surface of ash plumes. These calculations are compared with new analyses of satellite data from the 18 May 1980 eruptions of Mount St Helens in which both thermal infra-red and visible GOES satellite data were examined. In accord with the data, the model is able to predict the rate at which the Mount St Helens ash plume propagated downwind through a combination of the wind shear and gravitational settling of different size particles. The model is also able to explain the observed thermal structure of the upper surface of the ash plume, in which the temperature initially decreases, but then increases with downwind distance as the ash falls through the tropopause.  相似文献   

20.
Plinian plumes erupt with a bulk density greater than that of air, and depend upon air entrainment during their gas-thrust phase to become buoyant; if entrainment is insufficient, the column collapses into a potentially deadly pyroclastic flow. This study shows that strombolian ash plumes can be erupted in an initially buoyant state due to their extremely high initial gas content, and in such cases are thus impervious to column collapse. The high gas content is a consequence of decoupled gas rise in the conduit, in which particles are ultimately incidental. The relations between conduit gas flow, eruption style and plume density are explored here for strombolian scenarios and contrasted with conventional wisdom derived from plinian eruptions. Considering the inherent relation between gas content and initial plume density together with detailed measurements of plume velocities can help unravel ambiguities surrounding conduit processes, eruption styles and hazards at poorly understood volcanoes. Analysis of plume dynamics at Santiaguito volcano, Guatemala adds further support for a model involving decoupled gas rise in the conduit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号