首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 606 毫秒
1.
Magnetotelluric (MT) and ground magnetic surveys were conducted on the Mahallat geothermal field situated in Markazi province, central Iran, as a primary part of the explorations and developments of a geothermal energy investigation program in the region. Mahallat region has the greatest geothermal fields in Iran. MT survey was performed in November 2011 on an 8 km profile crossing the hot springs with a total of 17 stations. The 2D inversion of the determinant MT data was performed using a 2D inversion routine based on the Occam approach. The 2D resistivity model obtained from the determinant data shows a low resistivity zone at 800-2000 m depth and a higher resistivity zone above the low resistivity zone, interpreted as geothermal reservoir and cap rock, respectively. It also revealed two major concealed faults which are acting as preferential paths for the circulation of hydrothermal fluids. To obtain more geophysical evidence, a ground magnetic survey with 5000 stations was also performed over an area of 200 km2 around the MT profile. Magnetic measurements show a main positive anomaly of about +1000 nT over the study area, which could be interpreted as an intrusive body with the high magnetic susceptibility (i.e. mafic and ultramafic rocks) into the sedimentary host rocks. We interpret the body as the heat source of the geothermal system. Structural index and depth estimation of the anomaly indicate that the intrusive body is similar to a cylinder extending from about one kilometer depth down to greater depths. The results of MT and magnetic investigations indicate a geothermal reservoir which proves the preliminary geological observations to a great extent.  相似文献   

2.
A simple filter is developed which transforms VLF-EM real magnetic field transfer functions into apparent resistivities. It is based on the relationship between the horizontal derivative of the surface electric field and the vertical magnetic field at the surface of a two-dimensional earth model. The performance of this simple autoregressive filter is tested for modelled and real survey data. The technique yields profiles of apparent resistivity very similar, both in magnitude and in wavelength, to those which would have been obtained using VLF-EM resistivity measurements or d.c. resistivity profiling. This low-pass filter has the advantage of reducing high-wavenumber noise in the data; therefore only the major features of the VLF-EM profile are displayed.  相似文献   

3.
Summary The electrical AC (103 Hz) resistivity of some rocks was measured in a dry regime in air and in an argon atmosphere under various heating regimes. It is shown that long-term measurements provide us additional information about factors influencing resistivity and activation energy which cannot be obtained by means of standard measurements.  相似文献   

4.
A combination of magnetotelluric (MT) measurements on the surface and in boreholes (without metal casing) can be expected to enhance resolution and reduce the ambiguity in models of electrical resistivity derived from MT surface measurements alone. In order to quantify potential improvement in inversion models and to aid design of electromagnetic (EM) borehole sensors, we considered two synthetic 2D models containing ore bodies down to 3000 m depth (the first with two dipping conductors in resistive crystalline host rock and the second with three mineralisation zones in a sedimentary succession exhibiting only moderate resistivity contrasts). We computed 2D inversion models from the forward responses based on combinations of surface impedance measurements and borehole measurements such as (1) skin-effect transfer functions relating horizontal magnetic fields at depth to those on the surface, (2) vertical magnetic transfer functions relating vertical magnetic fields at depth to horizontal magnetic fields on the surface and (3) vertical electric transfer functions relating vertical electric fields at depth to horizontal magnetic fields on the surface. Whereas skin-effect transfer functions are sensitive to the resistivity of the background medium and 2D anomalies, the vertical magnetic and electric field transfer functions have the disadvantage that they are comparatively insensitive to the resistivity of the layered background medium. This insensitivity introduces convergence problems in the inversion of data from structures with strong 2D resistivity contrasts. Hence, we adjusted the inversion approach to a three-step procedure, where (1) an initial inversion model is computed from surface impedance measurements, (2) this inversion model from surface impedances is used as the initial model for a joint inversion of surface impedances and skin-effect transfer functions and (3) the joint inversion model derived from the surface impedances and skin-effect transfer functions is used as the initial model for the inversion of the surface impedances, skin-effect transfer functions and vertical magnetic and electric transfer functions. For both synthetic examples, the inversion models resulting from surface and borehole measurements have higher similarity to the true models than models computed exclusively from surface measurements. However, the most prominent improvements were obtained for the first example, in which a deep small-sized ore body is more easily distinguished from a shallow main ore body penetrated by a borehole and the extent of the shadow zone (a conductive artefact) underneath the main conductor is strongly reduced. Formal model error and resolution analysis demonstrated that predominantly the skin-effect transfer functions improve model resolution at depth below the sensors and at distance of \(\sim \) 300–1000 m laterally off a borehole, whereas the vertical electric and magnetic transfer functions improve resolution along the borehole and in its immediate vicinity. Furthermore, we studied the signal levels at depth and provided specifications of borehole magnetic and electric field sensors to be developed in a future project. Our results suggest that three-component SQUID and fluxgate magnetometers should be developed to facilitate borehole MT measurements at signal frequencies above and below 1 Hz, respectively.  相似文献   

5.
Abstract

The relatively large resistivity in the solar photosphere and chromosphere softens the ideal tangential discontinuities of magnetostatic equilibrium into continuous transitions in field direction over scales of 0.1–10 km. This softening is communicated upward at the Alfvén speed into the active solar corona. The degree of softening is a vital part of the theory of magnetic heat input to the active X-ray corona, because the very low resistivity of the coronal gas provides effective dissipation only if the current sheets are reduced to a thickness of 10?2km.

A close examination of the problem shows that the Alfvén transit time up into the corona is large compared to the characteristic time of 1 sec in which the coronal tangential discontinutities are formed. It also shows that the principal effect of the resistivity is to create a thin surface layer of fluid on adjacent flux bundles, which causes a general drift of the flux but does not directly broaden the current sheets higher up in the field. In fact the motions of the surface layers do not extend upwards beyond the first winding pattern at each end of a coronal loop.

It appears that the photospheric and chromospheric resistivity is without striking consequences for magnetic heating in the corona.  相似文献   

6.
Archaeological indications near Mugardos (Ferrol, NW Spain) suggest the existence of a Roman settlement. In fact, in the area were found pavements, walls with north-south and east-west orientations and some structures that endured heating. These remains are covered by soil, more than 1 m thick, and lie over schists. In order to determine the archaeological potential of the area and to delimit future excavations a geophysical survey, consisting of a joint resistivity and magnetic survey, was planned and carried out. The square array of electrodes was used and the data are discussed as apparent square array resistivity maps and azimuthal inhomogeneity ratio (AIR) maps. The magnetic survey included total field measurements using sensor heights of 0.30 and 2.30 m above the ground, so that a magnetic gradient could be computed.A combined interpretation of both resistivity and magnetic data is discussed. Later excavations have confirmed the geophysical interpretation.  相似文献   

7.
We report novel laboratory measurements of the full electrical resistivity tensor in reservoir analogue quartzose sandstones with clay contents less than 1.5%. We show that clean, homogeneous, visually uniform sandstone samples typically display between 15% and 25% resistivity anisotropy with minimum resistivity normal to the bedding plane. Thin‐section petrography, analysis of fabric anisotropy, and comparison to finite‐element simulations of grain pack compaction show that the observed anisotropy symmetries and magnitudes can be explained by syn‐depositional and post‐depositional compaction processes. Our findings suggest that: electrical resistivity anisotropy is likely to be present in most clastic rocks as a consequence of ballistic deposition and compaction; compaction may be deduced from measurements of electrical anisotropy; and the anisotropy observed at larger scales in well logging and controlled‐source electromagnetic data, with maximum resistivity normal to bedding, is most likely the result of meso‐scale (10?1 m–101 m) periodic layering of electrically dissimilar lithologies.  相似文献   

8.
Earth resistivity estimates from frequency domain airborne electromagnetic data can vary over more than two orders of magnitude depending on the half-space estimation method used. Lookup tables are fast methods for estimating half-space resistivities, and can be based on in-phase and quadrature measurements for a specified frequency, or on quadrature and sensor height. Inverse methods are slower, but allow sensor height to be incorporated more directly. Extreme topographic relief can affect estimates from each of the methods, particularly if the portion of the line over the topographic feature is not at a constant height above ground level. Quadrature–sensor height lookup table estimates are generally too low over narrow valleys. The other methods are also affected, but behave less predictably. Over very good conductors, quadrature–sensor height tables can yield resistivity estimates that are too high. In-phase–quadrature tables and inverse methods yield resistivity estimates that are too high when the earth has high magnetic susceptibility, whereas quadrature–sensor height methods are unaffected. However, it is possible to incorporate magnetic susceptibility into the in-phase–quadrature lookup table. In-phase–quadrature lookup tables can give different results according to whether the tables are ordered according to the in-phase component or the quadrature component. The rules for handling negative in-phase measurements are particularly critical. Although resistivity maps produced from the different methods tend to be similar, details can vary considerably, calling into question the ability to make detailed interpretations based on half-space models.  相似文献   

9.
Apparent resistivity is a useful concept for initial quickscan interpretation and quality checks in the field, because it represents the resistivity properties of the subsurface better than the raw data. For frequency‐domain soundings several apparent‐resistivity definitions exist. One definition uses an asymptote for the field of a magnetic dipole in a homogeneous half‐space and is useful only for low induction numbers. Another definition uses only the amplitude information of the total magnetic field, although this results in a non‐unique apparent resistivity. To overcome this non‐uniqueness, a complex derivation using two different source–receiver configurations and several magnetic field values for different frequencies or different offsets is derived in another definition. Using the latter theory, in practice, this means that a wide range of measurements have to be carried out, while commercial systems are not able to measure this wide range. In this paper, an apparent‐resistivity concept is applied beyond the low‐induction zone, for which the use of different source–receiver configurations is not needed. This apparent‐resistivity concept was formerly used to interpret the electromagnetic transients that are associated with the turn‐off of the transmitter current. The concept uses both amplitude and phase information and can be applied for a wide range of frequencies and offsets, resulting in a unique apparent resistivity for each individual (offset, frequency) combination. It is based on the projection of the electromagnetic field data on to the curve of the field of a magnetic dipole on a homogeneous half‐space and implemented using a non‐linear optimization scheme. This results in a fast and efficient estimation of apparent resistivity versus frequency or offset for electromagnetic sounding, and also gives a new perspective on electromagnetic profiling. Numerical results and two case studies are presented. In each case study the results are found to be comparable with those from other existing exploration systems, such as EM31 and EM34. They are obtained with a slight increase of effort in the field but contain more information, especially about the vertical resistivity distribution of the subsurface.  相似文献   

10.
The investigation of water in salt-rock formations is of particular relevance to underground nuclear waste repositories. In the Asse salt-mine (Germany) a study into the relationship of in situ resistivity to water content has been made. Measurements were carried out in older rock-salt using an electrode array in boreholes, an electrode profile in a drift and small resistivity sensors in and around a drift seal. Further measurements were made on moist zones in a contact area of younger rock-salt and carnallitite and also in older rock-salt with anhydrite bands using electrode profiles in the drifts. The resistivities range from 102Ωm to 106Ωm. Corresponding probes have water contents from 0.01% to 1.3%. A definite relationship between resistivity and water content is revealed which can be described by Archie's law using a cementation factor m of 1.9. Porosities are between 0.08% and 1.4% and the saturations vary considerably. An explicit influence of saturation on resistivity cannot be discovered using the present data. The results enable us to estimate the in situ water content and the order of the in situ porosity using resistivity surveys at different scales. This increases significantly the safety of a nuclear repository site.  相似文献   

11.
We report here the electrical resistivity measurements on two natural zeolites–natrolite and scolecite (from the Killari borehole, Maharashtra, India) as a function of pressure up to 8 GPa at room temperature. High-pressure electrical resistivity studies on hydrous alumino-silicate minerals are very helpful in understanding the role of water in deep crustal conductivities obtained from geophysical models. The results obtained by magneto-telluric (MT) soundings and direct current resistivity surveys, along with the laboratory data on the electrical resistivity of minerals and rocks at high-pressure–temperature are used to determine the electrical conductivity distribution in continental lithosphere. The electrical resistivity of natural natrolite decreases continuously from 2.9 × 109 Ω cm at ambient condition to 7.64 × 102 Ω cm at 8 GPa, at room temperature. There is no pressure-induced first order structural phase transitions in natrolite, when it is compressed in non-penetrating pressure transmitting medium up to 8 GPa. On the other hand scolecite exhibits a pressure-induced transition, with a discontinuous decrease of the electrical resistivity from 2.6 × 106 to 4.79 × 105 Ω cm at 4.2 to 4.3 GPa. The observed phase transition in scolecite is found to be irreversible. Vibrational spectroscopic and X-ray diffraction studies confirm the amorphous nature of the high-pressure phase. The results of the present high-pressure studies on scolecite are in good agreement with the high-pressure Raman spectroscopic data on scolecite. The thermo gravimetric studies on the pressure-quenched samples show that the samples underwent a pressure-induced partial dehydration. Such a pressure-induced partial dehydration, which has been observed in natural scolecite could explain the presence of high conductive layers in the earth's deep-crust.  相似文献   

12.
A horizontal transmitter loop (vertical magnetic dipole) is used for frequency electromagnetic (FEM) soundings. The frequency ranges from approximately 6 Hz to about 4000 Hz. The vertical and radial magnetic field components are measured for 20 frequencies per decade several hundred meters from the transmitter loop. A very small bandwidth is selected for amplification using a reference signal. An Apple computer is used for data acquisition. A computer program for Marquardt inversion optimizes the parameters for the n-layer case: the resistivities and thicknesses of individual beds and a correction factor for the primary magnetic field. Interpretation of each component individually yields practically the same parameters. Examples from the field are given with interpretation; comparison with dc resistivity measurements is provided. The ratio of vertical/radial magnetic field components vs. frequency can be transformed simply into apparent resistivity vs. apparent depth. This can be done in the field to obtain an estimation of the depth of the layer boundaries. FEM results are compared with Schlumberger d.c. sounding obtained at the same site.  相似文献   

13.
Very low frequency electromagnetic (EM) methods using VLF transmitters have found many applications in subsurface geophysical investigations. Surface measurements involving both the vertical component of the magnetic field (VLF-EM or VLF-Z) and of the apparent resistivity (VLF-R) are increasingly common. Although extensive VLF data sets have been successfully used for mapping purposes, modelling and interpretation techniques which asess the third (i.e. depth) dimension appear limited.Given a profile of VLF-R measurements the main purpose of the present study is to demonstrate an automatic method for the construction of a resistivity cross-section. The technique used is one of a new generation of regularised inversion methods. These techniques attempt to overcome the problem of equivalence/non-uniqueness in EM sounding data by constructing the resistivity distribution with the minimum amount of structure that fits the data.VLF data represent a special case of plane-wave EM sounding in that they conform, in practice, to a single-frequency technique. This fact imposes a limitation in the amount of vertical resolution that we can expect using such data. In the case of two-dimensional modelling and inversion, resolution through the cross-section is a resultant attribute from both vertical and lateral resistivity gradients within the subsurface. In order to provide insight into the practical application of regularised inversion techniques to VLF data, both synthetic and field examples are considered. Both sets of examples are primarily concerned with VLF data applied to near-surface fault mapping where the main aim is to assess the location, dip and depth extent of conductive subsurface features.  相似文献   

14.
Gradient measurements in a homogeneous electrical primary field can easily be interpreted for simple models. The simplified solution (conducting or resistant body in a homogeneous space in a homogeneous electrical field) is often sufficiently accurate, as comparisons with the exact solution (body of finite resistivity in a homogeneous half-space in a quasihomogeneous electrical field) show. The exact geometry of the body cannot be determined by gradient measurements; the same anomaly of apparent resistivity can be caused by different bodies. In particular, the similarity between a sphere and a cube of the same volume is very high. There is a distinct influence of the resistivity of the overburden: the higher this resistivity is, the stronger is the effect caused by a buried body. If a deviation of 10% of the apparent resistivity is assumed as the lower boundary at which a buried body can be detected by gradient measurements, the depth of investigation for a three-dimensional body is approximately equal to its width; in the two-dimensional case the thickness of the overburden can be twice the width. If the overburden has a resistivity which is higher than the resistivity of the substratum, these depths are greater. The greatest possible depth is approximately three times the width of the body.  相似文献   

15.
The electromagnetic field radiated from a magnetic dipole lying on the ground is considered, in the extremely low frequency range (DC to 20 000 Hertz). Theoretical and experimental data are given on the characteristics of the surface wave (vanishing wave) generated at the air-ground interface, in the case of an homogeneous subsurface. The case of a subsurface with electrical resistivity varying with depth is considered. It is shown how the above-mentioned characteristics may be applied in the quantitative investigation of the electrical resistivity of the subsurface as a function of depth, in a method using the measurements on the ground of all the components of the radiated field: horizontal electrical components, vertical and horizontal magnetic components.  相似文献   

16.
It is known that the time‐domain induced‐polarization decay curve for a shaly sand reservoir depends on the pore structure of the reservoir, and this curve can be used to estimate permeability, which is a determining factor in making production decisions in the petroleum industry. Compared with NMR logging tools, induced polarization has several advantages, such as a deep depth of investigation and a high signal‐to‐noise ratio. The purpose of this paper is to establish an appropriate model using induced polarization to estimate the permeability. The curve can be modelled as a weighted superposition of exponential relaxations. The plot of weight versus the relaxation time constant is defined as the relaxation time spectrum. Induced‐polarization decay‐curve measurements were performed on 123 samples from the Daqing oilfield using a four‐electrode technique. A singular‐value decomposition method was used to transform the induced‐polarization decay data into a spectrum. Different models to estimate the permeability were discussed. The results of the research indicate that the induced‐polarization measurements greatly improve the statistical significance of permeability correlations. Compared with the traditional forms, AφC and AFC, the forms, ATBφC and ATBFC, have lower error factors, where T, Φ and F are the geometric mean time constant of the induced‐polarization relaxation time spectrum, the porosity and the resistivity formation factor, respectively, and A, B and C are constants. The mean time constant is the decisive parameter in the permeability estimation and it is not completely independent of the resistivity formation factor. The additional use of the porosity and the resistivity formation factor leads to an appreciable improvement. It is concluded that this new model will make it possible to estimate the permeability of a shaly sand reservoir downhole.  相似文献   

17.
与可控源音频大地电磁(CSAMT)相比,广域电磁法通过采用全区视电阻率定义,突破了卡尼亚视电阻率所需的远区条件限制,极大拓展了可控源电磁观测区域和探测深度.考虑到电偶源激发场的三维特征以及地下复杂三维结构,为提高广域电磁数据解释精度,本文实现了基于二次耦合势的广域电磁法三维正演计算.该算法利用Helmholtz定理将麦克斯韦方程转化为库伦规范下的磁矢势和电标势耦合方程,有效改善了离散所得大型线性方程组的谱性质,并通过强加散度条件来消除电场伪解的影响.此外,采用散射场方法,其中一次场使用准解析法求解,二次场使用有限体积法求解,克服了局部激发场源奇异性问题.通过与一维层状模型下电偶源产生的电磁场准解析解对比,验证了本文算法的正确性.在此基础上,利用本文的正演算法对比分析了广域电磁法与CSAMT对典型三维目标体的探测能力,结果表明在相同的观测条件下,广域电磁法能够更准确地反映地下目标体信息,拥有更优的分辨能力.  相似文献   

18.
We carried out a magnetotelluric field campaign in the South–East Lower Saxony Basin, Germany, with the main goal of testing this method for imaging regional Posidonia black shale sediments. Two‐dimensional inversion results of the magnetotelluric data show a series of conductive structures correlating with brine‐saturated sediments but also with deeper, anthracitic Westphalian/Namurian coals. None of these structures can be directly related with the Posidonia black shale, which appears to be generally resistive and therefore difficult to resolve with the magnetotelluric method. This assumption is supported by measurements of electrical resistivity on a set of Posidonia shale samples from the Hils syncline in the Lower Saxony basin. These rock samples were collected in shallow boreholes and show immature (0.53% Ro), oil (0.88% Ro), and gas (1.45% Ro) window thermal maturities. None of the black shale samples showed low electrical resistivity, particularly those with oil window maturity show resistivity exceeding 104 Ωm. Moreover, we could not observe a direct correlation between maturity and electrical resistivity; the Harderode samples showed the highest resistivity, whereas the Haddessen samples showed the lowest. A similar trend has been seen for coals in different states of thermal maturation. Saturation of the samples with distilled and saline water solutions led to decreasing electrical resistivity. Moreover, a positive correlation of electrical resistivity with porosity is observed for the Wickensen and Harderode samples, which suggests that the electrical resistivity of the Posidonia black shale is mainly controlled by porosity.  相似文献   

19.
Abstract

Experimental work on electromagnetic streamflow measurements on the tidal Fraser River in British Columbia shows that the method of using the earth's magnetic field has two advantages: it gives an instantaneous value of the water velocity integrated over the entire cross section of the river and it is independent of temperature. In the Canadian climate both factors are important. The instrumentation is relatively inexpensive and it consists of a digital to analog converter, strip chart recorder, cable and silver electrodes. The instrumentation is essential for noise filtering and signal amplification. However, the final interpretation of the measured signal is quite difficult; it requires measurements from an electronic analog of the river cross section, resistivity of the ground below, conductivity of the water and a numerical hydrodynamic model. The flow velocities obtained from the measurements of induced potentials, caused by the Fraser River flowing across the earth's magnetic field, compared favourably with velocities computed from a proven hydrodynamic numerical model.  相似文献   

20.
地-空瞬变电磁法电阻率成像研究与应用   总被引:1,自引:0,他引:1  
地-空瞬变电磁法(Semi-airborne transient electromagnetic,SATEM)凭借适应能力强、探测深度大、实时性强等特点,适用于湖泊、沼泽、山区等地形复杂地区观测.SATEM接收数据量大、精度要求高,传统成像方法基于地面视电阻率计算未考虑飞行高度,开展SATEM的高精度快速成像研究对实际...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号