首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary:Tropical Atlantic Variability (TAV) is simulated in a coupled GCM. The TAV seems to be consistent with a dipole mode that involves both surface and subsurface oceanic dynamics. The poor correlation of the tropical North and South Atlantic SST is suggested to be distorted by the presence of a symmetric tropical Atlantic mode.  相似文献   

3.
4.
Regional climate simulation can generally be improved by using an RCM nested within a coarser-resolution GCM. However, whether or not it can also be improved by the direct use of a state-of-the-art GCM with very fine resolution, close to that of an RCM, and, if so, which is the better approach, are open questions. These questions are important for understanding and using these two kinds of simulation approaches, but have not yet been investigated. Accordingly, the present reported work compared simulation results over China from a very-fine-resolution GCM (VFRGCM) and from RCM dynamical downscaling. The results showed that: (1) The VFRGCM reproduces the climatologies and trends of both air temperature and precipitation, as well as inter-monthly variations of air temperature in terms of spatial pattern and amount, closer to observations than the coarse-resolution version of the GCM. This is not the case, however, for the inter-monthly variations of precipitation. (2) The VFRGCM captures the climatology, trend, and inter-monthly variation of air temperature, as well as the trend in precipitation, more reasonably than the RCM dynamical downscaling method. (3) The RCM dynamical downscaling method performs better than the VFRGCM in terms of the climatology and inter-monthly variation of precipitation. Overall, the results suggest that VFRGCMs possess great potential with regard to their application in climate simulation in the future, and the RCM dynamical downscaling method is still dominant in terms of regional precipitation simulation.  相似文献   

5.
The snow-sea-ice albedo parameterization in an atmospheric general circulation model (GCM), coupled to a simple mixed-layer ocean and run with an annual cycle of solar forcing, is altered from a version of the same model described by Washington and Meehl (1984). The model with the revised formulation is run to equilibrium for 1 × CO2 and 2 × CO2 experiments. The 1 ×CO2 (control) simulation produces a global mean climate about 1° warmer than the original version, and sea-ice extent is reduced. The model with the altered parameterization displays heightened sensitivity in the global means, but the geographical patterns of climate change due to increased carbon dioxide (CO2) are qualitatively similar. The magnitude of the climate change is affected, not only in areas directly influenced by snow and ice changes but also in other regions of the globe, including the tropics where sea-surface temperature, evaporation, and precipitation over the oceans are greater. With the less-sensitive formulation, the global mean surface air temperature increase is 3.5 °C, and the increase of global mean precipitation is 7.12%. The revised formulation produces a globally averaged surface air temperature increase of 4.04 °C and a precipitation increase of 7.25%, as well as greater warming of the upper tropical troposphere. Sensitivity of surface hydrology is qualitatively similar between the two cases with the larger-magnitude changes in the revised snow and ice-albedo scheme experiment. Variability of surface air temperature in the model is comparable to observations in most areas except at high latitudes during winter. In those regions, temporal variation of the sea-ice margin and fluctuations of snow cover dependent on the snow-ice-albedo formulation contribute to larger-than-observed temperature variability. This study highlights an uncertainty associated with results from current climate GCMs that use highly parameterized snow-sea-ice albedo schemes with simple mixed-layer ocean models.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

6.
Multi-decadal high resolution simulations over the CORDEX East Asia domain were performed with the regional climate model RegCM3 nested within the Flexible Global Ocean-Atmosphere-Land System model, Grid-point Version 2 (FGOALS-g2). Two sets of simulations were conducted at the resolution of 50 km, one for present day (1980–2005) and another for near-future climate (2015–40) under the Representative Concentration Pathways 8.5 (RCP8.5) scenario. Results show that RegCM3 adds value with respect to FGOALS-g2 in simulating the spatial patterns of summer total and extreme precipitation over China for present day climate. The major deficiency is that RegCM3 underestimates both total and extreme precipitation over the Yangtze River valley. The potential changes in total and extreme precipitation over China in summer under the RCP8.5 scenario were analyzed. Both RegCM3 and FGOALS-g2 results show that total and extreme precipitation tend to increase over northeastern China and the Tibetan Plateau, but tend to decrease over southeastern China. In both RegCM3 and FGOALS-g2, the change in extreme precipitation is weaker than that for total precipitation. RegCM3 projects much stronger amplitude of total and extreme precipitation changes and provides more regional-scale features than FGOALS-g2. A large uncertainty is found over the Yangtze River valley, where RegCM3 and FGOALS-g2 project opposite signs in terms of precipitation changes. The projected change of vertically integrated water vapor flux convergence generally follows the changes in total and extreme precipitation in both RegCM3 and FGOALS-g2, while the amplitude of change is stronger in RegCM3. Results suggest that the spatial pattern of projected precipitation changes may be more affected by the changes in water vapor flux convergence, rather than moisture content itself.  相似文献   

7.
An ocean general circulation model is used to study the influence of positive precipitation anomalies associated with El Nino and La Nina events. In this idealized model, the precipitation over the appropriate part of the equatorial Indo-Pacific region is doubled for one year. At the surface, salinity anomalies of up to –0.9 parts per thousand result from this anomalous precipitation. Perturbation surface currents ranging from 10–100% of the climatological values are induced in the tropical Indian and Pacific Oceans. A return flow is found beneath the thermocline with upwelling (downwelling) in (outside) the region of enhanced precipitation. The net effect of the precipitation anomalies is to generate a zonal overturning cell which transports fresher surface water away from the forcing region and replaces it with cooler, more saline water from below.  相似文献   

8.
条件不稳定湿大气中三维理想地形上空对流的动力学特征   总被引:4,自引:1,他引:4  
董继立  谈哲敏 《气象学报》2008,66(3):293-309
条件不稳定湿大气情况下,气流经过三维地形可以形成不同性质的对流系统以及不同特征的地形流结构,其对流系统、地形流的性质主要取决于地形上空的对流触发、对流-地形流-重力波三者之间的相互作用,同样这些过程对于地形降水的性质、分布起重要的作用.根据不同湿Fr数(Froude number),湿条件不稳定大气经过三维小尺度山地上空时其对流和地形流动存在4种不同的流域(flow regirnes):(1)下游传播对流模态;(2)上游传播和下游传播共存对流模态;(3)山峰附近准静止和下游传播共存对流模态;(4)下坡稳定和下游传播对流共存模态.地形上空对流系统主要可以通过两种不同机制形成:(1)地形直接的抬升或减速作用;(2)在地形流形成后,由于地形流本身特性(如上游分离、背风涡旋和下坡重力波破碎)触发.在较大的Fr数情况下,地形上空对流生成后反过来可以破坏上、下游的地形流结构,但对背风坡的重力波破碎影响较小.不同初始对流有效位能(CAPE)不仅可以影响对流系统的传播、发展,而且可以影响整体地形流性质.较低的初始CAPE有利于地形流的形成,此时对流对地形流结构特征的影响相对较小,其流场性质与低Fr数流域性质相似.  相似文献   

9.
Summary Quantitatively comparative experiments of moist convection using hydrostatic and non-hydrostatic models are reviewed and a further study is made of the suitability of the hydrostatic approximation for a high-resolution model when the grid size falls below 20 km. Idealized moist convection is treated, and then the torrential rain that occurred on 6 August 1993 in Kagoshima, southern Kyushu, Japan is simulated by each model. An explicit warm-rain process predicting cloud water and rainwater and the scheme of moist convective adjustment are individually or conjunctively employed in the model. The effect of hydrostatic water loading is also examined in detall.For the simulation of idealized convection, the hydrostatic simulation tends to overestimate and overexpand precipitation in comparison with the non-hydrostatic counterpart, and the drag effect of hydrostatic water loading is more significant for convective development than the non-hydrostatic effect. In the 20-km simulations, however, the hydrostatic simulation with hydrostatic water loading produces results that are comparable to the nonhydrostatic counterpart. For the simulation with real data, the comparative results well correspond to those of idealized convection. Furthermore, the 5 km hydrostatic simulation overestimates total precipitation more than that of dealized convection. On the basis of these results, when developing 1020 km numerical weather prediction (NWP) models, hydrostatic water loading should be evaluated in preference to adopting non-hydrostatic models, and a non-hydrostatic model with hydrostatic water loading is thought to be recommendable for a high-resolution NWP model.With 7 Figures  相似文献   

10.
 A general circulation model is used to examine the effects of reduced atmospheric CO2, insolation changes and an updated reconstruction of the continental ice sheets at the Last Glacial Maximum (LGM). A set of experiments is performed to estimate the radiative forcing from each of the boundary conditions. These calculations are used to estimate a total radiative forcing for the climate of the LGM. The response of the general circulation model to the forcing from each of the changed boundary conditions is then investigated. About two-thirds of the simulated glacial cooling is due to the presence of the continental ice sheets. The effect of the cloud feedback is substantially modified where there are large changes to surface albedo. Finally, the climate sensitivity is estimated based on the global mean LGM radiative forcing and temperature response, and is compared to the climate sensitivity calculated from equilibrium experiments with atmospheric CO2 doubled from present day concentration. The calculations here using the model and palaeodata support a climate sensitivity of about 1 Wm-2 K-1 which is within the conventional range. Received: 8 February 1997 / Accepted: 4 June 1997  相似文献   

11.
The NASA/GISS GCM is used to estimate the evaporative contributions of several oceanic regions (defined by temperature) to Antarctica's July precipitation. Tracer diagnostics in the GCM suggest that the weighted average evaporative source temperature for Antarctic precipitation as a whole is about 12°C. The average source temperature for local precipitation there varies from 9° C to 14° C. To examine the effect of evaporative source on water isotope concentration, the GCM also follows a global deuterium (HDO) tracer and deuterium tracers evaporating from each oceanic region. The results suggest that although evaporative source temperature does affect the concentrations of the individual HDO tracers, differences in evaporative source do not explain the scatter in the roughly linear relationship between condensation temperature and isotope concentration. Offprint requests to: R Koster  相似文献   

12.
13.
This study estimated the largely unstudied downward transport and modification of tropospheric ozone associated with tropical moist convection using a coupled meteorology-chemistry model. High-resolution cloud resolving model simulations were conducted for deep moist convection events over West Africa during August 2006 to estimate vertical transport of ozone due to convection. Model simulations realistically reproduced the characteristics of deep convection as revealed by the estimated spatial distribution of temperature, moisture, cloud reflectivity, and vertical profiles of temperature and moisture. Also, results indicated that vertical transport reduced ozone by 50% (50 parts per billion by volume, ppbv) in the upper atmosphere (12–15 km) and enhanced ozone by 39% (10 ppbv) in the lower atmosphere (<2 km). Field observations confirmed model results and indicated that surface ozone levels abruptly increased by 10–30 ppbv in the area impacted by convection due to transport by downdrafts from the upper troposphere. Once in the lower troposphere, the lifetime of ozone decreased due to enhanced dry deposition and chemical sinks. Ozone removal via dry deposition increased by 100% compared to non-convective conditions. The redistribution of tropospheric ozone substantially changed hydroxyl radical formation in the continental tropical boundary layer. Therefore, an important conclusion of this study is that the redistribution of tropospheric ozone, due to deep convection in non-polluted tropical regions, can simultaneously reduce the atmospheric loading of ozone and substantially impact the oxidation capacity of the lower atmosphere via the enhanced formation of hydroxyl radicals.  相似文献   

14.
To study the time-dependent response of the Asian summer monsoon to obliquity forcing, we analyze a 284,000-year long transient simulation produced by a fully coupled global climate model (GCM) using a new phase mapping (PHASEMAP) approach. Here we focus on understanding the phase response of monsoonal circulation to insolation forcing at the Earth-orbital obliquity band (41 Kyr). Our results show that the East Asian summer monsoon (EASM) can be divided into two geographic regions: the North East Asian summer monsoon (NEASM) and the South East Asian summer monsoon (SEASM). The Indian summer monsoon (ISM) and the SEASM are in phase at the obliquity band, strengthened with an increase in obliquity from Obliquity minima (Omin) to Obliquity maxima (Omax). The NEASM is out of phase with the ISM and SEASM, weakened with an increase in obliquity from Omin to Omax. We hypothesize that the inverse phase between the NEASM and the ISM at the obliquity band results from an ISM–NEASM teleconnection linked to the formation mechanism of the Bonin High.  相似文献   

15.
Summary Different measures of variability of precipitation are discussed and it is concluded that it is preferable to apply therelative intersequential variability in cases when overall trends are feared in the records. 127 stations in Sweden have been studied for the period 1901–1950 as to the relative interannual variability of precipitation. For a selection of these stations other measures have also been calculated and a comparison has been made between the coefficient of variation and the intersequential variability. As the relation between these measures varies with the existence of serial correlations in the records the serial correlation coefficient for a lag of one element has been calculated. The value of the coefficient has indicated the existence of trends in certain areas of Sweden generally in agreement with earlier investigations byÅngström.The geographical distribution of the relative interannual variability in Sweden is discussed and also the distribution of anomalies of relative variability compared with the world's normal curve completed byConrad. It is shown that the relationship between relative variability and precipitation amount for Swedish stations can be expressed by a hyperbolic function deviating fromConrad's world normal curve only by an additive constant.
Zusammenfassung Der Verfasser erörtert verschiedene Maße für die Variabilität des Niederschlages und kommt zu der Feststellung, daß in den Fällen, in denen eine einseitige Tendenz in den Beobachtungsreihen zu befürchten ist, die Verwendung derrelativen reiheninternen Variabilität am geeignetsten ist. 127 Stationen in Schweden sind für die Periode 1901–1950 im Hinblick auf die relative interannuelle Variabilität des Niederschlags untersucht worden. Für eine Auswahl dieser Stationen wurden auch andere Maße berechnet und der Schwankungskoeffizient mit der reiheninternen Variabilität verglichen. Da die Beziehung zwischen diesen Maßen mit dem Auftreten von Serienkorrelationen in der Beobachtungsreihe variiert, wurde der Serienkorrelationskoeffizient für eine Verschiebung eines Elements berechnet. Die erhaltenen Werte des Koeffizienten deuten auf das Vorhandensein gesetzmäßiger Tendenzen in gewissen Gebieten Schwedens hin und stehen im allgemeinen in guter Übereinstimmung mit älteren Untersuchungen vonÅngström.Die geographische Verteilung der relativen interannuellen Variabilität in Schweden sowie die Verteilung der Anomalien der relativen Variabilität, verglichen mit der vonConrad aufgestellten Weltnormalkurve, werden erörtert. Schlie\lich wird gezeigt, daß es möglich ist, den Zusammenhang zwischen relativer Variabilität und Niederschlagsmenge für schwedische Stationen durch eine hyperbolische Funktion zu beschreiben, die vonConrads Weltnormalkurve nur durch eine additive Konstante abweicht.

Résumé L'auteur mentionne différentes mesures de la variabilité des précipitations et conclut qu'il est préférable d'appliquer la variabilité relative interséquentielle lorsqu'une tendance unilatérale des séries d'observations est à craindre. Il a étudié la variabilité relative interannuelle des précipitations pour 127 stations suédoises (1901/50) ainsi que d'autres mesures de variabilité pour un choix restreint de stations et il a comparé le coefficient de variation à la variabilité relative interséquentielle. Comme la relation entre ces mesures varie avec l'existence de corrélations de série dans les séries d'observations, le coefficient de corrélation de série a été calculé pour un déplacement d'un terme; la valeur de ce coefficient indique l'existence de tendances générales dans certaines régions de Suède, ce qui confirme les résultats anciens deÅngström.La distribution géographique de la variabilité relative interannuelle en Suède ainsi que celle des anomalies de la variation relative comparée à la courbe normale mondiale dressée parConrad fait l'objet d'un examen. Enfin on montre qu'il est possible d'exprimer la relation entre la variabilité relative et la quantité de précipitations en Suède par une fonction hyperbolique qui ne diffère de la courbe normale deConrad que par une constante additive.


With 5 Figures

Dedicated to Dr.Anders K. Ångström on the occasion of his 70th birthday.  相似文献   

16.
The sensitivity of climate to an increase in sea surface temperature (SST) and CO2, as well as cloud feedback processes, is analyzed through a series of aquaplanet experiments listed in the Coupled Model Intercomparison Project. Rainfall is strengthened in a +4K anomaly SST experiment due to the enhanced surface evaporation; while in a quadruple CO2 experiment, precipitation and total cloud cover are appreciably weakened. In both the +4K and quadruple CO2 (4xCO2) experiments, the Hadley cell is impaired, with an increase in moderate subsidence and a decrease in the frequency of strong convective activity. Regarding cloud radiation forcing (CRF), the analysis technique of Bony et al. (Climate Dynamics, 22:71–86, 2004) is used to sort cloud variables by dynamic regimes using the 500-hPa vertical velocity in tropical areas (30°S–30°N). Results show that the tropically averaged CRF change is negative and is dominated mainly by the thermodynamic component. Within convective regimes, the behavior of longwave CRF is different in the +4K and 4xCO2 experiments, with positive and negative changes, respectively. The globally averaged CRF also reveals a negative change in both aquaplanet and Earthlike experiments, implying that clouds may play a role in decelerating global warming. The calculated climate sensitivity demonstrates that our results are close to those obtained from other models, with 0.384 and 0.584?Km2?W?1 for aquaplanet and Earthlike experiments, respectively.  相似文献   

17.
18.
A control integration with the normal solar constant and one with it increased by 2.5% in the National Center for Atmospheric Research (NCAR) coupled atmosphere-ocean Climate System Model were conducted to see how well the actual realized global warming could be predicted just by analysis of the control results. This is a test, within a model context, of proposals that have been advanced to use knowledge of the present day climate to make "empirical" estimates of global climate sensitivity. The scaling of the top-of-the-atmosphere infrared flux and the planetary albedo as functions of surface temperature was inferred by examining four different temporal and geographical variations of the control simulations. Each of these inferences greatly overestimates the climate sensitivity of the model, largely because of the behavior of the cloud albedo. In each inference the control results suggest that cloudiness and albedo decrease with increasing surface temperature. However, the experiment with the increased solar constant actually has higher albedo and more cloudiness at most latitudes. The increased albedo is a strong negative feedback, and this helps account for the rather weak sensitivity of the climate in the NCAR model. To the extent that these model results apply to the real world, they suggest empirical evaluation of the scaling of global-mean radiative properties with surface temperature in the present day climate provides little useful guidance for estimates of the actual climate sensitivity to global changes.  相似文献   

19.
Regional climate model (RCM) RegCM3 with 50 km horizontal resolution driven from the lateral boundaries by the data from NCEP/NCAR re-analysis is used in a series of ten climate downscaling experiments over the eastern Mediterranean (EM) region. Results of the experiments are characterized by seasonal precipitation patterns with notable offshore precipitation zones positioned ~50 km westward of a less intense precipitation zone over the coastal area. Atmospheric processes determining the distribution of seasonal precipitation patterns in the EM are analyzed based on results of the RCM experiments performed. Level of success of the model representation of the actual precipitation over the ECM appears to be depending on that of precipitation balance over different parts of the domain. Excessive moisture convergence over a sub-area usually takes place at the expense of moisture divergence from neighboring areas. Synoptic mechanism causing formation of the precipitation zone in the offshore zone appears to be associated with the role of meridionally oriented atmospheric trough systems extending from Scandinavia or Siberia to the EM during the period with rainy events. In such situations, air flows with strong northern components lead to intense transport of cold air masses to the EM. Meeting of the cold air masses the warm and humid air over the sea surface in the offshore zone causes formation of persistent squall lines and heavy rains there. Such processes may continue quite long as long as the troughs are stationary.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号