首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对阳江市1980—2015年降雨资料进行统计分析,结果表明:阳江市强降水(小时雨强≥20 mm)年平均天数为14.2 d,连续性强降水(1 d出现2次或以上的强降水)年平均天数为4.2 d,超强降水(小时雨强≥50 mm)年平均2.1 d;强降水主要出现在4—9月,其中5—6月是阳江市强降水多发期,04:00—11:00和14:00—16:00是阳江强降水多发时段。  相似文献   

2.
山东省短时强降水天气的特征分析   总被引:1,自引:0,他引:1  
通过分析山东省2007—2010年常规观测资料、山东省区域和国家级自动气象观测站降水观测资料,研究短时强降水天气的时间和地理分布特征,分析短时强降水出现的时间、落区和强度,并对1小时降水量≥100mm的短时特强降水的天气系统进行了分析,结果表明:2007—2010年山东省短时强降水天气一般出现在5—10月,7—8月较多;1小时降水量≥100mm的短时特强降水都发生在7—8月;出现短时强降水天气的时段以午后至傍晚居多,夜间次之,上午最少;当500hPa位于西风槽前和副高边缘,700hPa和850hPa位于西风槽前或存在切变线,地面有冷锋影响时,有可能发生1小时降水量≥100mm的短时特强降水天气。  相似文献   

3.
利用济南地区2008—2017年3—11月50个区域自动站逐时降水数据,研究该区域雨强超过10.0、20.0、30.0 mm·h~(-1)的降水量时空变化特征。结果表明:济南全区小时强降水受城市化、地形和盛行风的影响显著,济南城区、南部山区、长清山前地带、商河等地降水偏多,济南市区下风向近郊、章丘、济阳、平阴一带强降水偏少。7、8月济南地区小时强降水最多,雨强≥20.0 mm·h~(-1)的月平均降水量均超过40.0 mm,贡献率均超过25.0%。小时强降水日变化呈双峰双谷特征,11:00和23:00前后为强降水最少时段,04:00—05:00和14:00—21:00是强降水较多时段。大部分站点强降水峰值出现在午夜至凌晨和下午至傍晚时段。  相似文献   

4.
利用1998-2020年三峡库区35个测站的小时降水资料,围绕近23年三峡库区小时强降水(≥20 mm·h-1)和小时极端强降水(≥50 mm·h-1)的总降水量、频次、强度等指标,分析极端降水发生的时空变化特征,并对比分析2010年前后三峡小时极端降水变化特征。结果表明:1998年三峡库区小时强降水与极端强降水发生次数与强度均异常偏多。若剔除该年,1999-2020年小时强降水与极端强降水发生总频次均无显著变化趋势。近23年,小时强降水平均每年每站发生3.8次,大部分站点年均发生3.0~5.0次;小时极端强降水年均发生5.5次,大部分站点年均发生<0.25次,中部山区的建始-宣恩一带年均发生次数较多。2010年后年平均小时强降水量减小了10.4 mm,减小的区域主要发生在三峡库区西部的重庆地区,该区域年平均减小15.5 mm;总体有31.4%的站点年平均小时强降水量与发生次数均有所增加,湖北中部的建始-来凤一带增幅较为明显,邻近5站的年强降水雨量平均增加16.1 mm;强降水小时雨强显示增加特征站点占48.6%,强降水小时雨强增加的范...  相似文献   

5.
常煜  樊斌  张小东 《气象科学》2018,38(2):229-236
利用1991—2015年夏季(6—8月)内蒙古地区111个国家气象站小时降水量资料,对内蒙古不同气候区(极干旱、干旱、半干旱、半湿润和湿润)短时强降水(1 h降水量≥20 mm)进行检验分析,采用累积概率方法定义内蒙古夏季不同气候区短时强降水。检验结果表明:内蒙古地区年平均降水量和小时降水量极值自西部极干旱区向东部半湿润、湿润区递增,高值区位于大兴安岭东部,次高值区位于阴山山脉以南。内蒙古极干旱区小时降水量极值低于20 mm,半湿润区和湿润区小时降水量极值高于50 mm,个别站点甚至达到100 mm以上。但在半湿润区和湿润区东部小时降水量超过20 mm年平均发生仅为1次,其余地区均1次。在内蒙古极干旱区、干旱区、半干旱区、半湿润区和湿润区小时降水量分别达到6.1、9.8、12.5、15.2和14.3 mm·h~(-1)属于极端降水事件,小时降水量≥20 mm不宜作为内蒙古短时强降水定义。综合上述研究,结合内蒙古地区地形、地貌等因素,将内蒙古极干旱区和干旱区短时强降水定义为5 mm·h~(-1),半干旱区、半湿润区和湿润区短时强降水定义为10 mm·h~(-1)。  相似文献   

6.
利用1986—2016年62个国家气象站5—10月的逐日和逐小时降水观测资料,分析了辽宁省强降水的发生规律,包括强降水发生范围,逐年、逐月、逐旬、逐时变化特征、空间分布特征、雨强分布规律等。结果表明:1)1994年辽宁省强降水频繁、雨强大、降水范围大,为典型强降水年份。2)辽宁省强降水主要集中在7—8月,尤其是7月下旬—8月上旬,占总发生次数的38.3%。3)早晨和下午为短时强降水高发时段,上午及夜里为短时强降水的低发时段。4)辽宁省强降水呈东多西少、南多北少特点,存在3个高值区, 2个低值区。5)辽宁省短时强降水以20—40mm/h为主,日强降水以50—100mm/24h为主。  相似文献   

7.
利用2008—2018年地面自动站逐小时降水资料,统计分析重庆短时强降水的时空分布特征,结果表明:1)重庆短时强降水高频中心在西部合川,东北部开州、巫溪和云阳,东南部酉阳、秀山地区,均毗邻陡峭山脉,地形抬升和特殊地形对降水有增幅作用;2)短时强降水主要集中在6—8月,7月为峰值期,20~30 mm/h和30~50 mm...  相似文献   

8.
黔西南短时强降水时空特征分析   总被引:1,自引:0,他引:1  
利用黔西南州2006—2016年8县站全年逐小时降水量,对短时强降水特征及其与暴雨的关系进行分析,得出:(1)87%的短时强降水集中在20~40 mm/h,空间基本特征为"东多西少";94%的短时强降水出现在5—8月,3个级别的短时强降水都是在6月到达峰值;20~40 mm/h的短时强降水频次明显大于其它级别,60 mm/h的短时强降水只在夏季出现过;短时强降水主要出现在夜间,占总频次的70%,白天为低发时段,其中46%的短时强降水出现在前半夜,后半夜占25%,上午出现的频次最少,且3个级别的短时强降水都是在前半夜出现的频次最多。(2)黔西南州68%的暴雨天气中伴有短时强降水,二者的相关系数为0.94;所有短时强降水累计频次、暴雨日数与暴雨过程中出现的短时强降水的累积频次三者的空间分布基本特征均为"东多西少";暴雨量与当日最大小时降水量为显著正相关关系。  相似文献   

9.
基于临夏州2006—2018年4—9月自动气象站逐日小时降水量,在传统降水百分位法、Z指数法和平方根变换法3种方法中,确定了短时强降水阈值的最佳计算方法,在此基础上分析临夏州短时强降水的时空分布特征.平方根变换法确定的临夏州短时强降水阈值为14.6 mm·h-1.临夏州短时强降水空间分布表现为自中南部分别向西北和东南减...  相似文献   

10.
使用浙江省69个基准站2006—2015年5—9月以及同期杭州城区58个区域自动站小时降水资料,利用Gamma分布计算浙江省短时强降水的累积概率,同时综合其频率分布,揭示杭州市小时降水强度的分布特征。此外,以杭州市区为例,利用探空资料分析不同量级(≥50 mm·h-1、30~50 mm·h-1、20~30 mm·h-1、20 mm·h-1)小时雨强出现的环境指标,并基于核密度估计方法提取预报指标。结果表明:杭州城区出现小于等于10 mm·h-1的降水概率高达98.4%,≥20 mm·h-1的概率仅0.05%;受杭州湾偏东气流影响,杭州市区发生短时强降水频率相对较高,尤其是余杭区的东部和西北山区;自2008年以来杭州市区每年短时强降水日数为18~28 d,其中大于等于50 mm·h-1的短时强降水日所占比例高达10%~20%(除2009年和2012年低于10%外);可用于预报杭州市区短时强降水的最佳环境因子依次为整层可降水量、K指数、最佳抬升指数、沙氏指数、925 h Pa露点温度和强天气威胁指数;在判断杭州市区短时强降水强度上表现最好的环境因子为整层可降水量,其次是850 h Pa垂直速度和925 h Pa散度。  相似文献   

11.
利用国家气象中心1998—2018年6—9月0.1°×0.1°分辨率的逐小时卫星融合降水资料,分析河北省暖季短时强降水(1 h降水量≥20 mm)的空间分布、日变化特征及成因,结果表明:短时强降水过程的平均小时降水量、降水频次、降水强度、峰值降水量自东南向西北递减,其中东部沿海降水量最大,太行山和燕山的迎风坡附近存在降...  相似文献   

12.
利用陕西省99个国家级气象站逐小时降水量资料,分析了2005—2018年5—10月陕西短时强降水时空分布特征,结果表明:(1)2005—2018年陕西极值雨强呈振荡减小趋势,7月出现的强降水累计频次最多,而8月极值雨强最大;短时强降水主要发生在午后到夜间,日变化呈单峰分布,强降水频次峰值出现在17—00时,但极值雨强易出现在22—00时。(2)陕南为陕西短时强降水高发区,极值雨强可达40~80 mm/h,镇巴、平利雨强可达90 mm/h;榆林北部特别是西北部短时强降水日数少,极值雨强小,最大不超过50 mm/h;关中平原地区短时强降水日数少,但极值强,最大可达1015 mm/h。5—10月陕西各地区短时强降水日、极值雨强有明显月际差异,7—8月短时强降水出现的范围广,日数多,强度大;5、6和9月范围、日数及强度均较小。(3)陕西各区域短时强降水日变化差异明显,陕北西部、关中西部呈单峰型,陕北东部、关中东部双峰明显,陕南日变化相对较小。陕西极值雨强主要出现在17—23时,关中东部、安康极值雨强多出现在19时,商洛极值雨强多出现在18时。  相似文献   

13.
利用2012—2021年海南岛323个地面气象观测站逐小时降水资料及ERA5高分辨率资料,统计分析了海南岛近10 a的极端短时强降水时空分布特征,利用合成分析法探讨了产生极端短时强降水的环流背景。结果表明:海南岛极端短时强降水每年约为422.3次,占短时强降水的8%。极端短时强降水的季节和日变化明显,多发生在4—10月的午后(14:00—19:00),8月站次最多,近10 a发生极端短时强降水的站次最多为11次,出现在海南岛西北部。极端短时强降水日变化呈单峰型,峰值出现在17:00,为每年62.1次。午后发生极端短时强降水的平均降水强度较大,均值为67.8 mm·h-1,峰值为111.5 mm·h-1。海南岛极端短时强降水年、暖季(4—9月)的空间分布有两个高发地区,为海南岛西北部和东部沿海地区,暖季的天气系统是影响海南岛极端短时强降水的主要天气系统。海南岛极端短时强降水逐月空间分布差异与海陆风、地形均有密切关系,各月触发条件不同,7—8月极端短时强降水相对较多。  相似文献   

14.
侯淑梅  孙敬文  孙鹏程  谷山青  邱粲  刘程 《气象》2020,46(2):200-211
利用2008—2017年4一10月山东省加密自动气象观测站(简称全部站)和国家气象观测站(简称国家站)逐小时1 mm以上降水量资料,通过对比分析,探究不同分辨率数据对极端短时强降水时空分布特征的刻画效果。结果表明如下:全部站小时降水量的偏态特征比国家站明显,若分析小时降水量的平均状态,两者均具有代表性,若分析短时强降水的极端性,全部站数据更具有优越性。将各站第99.5%分位数作为极端短时强降水的阈值最合理,全部站和国家站对于30~45 mm阈值的空间分布特征相似,45 mm以上的阈值,全部站的数值和范围均大于国家站。山东省大部地区的极端短时强降水强度集中在40~60 mm·h~(-1),全部站和国家站在此区间的空间分布特征相似。国家站数据不能刻画40 mm·h~(-1)以下和60 mm·h~(-1)以上的极端短时强降水的空间分布特征。极端短时强降水强度的空间分布特征与地理位置及地形特征密切相关。鲁东南地区的极端短时强降水强度、日最大降水量及夏季降水量、年降水量均居山东省之首,鲁西北地区虽然强降水频次高、强度大,但与年降水量和夏季降水量没有正相关关系。全部站与国家站极端短时强降水频次的月变化和日变化特征一致,但国家站不能完全代表山东省极端短时强降水强度的月变化和日变化平均状况,全部站数据能更准确地反映山东省的时间变化特征。  相似文献   

15.
西南地区短时强降水的气候特征分析   总被引:5,自引:2,他引:3  
毛冬艳  曹艳察  朱文剑  田付友  郝丽萍  康岚  张涛 《气象》2018,44(8):1042-1050
利用国家级地面气象站逐小时和日降水数据集资料,对西南地区短时强降水的气候特征进行了分析,并对近30年来强短时强降水和强暴雨的变化趋势进行了分析。结果表明:西南地区短时强降水主要集中在4-10月;三个高发区分别位于贵州东南部、四川盆地西南部和云南东南部,年均发生次数约5~6次;强度一般为20~30 mm·h~(-1),其中贵州30 mm·h~(-1)以上的小时降水强度所占比例最高,四川盆地西部边缘地区小时降水最强,超过80 mm·h~(-1),极端小时降水达123.1 mm·h~(-1);短时强降水具有明显的夜发性,02时左右为发生频次的峰值时段。从近30年西南地区超过第90百分位的强短时强降水与强暴雨的长期变化趋势来看,强短时强降水呈现频次增加、强度增强的变化趋势,强暴雨则变化不明显。  相似文献   

16.
利用怀化市11个国家站和403个区域站2012—2017年4—9月逐小时降水量资料以及NCEP资料,采用统计分析方法分析了怀化市短时强降水的时空分布特征,同时采用天气诊断分析方法对产生短时强降水的天气系统进行归纳,得到如下结论:怀化短时强降水的频数年际变化大,发生频次最多的是2017年,达103次,最少的是2013年,仅35次,且主要集中在5—7月,6月最多,4月最少;其日变化呈单峰型,4—10时最易发生短时强降水,峰值出现在08时,11—23时为低发时段。短时强降水的频数高、日数多,空间分布表现为北部多,中南部少;2/3的短时强降水极值对应等级为50~79.9 mm·h~(-1),最大值为129.9 mm·h~(-1),雪峰山西侧(会同、洪江、溆浦)以及辰溪境内最易发生≥80 mm·h~(-1)的短时强降水。产生短时强降水的天气系统主要有低涡型和切变线型。当850 hPa低涡在关键区域活动时,低涡型短时强降水主要集中在低涡偏东偏南位置,而切变线型短时强降水主要集中在850 hPa切变线偏南1~3个纬距内,尤其是与低空急流出口区左侧叠加的区域。  相似文献   

17.
伍红雨  李春梅  刘蔚琴 《气象》2017,43(3):305-314
利用1961—2014年广东32个气象观测站逐小时降水资料,采用线性趋势分析、Mann Kendall检验、功率谱分析、计算趋势系数等统计诊断方法,分析了广东小时强降水在年以及前、后汛期的气候特征及变化。结果表明,广东年、前、后汛期多年平均小时强降水的次数、强度、降水量和贡献率的空间分布均呈沿海向内陆递减。近54年来,广东平均小时强降水的次数、强度、降水量和贡献率在年以及前、后汛期的时间尺度上均为显著上升的趋势,与同期广东年暴雨次数和年降水变化不明显有明显差异。广东大部分测站小时强降水量均呈增加的趋势,其中珠三角增加最为显著。近54年来广东年和前汛期小时强降水次数存在3.7年和22年、后汛期存在3年左右的显著周期震荡。广东年和后汛期小时强降水次数在1993—1994年发生增加的突变,前汛期小时强降水次数没有突变发生。  相似文献   

18.
余洋  万蓉  付志康  向怡衡 《气象》2024,50(5):603-615
基于2019年和2020年6—7月GNSS水汽监测网大气可降水量(PWV)资料和并址气象站的地面雨量、温、压、湿等同步观测数据,利用临界成功指数(CSI)和命中率(POD)两个检验指标,探索建立了基于PWV、6小时水汽增量(PWV*)及假相当位温距平(θse*)的短时强降水阈值预报方法,并利用2021年6—7月降水样本对该预报方法进行检验,结果显示CSI和POD分别为0.167和0.593,其评分高于目前常规业务方法对短时强降水的客观预报评分,其中约48%的短时强降水发生在预警之后的24小时内,约78%发生于48小时内。研究区域内78.6%的短时强降水样本发生在连续15小时PWV*的累积值(∑PWV*)≥75mm且连续24小时θse*累积值(∑θse*)≥30K的条件下;PWV高值区叠加∑PWV*和∑θse*的大值区对梅雨期短时强降水以及暴雨发生区域有较好的指示性。  相似文献   

19.
支树林  李婕  陈娟 《气象》2018,44(2):222-232
选取2004—2014年江西省11个ADTD雷电探测定位组网系统所得云地闪探测数据、省内多普勒雷达、探空和自动站资料,并结合重要天气报,将此11年的强对流天气分成短时强降水、有短时强降水伴随的雷雹大风和冰雹(以下简称风雹)和无短时强降水伴随的风雹这三种主要类型,分析它们发生前后的地闪活动特征及其与雷达回波的关系,结果发现,(1)江西省短时强降水、雷暴大风和冰雹分别主要发生在5—8、7—8月和3月;仅发生短时强降水时的站次远多于发生风雹天气时;除早春和盛夏无短时强降水伴随的雷暴大风发生站次较多外,风雹天气常与短时强降水相伴发生。(2)仅有短时强降水天气发生时,其站点地理位置越偏北、小时雨量越大,对应的地闪活动就越剧烈。不同小时雨量对应的地闪数存在较明显的季节性差异,表现为3、4月地闪数以小时雨量为50~55mm时最多;5—7月地闪数随着小时雨量增大总体呈增多趋势,尤以小时雨量为55~60mm时最多;8—9月则以小时雨量为40~45mm时最多。(3)就无短时强降水伴随的风雹天气而言,在3—5月雷暴大风和冰雹发生前30min内的地闪数差异不大,但平均电流强度后者大于前者;在6—9月雷暴大风发生前30min内的地闪数则为冰雹发生前的2~4倍,平均电流强度前者大于后者;该类风雹发生前的地闪数多于仅有短时强降水发生前,正地闪的平均电流强度前者也略强。(4)有短时强降水伴随的风雹发生前的平均正地闪数以8月为最多,而负地闪数则在6月最多;冰雹发生前1h内的地闪数随季节变化不大,而雷暴大风发生前的地闪数存在季节差异,夏季多于春季;另外冰雹的地闪数与冰雹直径存在较好的正相关性。(5)3—8月,有短时强降水伴随的风雹地闪数远多于无短时强降水伴随时;其平均电流强度前者大于后者;该类风雹天气发生前,地闪平均电流强度随季节呈先增大后减小的趋势,而无短时强降水伴随的风雹天气则无此特点。(6)强对流天气发生前,较强回波出现前的负地闪活动远比正地闪活跃,但其电流强度弱于正地闪;45dBz以上回波伸展高度越高,伴随的地闪数也越多,但其平均电流强度变化不明显。  相似文献   

20.
利用甘肃兰州地区144个区域自动站和国家站2010—2018年4—9月逐小时降水资料和地理信息数据,详细分析了兰州市短时强降水的时空分布特征,探讨短时强降水频次与地形因子的关系。结果表明:兰州市短时强降水的阈值为10 mm·h~(-1),短时强降水事件主要发生在7月下旬至8月,21:00—22:00是集中高发时段;短时强降水频次空间分布不均,总体呈南多北少的分布格局,各站虽有显著差异,但未发生明显离散,符合正态分布,且与海拔高度、迎风坡向及坡度等地形因子显著相关,短时强降水高发区主要集中在山谷喇叭口、南风迎风坡、城市热岛区、高寒山区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号