首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The transition from syn- to post-rift is often poorly constrained and in contrast to syn-rift systems, the controls on the development of post-rift systems are poorly understood. This paper documents the timing of the post-rift onset and discusses the controls that affected the subsequent development of the post-rift infill of the North Viking Graben using an integration of seismic and well data. The study enhances our understanding of post-rift system development in general and provides an analogue for other post-rift systems. Within the early post-rift infill of the North Viking Graben five key seismic surfaces were mapped [Base Cretaceous Unconformity (BCU), Intra-Aptian, Top Albian, Top Cenomanian and Top Turonian], which divide the post-rift interval into four key seismic stratigraphic units (K1–K4). The BCU has an intra-Volgian age on the basin slopes and shelfal and terrace areas and is interpreted to mark the end of rifting in the study area. On the footwall crests adjacent to the graben the BCU represents a complex unconformity from the syn- and post-rift combined, and in the graben it forms a conformable contact. Therefore, the BCU could not be used to date the onset of the post-rift in these locations. The thickness variations and age relationships between the syn-rift stratigraphy and the K-units reveal that the early post-rift infill of the North Viking Graben was dominantly controlled by the significant local syn-rift topography, especially in the K1 and K2 stages. The Cretaceous post-rift stratigraphy was also influenced by relative base level, which controlled the sediment source areas, the development of the basin geometry itself and subsequently the style of sediment deposition in the study area. Regional variations are also recognised in the post-rift stratigraphy although these variances are strongly influenced by the local basin physiography.  相似文献   

2.
Silica diagenesis can significantly change physical properties of the host strata and release large volumes of water. Predicting these changes and their timing is essential to understanding compaction, fluid flow and rock deformation in sedimentary basins. In this paper, the influence of silica diagenesis (opal‐A/CT transformation) on physical properties is determined, the sediment volume affected by these changes is mapped, and a new technique to model silica diagenesis is introduced. A petrophysical analysis of 16 exploration wells shows that the opal‐A/CT transformation leads to a porosity reduction of c.20% (from 49 to 29%) in Cenozoic mudstones of the North Viking Graben. Using three‐dimensional seismic reflection data, it is shown that the c.50 m thick opal‐A/CT transformation zone covers an area of >1500 km2, equating to a minimum volume of 75 km3. The spatial and temporal evolution of opal‐A/CT transformation is simulated using an innovative basin modelling approach, the results of which indicate that the transformation started around Middle‐to‐Late Eocene times and then migrated upwards until it gradually fossilised between the Miocene and present. These findings are important, as they help understanding how these sediments compact and when fluids are released by diagenesis.  相似文献   

3.
4.
An equation for correcting log-derived temperatures measured at well depths between 1200 and 5400 m has been derived by comparing log-derived temperatures from wells in the Danish Central Graben (North Sea) with DST temperatures, from the same wells, that are believed to represent true formation temperatures. Equations developed previously using data over different depth ranges from Malaysia and Mexico yield fair results when applied to the North Sea. However, a better fit to the Danish data was obtained using new equations that are similar to those published in the earlier studies. The correction method here is based principally on time since end of circulation (TSC), but it also includes a small dependence on depth. In this study the true subsurface temperature (Ttrue) (°C) is given by where the correction factor f = 3.07·TSC(–0.09)/(0.47·Z(0.175)), Tsurf is the seafloor temperature in °C, Tmeas is the measured log temperature in °C, TSC is in hours, and Z is the depth below seafloor in meters. When TSC is not known, maximum probable, minimum probable, and most likely values can be estimated from the observed trend of TSC with depth.An estimate of the uncertainty in the corrected temperature can be obtained from the equation where is the standard deviation of the error in the correction factor f. This approach can be modified to include the additional uncertainty associated with unspecified TSC.  相似文献   

5.
A small dataset comprising all temperature available data from reliable Horner plots from the Danish Central Graben was examined. Temperatures obtained by extrapolation using standard Horner plots were determined to be lower than true formation temperatures, as interpreted from DST data. Excellent agreement between true formation temperatures and Horner plot temperatures was achieved when the Horner plot temperatures (THP) were corrected upward by an amount proportional to the slope (A) of the Horner plot using the equation where the temperatures and the slope are in degrees Celsius. The standard deviation of the error in the corrected Horner plot temperatures was 2.1°C, indicating that this method is consistent. Further studies using larger numbers of Horner plots from a variety of geographic areas should be carried out to test and refine the hypotheses presented here. Efforts also should be made to understand the causes of variability in slopes of Horner plots.  相似文献   

6.
Abstract The post early Carboniferous subsidence history of the Central North Sea basin can be separated into three major periods: Permian, Triassic and post Mid-Jurassic. Prior efforts to account for this subsidence within an extensional framework have concentrated on the post Mid-Jurassic. These efforts have assumed that the effects of the previous periods of extension necessary to create the Permian and Triassic subsidence are negligible. We consider the 80-km value for the Mid-Jurassic-mid-Cretaceous extension from these efforts a reasonable upper estimate of the likely amount of extension. This value has received considerable criticism as it is almost four times as great as that determined by summing the horizontal displacement (heave) on faults observed on industry seismic lines in the area.
We treat the two earlier phases of extension as one phase and develop a method to estimate the maximum value of this extension. We use this value, with estimates of the total extension from the early Carboniferous to Present, to determine a likely minimum value for the mid-Mid-Jurassic through mid-Cretaceous extension. After justifying the use of Airy isostasy for the loading response of the lithosphere we show that the observed unloaded basement subsidence history is compatible with the parameters we derive for the pre and post Mid-Jurassic extension. Our minimum estimate of 38 km is still significantly higher than that: made by summing the heave on the faults active throughout the Upper Jurassic and lower Cretaceous.  相似文献   

7.
A finite difference model, allowing for episodic movements along different faults, is used to examine the effect of tectonics on the stratigraphic signature in the Oseberg–Brage area in the northern Viking Graben. Constraints are provided by local exploration and production well data and 3-D seismic coverage, and a regional depth-converted seismic line.
In the modelling, we focus on the influence of varying rates of fault movement on stratigraphic signatures such as upflank unconformities and changes in layer thickness. We couple the basinwide features of the northern Viking Graben with the fault-block-scale features of the Oseberg–Brage area by using parameter constraints derived by large-scale modelling as input for the local-scale model. In addition, subsidence patterns resulting from the basinwide model were used as background subsidence for the fault block model of the Oseberg–Brage area.
The model results indicate that the alternating activation of different faults with varying extension rates can cause stratigraphic features such as unconformities, condensation and onlap/offlap patterns. Onlap occurs during periods of low extension rates. An increase in extension rate along a fault causes footwall uplift, resulting in condensation or upflank erosion yielding unconformities. This influence can also affect sub-basins further away from the fault. Downdip layer thickening reflects the local tilting of fault blocks.
The coupling of the local and regional scales turns out to be essential in explaining the stratigraphy of the Oseberg–Brage area: basinward and, notably, updip layer thickening as observed on some of the fault blocks can only be explained by activity of the boundary fault on the opposing, western margin of the northern Viking Graben.
  相似文献   

8.
The Southern Tail‐End Graben, Danish Central Graben, is characterized by a lateral variation in the thickness and mobility of pre‐rift Zechstein Supergroup evaporites, allowing investigation of how supra‐basement evaporite variability influences rift structural style and tectono‐stratigraphy. The study area is divided into two structural domains based on interpretations of the depositional thickness and mobility of the Zechstein Supergroup. Within each domain, we examine the overall basin morphology and the structural styles in the pre‐Zechstein and supra‐Zechstein (cover) units. Furthermore, integration of two‐way travel‐time (TWT)‐structure and ‐thickness maps allows fault activity and evaporite migration maps to be generated for pre‐ and syn‐rift stratal units within the two domains, permitting constraints to be placed on: (i) the timing of activity on pre‐Zechstein and cover faults and (ii) the onset, duration and migration direction of mobile evaporites. The northern domain is interpreted to be free from evaporite‐influence, and has developed in a manner typical of brittle‐only, basement‐involved rifts. Syn‐rift basins display classical half‐graben geometries bounded by thick‐skinned faults. In contrast, the southern domain is interpreted to be evaporite‐influenced, and cover structure reflects a southward increase in the thickness and mobility of the Zechstein Supergroup evaporites. Fault‐related and evaporite‐related folding is prominent in the southern domain, together with variable degrees of decoupling of sub‐Zechstein and cover fault and fold systems. The addition of mobile evaporites to the rift results in: (i) complex and spatially variable modes of tectono‐stratigraphic evolution; (ii) syn‐rift stratal geometries which are condensed above evaporite swells and over‐thickened in areas of withdrawal; (iii) compartmentalized syn‐rift depocentres; and (iv) masking of rift‐related megasequence boundaries. Through demonstrating these deviations from the characteristics of rifts free from evaporite influence, we highlight the first order control evaporites may exert upon rift structural style and the distribution and thicknesses of syn‐rift units.  相似文献   

9.
10.
《Basin Research》2018,30(5):895-925
Kilometre‐scale geobodies of diagenetic origin have been documented for the first time in a high‐resolution 3D seismic survey of the Upper Cretaceous chalks of the Danish Central Graben, North Sea Basin. Based on detailed geochemical, petrographic and petrophysical analyses, it is demonstrated that the geobodies are of an open‐system diagenetic origin caused by ascending basin fluids guided by faults and stratigraphic heterogeneities. Increased amounts of porosity‐occluding cementation, contact cement and/or high‐density/high‐velocity minerals caused an impedance contrast that can be mapped in seismic data, and represent a hitherto unrecognized, third type of heterogeneity in the chalk deposits in addition to the well‐known sedimentological and structural features. The distribution of the diagenetic geobodies is controlled by porosity/permeability contrasts of stratigraphic origin, such as hardgrounds associated with formation tops, and the feeder fault systems. One of these, the Top Campanian Unconformity at the top of the Gorm Formation, is particularly effective and created a basin‐wide barrier separating low‐porosity chalk below from high‐porosity chalk above (a Regional Porosity Marker, RPM). It is in particular in this upper high‐porosity unit (Tor and Ekofisk Formations) that the diagenetic geobodies occur, delineated by “Stratigraphy Cross‐cutting Reflectors” (SCRs) of which eight different types have been distinguished. The geobodies have been interpreted as the result of: (i) escaping pore fluids due to top seal failure, followed by local mechanical compaction of high‐porous chalks, paired with (ii) ascension of basinal diagenetic fluids along fault systems that locally triggered cementation of calcite and dolomite within the chalk, causing increased contact cements and/or reducing porosity. The migration pathway of the fluids is marked by the SCRs, which are the outlines of high‐density bodies of chalk nested in highly porous chalks. This study, thus, provides new insights into the 3D relationship between fault systems, fluid migration and diagenesis in chalks and has important applications for basin modelling and reservoir characterization.  相似文献   

11.
The North Sea Basin contains an almost complete record of Cenozoic sedimentation, separated by clear regional unconformities. The changes in sediment characteristics, rate and source, and expression of the unconformities reflect the tectonic, eustatic and climatic changes that the North Sea and its margins have undergone. While the North Sea has been mapped locally, we present the first regional mapping of the Cenozoic sedimentary strata. Our study provides a new regional sub‐division of the main seismic units in the North Sea together with maps of depocentres, influx direction and source areas. Our study provides a regional synthesis of sedimentation based on a comprehensive interpretation of a regionally covering reflection seismic data set. We relate observations of sediment characteristics and unconformities to the geological evolution. The timing, regional expression and stratigraphic characteristics of many unconformities indicate that they were generated by eustatic sea‐level fall, often in conjunction with other processes. Early Cenozoic unconformities, however, relate to tectonism associated with the opening of the North Atlantic. From observation on a regional scale, we infer that the sediment influx into the North Sea during the Cenozoic is more complex than previously suggested clockwise rotation from early northwestern to late southern sources. The Shetland Platform supplied sediment continuously, although at varying rates, until the latest Cenozoic. Sedimentation around Norway changed from early Cenozoic influx from the southwestern margin, to almost exclusively from the southern margin in the Oligocene and from all of southern Norway in the latest Cenozoic. Thick Eocene deposits in the Central Graben are sourced mainly from a western and a likely southern source, indicating that prominent influx from the south did not only occur from the mid‐Miocene onwards. We infer a new age for the increased progradational sediment influx in the Pleistocene of 2.5 Ma, coeval with Fennoscandian glaciation.  相似文献   

12.
Abstract We present an interpretation of the structure and faulting of an industry multichannel line across the Central North Sea Graben. We observe substantial faulting between the mid-Jurassic and mid-Cretaceous and on the base Zechstein (salt) reflector. To estimate the extension from these faults we consider movement along both planar and curved faults. We demonstrate that summing the heave (the horizontal displacement) overestimates the time measure of elongation for planar, ‘domino-type’, faulting. However, for high-angle normal faults and up to 70% extension (β= 1.7) the heave only overestimates the extension by 13%. In the absence of other information, summing the heave provides a useful estimate of extension in the case of domino-type faulting. For curved ‘listric’ faults the heave is only a true measure of the elongation if the antithetic faulting which removes the voids is vertical. Antithetic movement along inclined shear planes implies significantly more extension. We used the two models; of faulting to introduce progressively greater amounts of internal deformation in the crustal rocks and sediments to attempt to reconcile the estimate of extension necessary to give the observed subsidence and that given by analysing the faults visible on the seismic line. Estimates of extension obtained by allowing antithetic faulting along inclined shear planes are consistent with the range of estimates necessary to account for the post-mid-Jurassic subsidence. The estimates for the prior mid-Jurassic faulting are still substantially less than those necessary to explain the subsidence. However, this is not of major concern as there are many reasons as to why analysis of the faulting should underestimate the pre mid-Jurassic extension. Our interpretation of the seismic line implies curved faults bottoming in the lithologically weak Zechstein salt. These faults are decoupled from the region below and, hence, do not reflect the geometry of the faulting in the basement.  相似文献   

13.
The Central Graben in the Danish North Sea sector consists of a series of N–S to NW–SE trending, eastward‐tilted half‐grabens, bound to the east by the Coffee Soil Fault zone. This fault zone has a complex Jurassic history that encompasses at least two fault populations; N–S to NNW–SSE striking faults active in the Late Aalenian–Early Oxfordian, and NNW–SSE to WNW–ESE striking faults forming in Late Kimmeridgian time (sensu gallico), following a short period of tectonic quiescence. Sediment transport across the Coffee Soil Fault zone was controlled by fault array evolution, and in particular the development of relay ramps that formed potential entry points for antecedent drainage systems from the Ringkøbing–Fyn High east of the rift. Fault and isochore trends of the Upper Kimmeridgian–Lower Volgian succession in the northeast Danish Central Graben show that accommodation space was initially generated close to several minor, isolated or overlapping faults. Subsidence became focused along a few master faults in the Early Volgian through progressive linkage of selected faults. Seismic time isochore geometries, seismic facies, amplitude trends and well ties indicate the presence of coarse clastic lithologies locally along the fault zone. The deposits probably represent submarine mass flow deposits supplied from footwall degradation and possibly also from the graben hinterland via a relay ramp. The latter source appears to have been cut off as the relay ramp was breached and the footwall block are uplifted. Fault growth and linkage processes thus controlled the spatial and temporal trends of accommodation space generation and sediment supply to the rift basin.  相似文献   

14.
15.
16.
Three-dimensional (3D) seismic, well and biostratigraphic data are integrated to determine the timing of inversion on the hangingwall of the South Viking Graben, offshore Norway. Within the study area two, NW–SE to NE–SW trending normal faults are developed which were active during a Late Jurassic rift event. In the hangingwall of these faults asymmetric, 2–5 km wide anticlines are developed which trend parallel to the adjacent faults and are interpreted as growth folds formed in response to compressional shortening (inversion) of the syn-rift basin-fill. Marked thickness variations are observed in Late Jurassic and Early Cretaceous growth strata with respect to the inversion-related folds, with seismic data indicating onlap and thinning of these units across the folds. In addition, well data suggests that not only are erosional surfaces only locally developed towards the crests of the folds, but these surfaces may also truncate underlying flooding surfaces towards the fold crests. Taken together, these observations indicate that inversion and growth of inversion-related structures initiated in the late Early Volgian and continued until the Late Albian. Furthermore, it is demonstrated that individual folds amplified and propagated laterally through time, and that fold growth was not synchronous across the study area. This study demonstrates that the temporal evolution of structures associated with the inversion of sedimentary basins can be accurately determined through the integration of 3D seismic, well and biostratigraphic data. Furthermore, this study has local implications for constraining the timing of inversion within the South Viking Graben during the Late Mesozoic.  相似文献   

17.
18.
19.
Deep seismic reflection profiles across the western Barents Sea   总被引:1,自引:0,他引:1  
Summary. The continental crust beneath the western Barents Sea has been acoustically imaged down to Moho depths in a large scale deep seismic reflection experiment. A first-order pattern of crustal reflectivity has been established and the thickness of the crust determined. A number of features with important implications for the tectonics of the area have been discovered. The results are presented in the form of two transects.  相似文献   

20.
Studies of salt‐influenced rift basins have focused on individual or basin‐scale fault system and/or salt‐related structure. In contrast, the large‐scale rift structure, namely rift segments and rift accommodation zones and the role of pre‐rift tectonics in controlling structural style and syn‐rift basin evolution have received less attention. The Norwegian Central Graben, comprises a complex network of sub‐salt normal faults and pre‐rift salt‐related structures that together influenced the structural style and evolution of the Late Jurassic rift. Beneath the halite‐rich, Permian Zechstein Supergroup, the rift can be divided into two major rift segments, each comprising rift margin and rift axis domains, separated by a rift‐wide accommodation zone – the Steinbit Accommodation Zone. Sub‐salt normal faults in the rift segments are generally larger, in terms of fault throw, length and spacing, than those in the accommodation zone. The pre‐rift structure varies laterally from sheet‐like units, with limited salt tectonics, through domains characterised by isolated salt diapirs, to a network of elongate salt walls with intervening minibasins. Analysis of the interactions between the sub‐salt normal fault network and the pre‐rift salt‐related structures reveals six types of syn‐rift depocentres. Increasing the throw and spacing of sub‐salt normal faults from rift segment to rift accommodation zone generally leads to simpler half‐graben geometries and an increase in the size and thickness of syn‐rift depocentres. In contrast, more complex pre‐rift salt tectonics increases the mechanical heterogeneity of the pre‐rift, leading to increased complexity of structural style. Along the rift margin, syn‐rift depocentres occur as interpods above salt walls and are generally unrelated to the relatively minor sub‐salt normal faults in this structural domain. Along the rift axis, deformation associated with large sub‐salt normal faults created coupled and decoupled supra‐salt faults. Tilting of the hanging wall associated with growth of the large normal faults along the rift axis also promoted a thin‐skinned, gravity‐driven deformation leading to a range of extensional and compressional structures affecting the syn‐rift interval. The Steinbit Accommodation Zone contains rift‐related structural styles that encompass elements seen along both the rift margin and axis. The wide variability in structural style and evolution of syn‐rift depocentres recognised in this study has implications for the geomorphological evolution of rifts, sediment routing systems and stratigraphic evolution in rifts that contain pre‐rift salt units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号