共查询到14条相似文献,搜索用时 62 毫秒
1.
海底影像存在着对比度低、噪声污染严重、图像质量差等问题,采用传统算子的海底管线边缘图像中含有大量的无用和断裂边缘信息。文中将多尺度边缘检测和匹配跟踪相结合,提出利用平稳小波变换的海底管线边缘检测方法;在提取边缘的同时利用匹配跟踪手段对噪声干扰进行抑制,提高图像目标边缘检测质量。通过对海底管线和测试图像边缘检测实验表明,文中所提出的方法在抑制图像噪声的干扰、提高水下目标边缘完整性方面明显优于传统的边缘提取算子,证明该算法的有效性。 相似文献
2.
侧扫声纳技术应用日益广泛,已成为海洋测量的重要工具,而去除噪声处理是对侧扫声纳图像进行正确判读的前提。利用小波函数滤波处理的方法,分别采用Haar、Daubechies、Coiflets、Symlets、Discrete Meyer、Biorthogonal、Reverse Biorthogonal等小波函数与中值滤波函数对侧扫声纳图像进行处理,并以平滑指数和边缘保持指数为评价指标,对滤波效果进行定量比较。试验表明,小波函数可以有效地平滑声纳图像,并能保持其较好的边缘效果。 相似文献
3.
5.
6.
7.
当结构物产生损伤时,结构的动力特性会发生变化,从而引起结构振动响应产生相应的变化。小波变换是奇异性信号的良好检测工具,可以用于识别结构损伤的发生。建立了某海洋平台有限元模型,得到了随机海浪作用下不同损伤工况的结构振动响应。基于小波变换损伤检测,针对不同类型杆件损伤、不同位置杆件损伤、不同程度的噪声污染以及不同方向振动响应信号情况下,分别研究了海洋平台结构的损伤检测问题,得到了一些有用的结论。 相似文献
8.
9.
利用海岸带遥感图像提取岸线的小波变换方法 总被引:5,自引:0,他引:5
小波变换作为一门新兴的数学分支已被广泛应用于图像处理领域。本文将小波变换应用于黄河三角洲遥感图像的边缘提取 ,检测出图像的边缘 ,从而得到了三角洲岸线信息。实验结果表明基于小波变换的图像边缘提取要优于经典边缘算子的提取。此方法对于把握河口三角洲的冲淤演变规律和海岸带开发具有重要意义 相似文献
10.
针对传统侧扫声纳图像沉船目标识别精度低的问题,引入深度学习,提出了一种改进的You Only Look Once X(YOLOX)目标检测方法。首先对收集的侧扫声纳沉船图像进行预处理,根据实测过程拖鱼的姿态、仪器设备不同等造成的成像差异进行数据增强与扩充,并构建数据集;其次以YOLOX为基础网络,根据侧扫声纳图像缺少丰富特征信息的问题,对网络进行改进,在网络的Spatial pyramid pooling(SPP)结构引入Softpool池化替换原来的池化,提取更多的细节特征信息;最后对改进前后的网络模型进行精度评估,验证改进网络的可行性。实验结果表明,改进后的网络在平均精确率均值(mAP)等精度评定指标中相较于原网络都有着显著提升,识别效果更好。该研究可为侧扫声纳探测中实时目标物检测提供研究基础。 相似文献
11.
12.
1 .IntroductionInthe whole service period of the platforms ,some damage is unavoidable due to the corrosion,impact ,fatigue and so on.The damage whould cause the structures’ultimate capacity and safety de-crease .Presently,it is generally acceptedthat the detection of damage involes considerable statisticaluncertainties,thus lot of efforts is made for the damage probalility model ,for example Song and Lu(1996) usedthefuzzy-settheoryto estimatethe humanerrorsthroughthe definitionof inspection… 相似文献
13.
针对海底侧扫声纳图像对比度低、纹理弱、噪声严重等问题,提出了一种基于第二代Curvelet变换的声纳图像增强算法。首先对原始声纳图像进行多尺度、多方向的Curvelet变换分解,得到低频子带和高频子带;然后引入非线性S型函数对低频系数进行处理,提高图像整体的对比度;采用一种可以避免过度增强的新型非线性函数对各尺度的高频子带系数进行处理,提高图像整体的对比度,增强图像边缘和纹理细节,并通过估计噪声水平设定阈值进行阈值降噪。最后经Curvelet逆变换得到增强图像。实验表明,该方法不仅改善了海底侧扫声纳图像对比度低的问题,而且降低了噪声,突出了声纳图像的边缘和纹理细节。 相似文献