首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fifty-two new K-Ar dates for Upper Cenozoic volcanic rocks from north Chile and southwest Bolivia are presented, together with a compilation of previously available dates from this region. These dates are combined with calculations of volumes of lava and ignimbrite for a segment of the volcanic province (19°30′S to 22°30′S) to identify fluctuations in the level of volcanic activity during the last 24 Ma. Histograms of volumes against time have been plotted for each half-degree quadrant. In the southern half of the study area, there were peaks of activity in the periods 12 to 9 Ma and 6 to 3 Ma. In the northern half, a large proportion of the material was erupted in the period 6 to 0 Ma. This regional variation suggests that localized factors may govern the rate of volcanic output and complicates attempts at correlation with “pulses” of volcanic activity recognized elsewhere in the Pacific region. There is no conclusive evidence for volcanic episodes synchronous over such wide areas. A simple correlation between changes in spreading behaviour and changes in levels of volcanic activity is unlikely, in view of the complexity of the interactions at destructive plate margins. The rate of continental crust accretion from volcanic processes must be much less than that due to intrusive processes to account for the thickening of the Andean crust since the Jurassic.  相似文献   

2.
Radiometric and geologic information indicate a complex history of Cenozoic volcanism and tectonism in the central Andes. K-Ar ages on silicic pyroclastic rocks demonstrate major volcanic activity in central and southern Peru, northern Chile, and adjacent areas during the Early and Middle Miocene, and provide additional evidence for volcanism during the Late Eocene. A provisional outline of tectonic and volcanic events in the Peruvian Andes during the Cenozoic includes: one or more pulses of igneous activity and intense deformation during the Paleocene and Eocene; a period of quiescence, lasting most of Oligocene time; reinception of tectonism and volcanism at the beginning of the Miocene; and a major pulse of deformation in the Middle Miocene accompanied and followed through the Pliocene by intense volcanism and plutonism. Reinception of igneous activity and tectonism at about the Oligocene-Miocene boundary, a feature recognized in other circum-Pacific regions, may reflect an increase in the rate of rotation of the Pacific plate relative to fixed or quasifixed mantle coordinates. Middle Miocene tectonism and latest Tertiary volcanism correlates with and probably is genetically related to the beginning of very rapid spreading at the East Pacific Rise.  相似文献   

3.
4.
Seismic provinces in Peru and northern Chile may be defined in direct relation to the geometry of parts of Nazca plate that are being subducted under the Americas plate. Recent tectonism and calc-alkaline volcanism appear also to have a clear relationship to that same geometry of the subducted slab. Under northern and central Peru, the slab plunges at 10–15° to the northeast, and becomes almost horizontal farther east; at surface in the same region, recent calc-alkaline volcanism is absent and recent tectonics are mostly compressional. Under southern Peru and northern Chile, the slab plunges regularly at about 30° to the east; at the surface, calc-alkaline volcanism is still active and recent tectonism appears to be mostly extensional.  相似文献   

5.
The Calipuy Formation is a primarily volcanic sequence deposited during the period 33 to 10 m.y. ago when basaltic and andesitic volcanoes developed concomitant with a N60°E horizontal foreshortening of the Peruvian Andes. The axis of compression is inferred from both fault tectonics in and near the Calipuy sequence and from N30°W-striking fold axes within it. Dacitic domes younger than 10 m.y. unconformably overlie the Calipuy sequence.Basaltic and andesitic effusive rocks concurrently filled a basin which developed during volcanism. During subsidence 80% of the fill was provided by primary extrusive igneous material, whereas sedimentary rocks associated with the igneous assemblage account for only 20%.Limited chemical data indicate that Calipuy andesitic rocks are slightly richer in alkalies than the average Cenozoic andesite, but petrographic data show that they are similar to other andesites of this age found in similar environments in the Andes. However, the analyses are too few to make any real generalization concerning petrogenesis.  相似文献   

6.
A new stratigraphy for bimodal Oligocene flood volcanism that forms the volcanic plateau of northern Yemen is presented based on detailed field observations, petrography and geochemical correlations. The >1 km thick volcanic pile is divided into three phases of volcanism: a main basaltic stage (31 to 29.7 Ma), a main silicic stage (29.7 to 29.5 Ma), and a stage of upper bimodal volcanism (29.5 to 27.7 Ma). Eight large-volume silicic pyroclastic eruptive units are traceable throughout northern Yemen, and some units can be correlated with silicic eruptive units in the Ethiopian Traps and to tephra layers in the Indian Ocean. The silicic units comprise pyroclastic density current and fall deposits and a caldera-collapse breccia, and they display textures that unequivocally identify them as primary pyroclastic deposits: basal vitrophyres, eutaxitic fabrics, glass shards, vitroclastic ash matrices and accretionary lapilli. Individual pyroclastic eruptions have preserved on-land volumes of up to ∼850 km3. The largest units have associated co-ignimbrite plume ash fall deposits with dispersal areas >1×107 km2 and estimated maximum total volumes of up to 5,000 km3, which provide accurate and precisely dated marker horizons that can be used to link litho-, bio- and magnetostratigraphy studies. There is a marked change in eruption style of silicic units with time, from initial large-volume explosive pyroclastic eruptions producing ignimbrites and near-globally distributed tuffs, to smaller volume (<50 km3) mixed effusive-explosive eruptions emplacing silicic lavas intercalated with tuffs and ignimbrites. Although eruption volumes decrease by an order of magnitude from the first stage to the last, eruption intervals within each phase remain broadly similar. These changes may reflect the initiation of continental rifting and the transition from pre-break-up thick, stable crust supporting large-volume magma chambers, to syn-rift actively thinning crust hosting small-volume magma chambers.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

7.
This study is concerned with numerical simulation of the strain due to glaciation and glacial melting, when a magma zone (a layer containing inclusions of magma and magma cumulates) is present at the crust–mantle boundary. According to analytical solutions of this problem that involves viscous relaxation of an uncompensated depression at the place of the molten glacier, the depth to the zone of increased shear stresses beneath the depression is proportional to its width, while the relaxation duration is proportional to viscosity of the lithosphere and is a few thousand years. These fundamental estimates are corroborated by our numerical simulation. According to it, the magma zone at the Moho boundary shields the zone of increased shear stresses, limiting it from below. The maximum values (12–25 MPa) with glacial thickness 500–1000 m are reached at the top of this layer of low viscosity. The directions of maximum compression (s1) as calculated for the time after the melting indicate that the magma that rises along dikes is displaced from the center of the magma lens toward its periphery. It is found that glacial unloading makes the dipping faults in the crust above the low-viscosity layer attractors for the rising magma. Glacial unloading accelerates, by factors of a few times, the magma generation in the mantle that occurs following the mechanism of adiabatic decompression, as well as facilitating the accumulation of mantle fluids in the zone of increased shear stresses at the boundary of the low viscosity layer. The magma traverses this deep fluid collector and increases the intensity and explosivity of eruptions at the beginning of an interglacial period. Our numerical simulation results are in general agreement with published data on Early Holocene volcanic eruptions that occurred after the second phase of the Late Pleistocene glaciation in Kamchatka.  相似文献   

8.
New 40Ar-39Ar geochronology, bulk rock geochemical data, and physical characteristics for representative stratigraphic sections of rhyolite ignimbrites and lavas from the west-central Snake River Plain (SRP) are combined to develop a coherent stratigraphic framework for Miocene silicic magmatism in this part of the Yellowstone ‘hotspot track’. The magmatic record differs from that in areas to the west and east with regard to its unusually large extrusive volume, broad lateral scale, and extended duration. We infer that the magmatic systems developed in response to large-scale and repeated injections of basaltic magma into the crust, resulting in significant reconstitution of large volumes of the crust, wide distribution of crustal melt zones, and complex feeder systems for individual eruptive events. Some eruptive episodes or ‘events’ appear to be contemporaneous with major normal faulting, and perhaps catastrophic crustal foundering, that may have triggered concurrent evacuations of separate silicic magma reservoirs. This behavior and cumulative time-composition relations are difficult to relate to simple caldera-style single-source feeder systems and imply complex temporal-spatial development of the silicic magma systems. Inferred volumes and timing of mafic magma inputs, as the driving energy source, require a significant component of lithospheric extension on NNW-trending Basin and Range style faults (i.e., roughly parallel to the SW–NE orientation of the eastern SRP). This is needed to accommodate basaltic inputs at crustal levels, and is likely to play a role in generation of those magmas. Anomalously high magma production in the SRP compared to that in adjacent areas (e.g., northern Basin and Range Province) may require additional sub-lithospheric processes. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users. This paper constitutes part of a special issue dedicated to Bill Bonnichsen on the petrogenesis and volcanology of anorogenic rhyolites.  相似文献   

9.
This study revisits the kinematics and tectonics of Central America subduction, synthesizing observations of marine bathymetry, high-resolution land topography, current plate motions, and the recent seismotectonic and magmatic history in this region. The inferred tectonic history implies that the Guatemala–El Salvador and Nicaraguan segments of this volcanic arc have been a region of significant arc tectonic extension; extension arising from the interplay between subduction roll-back of the Cocos Plate and the ~ 10–15mm/yr slower westward drift of the Caribbean plate relative to the North American Plate. The ages of belts of magmatic rocks paralleling both sides of the current Nicaraguan arc are consistent with long-term arc-normal extension in Nicaragua at the rate of ~ 5–10mm/yr, in agreement with rates predicted by plate kinematics. Significant arc-normal extension can ‘hide’ a very large intrusive arc-magma flux; we suggest that Nicaragua is, in fact, the most magmatically robust section of the Central American arc, and that the volume of intrusive volcanism here has been previously greatly underestimated. Yet, this flux is hidden by the persistent extension and sediment infill of the rifting basin in which the current arc sits. Observed geochemical differences between the Nicaraguan arc and its neighbors which suggest that Nicaragua has a higher rate of arc-magmatism are consistent with this interpretation. Smaller-amplitude, but similar systematic geochemical correlations between arc-chemistry and arc-extension in Guatemala show the same pattern as the even larger variations between the Nicaragua arc and its neighbors.  相似文献   

10.
Fifty-three major explosive eruptions on Iceland and Jan Mayen island were identified in 0–6-Ma-old sediments of the North Atlantic and Arctic oceans by the age and the chemical composition of silicic tephra. The depositional age of the tephra was estimated using the continuous record in sediment of paleomagnetic reversals for the last 6 Ma and paleoclimatic proxies (δ18O, ice-rafted debris) for the last 1 Ma. Major element and normative compositions of glasses were used to assign the sources of the tephra to the rift and off-rift volcanic zones in Iceland, and to the Jan Mayen volcanic system. The tholeiitic central volcanoes along the Iceland rift zones were steadily active with the longest interruption in activity recorded between 4 and 4.9 Ma. They were the source of at least 26 eruptions of dominant rhyolitic magma composition, including the late Pleistocene explosive eruption of Krafla volcano of the Eastern Rift Zone at about 201 ka. The central volcanoes along the off-rift volcanic zones in Iceland were the source of at least 19 eruptions of dominant alkali rhyolitic composition, with three distinct episodes recorded at 4.6–5.3, 3.5–3.6, and 0–1.8 Ma. The longest and last episode recorded 11 Pleistocene major events including the two explosive eruptions of Tindfjallajökull volcano (Thórsmörk, ca. 54.5 ka) and Katla volcano (Sólheimar, ca. 11.9 ka) of the Southeastern Transgressive Zone. Eight major explosive eruptions from the Jan Mayen volcanic system are recorded in terms of the distinctive grain-size, mineralogy and chemistry of the tephra. The tephra contain K-rich glasses (K2O/SiO2>0.06) ranging from trachytic to alkali rhyolitic composition. Their normative trends (Ab–Q–Or) and their depleted concentrations of Ba, Eu and heavy-REE reflect fractional crystallisation of K-feldspar, biotite and hornblende. In contrast, their enrichment in highly incompatible and water-mobile trace elements such as Rb, Th, Nb and Ta most likely reflect crustal contamination. One late Pleistocene tephra from Jan Mayen was recorded in the marine sequence. Its age, estimated between 617 and 620 ka, and its composition support a common source with the Borga pumice formation at Sør Jan in the south of the island.  相似文献   

11.
— The Altiplano-Puna Volcanic Complex (APVC) in the central Andes is the product of an ignimbrite “flare-up” of world class proportions (de Silva, 1989). The region has been the site of large-scale silicic magmatism since 10 Ma, producing 10 major eruptive calderas and edifices, some of which are multiple-eruption resurgent complexes as large as the Yellowstone or Long Valley caldera. Seven PASSCAL broadband seismic stations were operated in the Bolivian portion of the APVC from October 1996 to September 1997 and recorded teleseismic earthquakes and local intermediate-depth events in the subducting Nazca plate. Both teleseismic and local receiver functions were used to delineate the lateral extent of a regionally pervasive ~20-km-deep, very low-velocity layer (VLVL) associated with the APVC. Data from several stations that sample different parts of the northern APVC show large amplitude Ps phases from a low-velocity layer with Vs ≤ 1.0 km/s and a thickness of ~1 km. We believe the crustal VLVL is a regional sill-like magma body, named the Altiplano–Puna magma body (APMB), and is associated with the source region of the Altiplano–Puna Volcanic Complex ignimbrites (Chmielowski et al., 1999).¶Large-amplitude P–SH conversions in both the teleseismic and local data appear to originate from the top of the APMB. Using the programs of Levin and Park (1998), we computed synthetic receiver functions for several models of simple layered anisotropic media. Upper-crustal, tilted-axis anisotropy involving both Vp and Vs can generate a “split Ps” phase that, in addition to the Ps phase from the bottom of a thin isotropic VLVL, produces an interference waveform that varies with backazimuth. We have forward modeled such an interference pattern at one station with an anisotropy of 15%–20% that dips 45° within a 20-km-thick upper crust. We develop a hypothesis that the crust above the “magma body” is characterized by a strong, tilted-axis, hexagonally symmetric anisotropy. We speculate that the anisotropy is due to aligned, fluid-filled cracks induced by a “normal-faulting” extensional strain field associated with the high elevations of the Andean Puna.  相似文献   

12.
Remote sensing studies of the Central Andean volcanic province between 18°–27°S with the Landsat Thematic Mapper have revealed the presence of 28 previously undescribed breached volcanic cones and 14 major volcanic debris avalanche deposits, of which only 3 had previously been identified. Several of the debris avalanche deposits cover areas in excess of 100 km2 and have volumes of the order of 10 km3. H/L ratios for the deposits have a median of 0.1 and a mean of 0.11, values similar to those determined for deposits described in other regions. Surface morphologies commonly include the hummocky topography of small hillocks and enclosed basins that is typical of avalanche deposits, but some examples exhibit smoother surfaces characterised by longitudinal grooves and ridges. These differences may result from the effects of flow confinement by topography or from variations in resistance to shearing in the materials involved. Breached composite cones and debris avalanche deposits tend to occur at right angles to regional tectonic elements, suggesting possible seismic involvement in triggering collapse and providing an additional consideration for assessment of areas at risk from collapse. The low denudation rate in the Central Andes, coupled with the predominance of viscous dacite lavas in volcanic edifices, produces unusually steep cones which may result in a higher incidence of volcano collapse than in other regions. A statistical survey of 578 composite volcanoes in the study area indicates that a majority of cones which achieve edifice heights between 2000–3000 m may undergo sector collapse.  相似文献   

13.
The Zerga meteorite, an LL6 ordinary chondrite found at Aouelloul crater in 1973, is a small fragment of a larger mass whose pre-atmospheric radius was most likely between 20 and 125 cm. A typical amphoterite, it is a monomict breccia that has undergone at least one recrystallization episode.3He and21Ne contents define a shielding-corrected, cosmic ray exposure age of 21–24 × 106 years and the26Al content is consistent with a terrestrial age ?500,000 years (2σ limit). The K—Ar gas-retention age is 3.1 × 109 years. The meteorite's areal association with the impact crater is merely coincidental. A new K-Ar age of the glassy impactite found at Aouelloul dates the crater at 3.1 ± 0.3 × 106 years, sensibly indistinguishable from the recently determined age of nearby Tenoumer crater (2.5 ± 0.5 × 106years). The similar ages of these two impact craters, and their almost perfect linear alignment with a third, morphologically similar crater (Temimichat Ghallaman) over a distance of 600 km, suggests a simultaneous triple impact occasioned by the disruption of a large meteorite moving on a very shallow atmospheric trajectory. If so, the concomitant low impact angles may be responsible for the unusually shallow original depths inferred for two of the craters from gravity data.  相似文献   

14.
Silicic volcanism in the Andean Central Volcanic Zone (CVZ) produced one of the world's largest Neogene ignimbrite provinces. The largest and best-known CVZ ignimbrites are located on the Altiplano-Puna plateau north of 24 °S. Their compositions and huge erupted volumes suggest an origin by large-scale crustal melting, and present-day geophysical anomalies in this region suggest still active zones of partial melting in the middle crust. Farther south in the CVZ, the Cerro Galán complex erupted ignimbrites in the late Miocene and Pliocene that are quite similar in volume and composition to those from north of 24 °S and they have a similar origin. However, there are a great many other, smaller ignimbrites in the southern CVZ whose compositions and geodynamic significance are poorly known. These are the subject of this paper.  相似文献   

15.
 Five new stepwise-heating 40Ar/39Ar ages and one new high-sensitivity 14C date of ash-fall and ash-flow deposits from late Quaternary silicic volcanoes in northern Central America document the eruption rates and frequencies of five major rhyodacite and rhyolite calderas (Atitlán, Amatitlán, Ayarza, Coatepeque, and Ilopango) located north of the basalt, andesite, and dacite stratovolcanoes of the Central American volcanic front. These deposits form extensive time-stratigraphic horizons that intercalate regionally, and knowledge of dates and stratigraphy provides a valuable framework for age determinations of more localized volcanic and nonvolcanic events. The new data, especially when integrated with previous stratigraphic and dating work, show that all five calderas erupted several times in the past 200 ka and, despite a lack of historic activity, should be considered as active centers that could produce highly explosive eruptions again. Because of their locations near the highly vulnerable economic hearts of Guatemala and El Salvador, the risks of eruptions from these calderas should be carefully considered along with risks of major earthquakes and volcanic front volcanoes, which are much more frequent but inflict less severe and extensive damage. This investigation also includes some examples of dating efforts that failed to produce reasonable results. Received: 15 May 1998 / Accepted: 18 January 1999  相似文献   

16.
The submarine Healy volcano (southern Kermadec arc), with a 2-2.5 km wide caldera, is pervasively mantled with highly vesicular silicic pumice within a water depth of 1,150-1,800 m. Pumices comprise type 1 white-light grey pumice with ⢾ mm vesicles and weak-moderate foliation, type 2 grey pumice with millimetre-scale laminae, flow banded foliation, including stretched vesicles ⣗ mm in length, and a minor finely vesicular type 3 pumice. All types are sparsely porphyritic, with undevitrified glassy groundmass (68-70% SiO2), which is microlite and lithic free. Coexisting pyroxenes yield magma temperatures of ~950 °C. Pumice density is А.5 g cm-3 and vesicularity is 78-83%. Vesicle size distributions for types 1 and 2 pumice, range from ~20 µm to >20 mm, with a strong power-law relation (with d=-2.5ǂ.4) for vesicles <1-2 mm. Larger vesicles have variable size modes. The vesicle size distribution and packing indicates rapid magma decompression and ascent. Consideration of the pressure dependent, solubility of H2O at a magma temperature of 𙧶 °C and water content of Ж wt%, with pumice petrography and vesicle granulometry, strongly suggests a pyroclastic eruption. Reconstructions of the submarine edifice between water depths of 1,000 and 550 m constrain the ambient hydrostatic pressure to ~6-9 MPa. Pressures >~9 MPa will limit vesicularity to less than the observed 78-83%, whereas pressure <~6 MPa require a more shallower reconstruction of the edifice and larger-volume syn-eruptive collapse. Uniformly high vesicularity is interpreted as evidence of insulation within an eruption column comprising steam and hot pyroclasts. Most pyroclasts cool, condensing and ingesting water into steam-inflated vesicles, and then sink. Progression into pyroclastic mode would expand the eruption column, displace ambient water, reduce the hydrostatic load, and further promote vesiculation and fragmentation. Pyroclasts within the column would quench at these reduced pressures. We argue that Healy eruptions deeper than ~1,000 m cannot be pyroclastic. Volumes for the lower and upper bounds of edifice size are 2.36 and 3.58 km3, respectively, but do not account for intra-caldera pumice fill. These volumes are considered to be predominantly primary eruption output, as shown by a dearth of accessory lithics in all pumice, yielding (at an average 81% vesicularity) eruptive pumice volumes of between 10 and 15 km3. Some pyroclasts may have risen to the sea surface and be a correlative of the sea-rafted Loisels pumice; the latter occurs in some New Zealand Holocene beach sequences and has a estimated age of 590ᇤ calendar years.  相似文献   

17.
Paleomagnetic study was performed on Mesozoic and Tertiary rocks from Peru and northernmost Chile. Comparisons of these results as well as other data from the Central Andes with paleomagnetic poles from South American craton strongly support the orocline hypothesis of Carey for the formation of the Arica (Santa Cruz) deflection. Paleomagnetic declinations of Jurassic and Cretaeous rocks are quite similar to the direction of the present-day structural trend in the Central Andes, which suggests that the mountain belt has rotated in a coherent fashion (i.e., rigid body rotation) in sections of the Central Andes. The occurrence of this deformation is certainly post-Cretaceous, with some suggestion that rotation still continued as recently as Neogene. The mechanism of this deformation is not well known, but a differential stretching of the Amazon Basin behind the Peruvian Andes is a possibility.  相似文献   

18.
Summary The morphology of the Wadati-Benioff zone in the region of Central America, based on the distribution of 1377 earthquake foci, verified the existence of an intermediate aseismic gap and its relation to active andesitic volcanism, and the non-uniformity of subduction due to the hampering effect of the main structural features of the subducting Cocos plate. Four deep seismically active fracture zones, genetically connected with the process of subduction, and three fracture zones manifesting the possible boundary between the Americas and Caribbean plates were identified in the continental wedge.  相似文献   

19.
Talat  Ahmad  Kabita C.  Longjam  Baishali  Fouzdar  Mike J.  Bickle  Hazel J.  Chapman 《Island Arc》2009,18(1):155-174
The Sakoli Mobile Belt comprises bimodal volcanic rocks that include metabasalt, rhyolite, tuffs, and epiclastic rocks with metapelites, quartzite, arkose, conglomerate, and banded iron formation (BIF). Mafic volcanic rocks are tholeiitic to quartz‐tholeiitic with normative quartz and hypersthene. SiO2 shows a large compositional gap between the basic and acidic volcanics, depicting their bimodal nature. Both the volcanics have distinct geochemical trends but display some similarity in terms of enriched light rare earth element–large ion lithophile element characteristics with positive anomalies for U, Pb, and Th and distinct negative anomalies for Nb, P, and Ti. These characteristics are typical of continental rift volcanism. Both the volcanic rocks show strong negative Sr and Eu anomalies indicating fractionation of plagioclases and K‐feldspars, respectively. The high Fe/Mg ratios for the basic rocks indicate their evolved nature. Whole rock Sm–Nd isochrons for the acidic volcanic rocks indicate an age of crystallization for these volcanic rocks at about 1675 ± 180 Ma (initial 143Nd/144Nd = 0.51017 ± 0.00017, mean square weighted deviate [MSWD] = 1.6). The εNdt (t = 2000 Ma) varies between ?0.19 and +2.22 for the basic volcanic rock and between ?2.85 and ?4.29 for the acidic volcanic rocks. Depleted mantle model ages vary from 2000 to 2275 Ma for the basic and from 2426 to 2777 Ma for the acidic volcanic rocks, respectively. These model ages indicate that protoliths for the acidic volcanic rocks probably had a much longer crustal residence time. Predominantly basaltic magma erupted during the deposition of the Dhabetekri Formation and part of it pooled at crustal or shallower subcrustal levels that probably triggered partial melting to generate the acidic magma. The influence of basic magma on the genesis of acidic magma is indicated by the higher Ni and Cr abundance at the observed silica levels of the acidic magma. A subsequent pulse of basic magma, which became crustally contaminated, erupted as minor component along with the dominantly acidic volcanics during the deposition of the Bhiwapur Formation.  相似文献   

20.
Rock glaciers and transitional ice-debris complexes predominate the Central Andean landform assemblage, yet regional studies on their state of activity and their kinematics remain sparse. Here we utilize the national glacier inventory of Argentina to quantify surface velocity fields of 244 rock glaciers and 51 ice-debris complexes, located in the Cordón del Plata range, Argentina. Applying a feature-tracking approach to repeated RapidEye satellite imagery acquired between 2010 and 2017/18, we find mean displacement rates between 0.37 and 2.61 m year−1 for 149 landforms, while for the remaining 146 features, surface movement remains below our level of detection. We compare our satellite-derived velocity fields with ground-truth data from two local field sites and find closely matching results in magnitude and spatial distribution. With average displacement of one-third of the active rock glaciers and ice-debris complexes exceeding 1 m year−1, the region hosts an exceptional number of fast-flowing periglacial landforms, compared to other mountain belts. Using a random forest model, we test the predictive power of 25 morphometric and topoclimatic candidate predictors for modelling the state of activity of rock glaciers and ice-debris complexes on two different scales. For entire landforms and individual landform segments, constructed along displacement centrelines, we can predict the state of activity with overall accuracies of 70.08% (mean AUROC = 0.785) and 74.86% (mean AUROC = 0.753), respectively. While topoclimatic parameters such as solar radiation and elevation are most important for entire landforms, geometric parameters become more important at the scale of landform segments. Despite tentative correlations between local slope and surface kinematics, our results point to factors integrating slope and distance to the source to govern local deformation. We conclude that feature tracking in optical imagery is feasible for regional studies in remote regions and provides valuable insight into the current state of the Andean cryosphere. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号