首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
As part of the 2nd A erosol C haracterisation E xperiment (ACE‐2), conducted during summer 1997 in the North Atlantic region between the Canary Islands and Portugal, we measured aerosol optical depths (AOD) at a mid‐tropospheric site, near the top of the volcanic mountain "El Teide"(28°16'N, 16°36' W, 3570 m asl). Our instrument was located at the highest altitude in a network of sunphotometers that extended down to sea level. Clear conditions dominated the ACE‐2 period, and, although suggested by back‐trajectories at 300 hPa, no evidence of anthropogenic pollution was found in our data. Three distinct dust episodes were observed. Vertical soundings and back trajectories suggested mineral dust from the Sahel region as a source. During these episodes, AOD increased an order of magnitude with respect to background conditions (from 0.017 up to 0.19 at λ=500 nm). A shift towards neutrality of the extinction spectral dependence (Ångstrom exponent α down to 0.13), indicated that the coarse mode (particle diameter >2 μm) dominated the aerosol size distribution. For 6 days during the episodes of mineral dust, a monomodal size distribution between 2 and 20 μm diameter was obtained from Mie based size distribution calculations. Estimates, at 500 nm, of the single scattering albedo ω0(0.87–0.96), and the aerosol asymmetry parameter g (0.72–0.73) suggest that the dust layer causes a net cooling forcing at the top of the atmosphere.  相似文献   

4.
The seasonal variations of the concentration of particles of different sizes in the atmospheric surface layer are studied on the basis of the data of daily measurements of atmospheric aerosol characteristics in the town of Dolgoprudny (20 km from the center of Moscow) carried out in 2006–2009. It is revealed that the steady variations of monthly mean aerosol concentration are observed within the particle diameter interval of 0.02–1 μm. The annual course of concentration of these particles has two maxima, in February-March and in September–October, and one minimum in June. The concentrations of particles with the size of 0.01–0.02 μm defined by the general atmospheric background and the concentrations of particles of >1 μm associated with the local sources do not have clearly pronounced seasonal variations. It is shown that the regularities of the annual concentration variations of particles with the size of 0.02–1 μm are mainly explained by the sign and value of the lapse rate in the layer up to 925 hPa that indicates the prevalence of the vertical mixing in the processes of aerosol scattering in the surface layer as compared with the horizontal transfer.  相似文献   

5.
This paper analyzes seasonal and diurnal variations of MODerate resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) data at ~1.1 km for the period of 2003–2011 over a region in West-Central Texas, where four of the world’s largest wind farms are located. Seasonal anomalies are created from MODIS Terra (~10:30 a.m. and 10:30 p.m. local solar time) and Aqua (~1:30 a.m. and 1:30 p.m. local solar time) LSTs, and their spatiotemporal variability is analyzed by comparing the LST changes between wind farm pixels (WFPs) and nearby non wind farm pixels (NNWFPs) using different methods under different quality controls. Our analyses show consistently that there is a warming effect of 0.31–0.70 °C at nighttime for the nine-year period during which data was collected over WFPs relative to NNWFPs, in all seasons for both Terra and Aqua measurements, while the changes at daytime are much noisier. The nighttime warming effect is much larger in summer than winter and at ~10:30 p.m. than ~1:30 a.m. and hence the largest warming effect is observed at ~10:30 p.m. in summer. The spatial pattern and magnitude of this warming effect couple very well with the geographic distribution of wind turbines and such coupling is stronger at nighttime than daytime and in summer than winter. Together, these results suggest that the warming effect observed in MODIS over wind farms are very likely attributable to the development of wind farms. This inference is consistent with the increasing number of operational wind turbines with time during the study period, the diurnal and seasonal variations in the frequency of wind speed and direction distribution, and the changes in near-surface atmospheric boundary layer (ABL) conditions due to wind farm operations. The nocturnal ABL is typically stable and much thinner than the daytime ABL and hence the turbine enhanced vertical mixing produces a stronger nighttime effect. The stronger wind speed and the higher frequency of the wind speed within the optimal power generation range in summer than winter and at nighttime than daytime likely drives wind turbines to generate more electricity and turbulence and consequently results in the strongest warming effect at nighttime in summer. Similarly, the stronger wind speed and the higher frequency of optimal wind speed at ~10:30 p.m. than that at ~1:30 a.m. might help explain, to some extent, why the nighttime LST warming effect is slightly larger at ~10:30 p.m. than ~1:30 a.m. The nighttime warming effect seen in spring and fall are smaller than that in summer and can be explained similarly.  相似文献   

6.
Simultaneous measurements of the activity concentrations of radon and its progeny, and conductivity of both polarities i.e., positive and negative conductivities, were made at a height of 1 m above the ground at Mysore (12°N, 76°E, 767 m above mean sea level), India. Diurnal and seasonal variations of activities of radon and its progeny show their peak values in the early morning hours throughout the year. Observations show an increase in the concentration of radon and its progeny during nighttime compared to the daytime values, and are higher in winter than in other seasons. The electrical conductivity of the atmosphere that depends on the ionization rate also exhibits similar trends. These results are discussed in terms of ionization rate due to radioactivity and the influence of meteorological parameters on radioactivity. The results also show that the concentrations of radon, its progeny, and the electrical conductivity of both polarities exhibit a positive correlation with the relative humidity and are negatively correlated with the temperature of the atmosphere.  相似文献   

7.
李争辉  罗亚丽 《暴雨灾害》2021,41(2):101-110

利用1980—2017年华南地区303个国家级地面气象站逐小时降水数据、ERA-Interim再分析资料,分析华南前汛期(4—6月)降水统计特征,定义站点上短时(1—6 h)、中等时长(7—12 h)和长时(>12 h)降水事件,对比降水量、频次和强度在南海季风爆发前后的变化,以及所定义的西部内陆、东部内陆、沿海地区的异同。结果表明:(1)南海季风爆发后,研究区域平均而言,三类降水事件的降水量增多、小时降水强度增强,短时、长时降水事件发生频次增多,而中等时长降水事件发生频次有所减少。(2)从空间分布来看,南海季风爆发后,小时降水强度在整个华南地区均增强,西部内陆时长大于6 h的降水事件尤为明显;降水事件的发生频次在西部内陆和沿海地区升高,而东部内陆时长大于6 h的降水事件发生频次降低,因此,季风爆发后西部内陆和沿海地区的总降水量均显著增大,而东部内陆的总降水量变化不大。(3)西部内陆降水事件主要在夜间开始发生,持续时间越长的事件越早开始,且由西向东逐渐推迟;东部内陆短时降水事件主要在14时(北京时,下同)左右开始,季风爆发后更为明显,而时长大于6 h的降水事件的开始时间和峰值时间无明显的分布规律;沿海地区短时降水事件在季风爆发前主要于05—08时开始,季风爆发后,在海岸线约50 km以内仍然如此,而较远离海岸线的短时降水事件主要于14时开始,沿海地区长时降水事件在季风爆发前、后都倾向于在夜间开始,并在日间出现峰值。

  相似文献   

8.
In this study, the diurnal and seasonal variations of CO2 fluxes in a subtropical mixed evergreen forest in Ningxiang of Hunan Province, part of the East Asian monsoon region, were quantified for the first time. The fluxes were based on eddy covariance measurements from a newly initiated flux tower. The relationship between the CO2 fluxes and climate factors was also analyzed. The results showed that the target ecosystem appeared to be a clear carbon sink in 2013, with integrated net ecosystem CO2exchange(NEE), ecosystem respiration(RE), and gross ecosystem productivity(GEP) of-428.8, 1534.8 and1963.6 g C m-2yr-1, respectively. The net carbon uptake(i.e. the-NEE), RE and GEP showed obvious seasonal variability,and were lower in winter and under drought conditions and higher in the growing season. The minimum NEE occurred on12 June(-7.4 g C m-2d-1), due mainly to strong radiation, adequate moisture, and moderate temperature; while a very low net CO2 uptake occurred in August(9 g C m-2month-1), attributable to extreme summer drought. In addition, the NEE and GEP showed obvious diurnal variability that changed with the seasons. In winter, solar radiation and temperature were the main controlling factors for GEP, while the soil water content and vapor pressure deficit were the controlling factors in summer. Furthermore, the daytime NEE was mainly limited by the water-stress effect under dry and warm atmospheric conditions, rather than by the direct temperature-stress effect.  相似文献   

9.
This paper provides a comprehensive assessment of Asian summer monsoon prediction skill as a function of lead time and its relationship to sea surface temperature prediction using the seasonal hindcasts of the Beijing Climate Center Climate System Model, BCC_CSM1.1(m). For the South and Southeast Asian summer monsoon, reasonable skill is found in the model's forecasting of certain aspects of monsoon climatology and spatiotemporal variability. Nevertheless, deficiencies such as significant forecast errors over the tropical western North Pacific and the eastern equatorial Indian Ocean are also found. In particular, overestimation of the connections of some dynamical monsoon indices with large-scale circulation and precipitation patterns exists in most ensemble mean forecasts, even for short lead-time forecasts. Variations of SST, measured by the first mode over the tropical Pacific and Indian oceans, as well as the spatiotemporal features over the Niño3.4 region, are overall well predicted. However, this does not necessarily translate into successful forecasts of the Asian summer monsoon by the model. Diagnostics of the relationships between monsoon and SST show that difficulties in predicting the South Asian monsoon can be mainly attributed to the limited regional response of monsoon in observations but the extensive and exaggerated response in predictions due partially to the application of ensemble average forecasting methods. In contrast, in spite of a similar deficiency, the Southeast Asian monsoon can still be forecasted reasonably, probably because of its closer relationship with large-scale circulation patterns and El Niño-Southern Oscillation.  相似文献   

10.
The integrated assessment of the influence of air mass transport directions on the average long-term seasonal variations of concentrations of minor gas components (MGC: ozone, CO, NO2) of the atmosphere is carried out according to the data of a number of European stations. Distributions of nitrogen dioxide and carbon monoxide concentrations according to transport directions are similar to each other and differ considerably from the distribution of ozone concentrations. It is demonstrated that the relationships of levels of spring and summer ozone concentrations maxima differ considerably at all examined stations in different regions of Europe depending on different transport directions: the summer maximum is stronger pronounced according to the data for the southern and eastern directions than according to the data for the northern and western directions. The change of air transport directions may account for from 10% (Moscow region) to 30–40% (the northwest of continental Europe and Ireland) variations of MGC concentration. The obtained results point out the perspective of their use in statistical models of the forecast of MGC concentrations.  相似文献   

11.
Radon is an excellent tracer for the study of transport processes in the lower atmospheric boundary layer. Analyses of the radon data measured on a 300-m meteorological tower at Philadelphia show that the diurnal variation of atmospheric turbulence is closely related to the meteorological variables. A model of variation of radon concentration with mean wind speed and low-level vertical temperature difference is derived. It indicates that radon concentration is inversely proportional to the mean wind speed and directly proportional to the temperature difference. These predictions are in good agreement with the measurements.  相似文献   

12.
银峰  张其林  纪彤彤  姜苏 《气象科学》2015,35(4):480-487
全球雷电活动在地球-电离层空腔中产生的极低频(ELF)信号干涉叠加,在一系列固定频率上产生舒曼共振(SR)。利用2012年5月以色列Mitzpe-Roman(MR)站ELF水平磁场资料,采用频谱变换、时间平均、分析了实测SR日变化信号的时域和频域特征。同时基于全球ELF传播模式,利用OTD/LIS雷电卫星资料模拟了5~30 Hz磁场功率谱日变化情况。结果表明:时域背景信号幅值的均值和偏差满足正态分布的期望和标准差;水平磁场前三阶SR谐振频率非常稳定,月平均下的谐振频率日变化相对8、14、20 Hz理论值的偏移量分别不超过0.3 Hz、0.55 Hz和0.6 Hz。东南亚和美洲地区雷电活动主要响应于南北磁场分量第一阶SR的07—09时和19—22时时段内。而东西磁场分量前三阶SR在12—15时时段内都对非洲地区雷电活动有指示作用。磁场功率谱日变化模拟结果与实测基本一致,表明利用单站正交磁天线的不同阶SR信号能够指示全球不同"热斑"区域的雷电活动。  相似文献   

13.
14.
The Taklimakan Desert of China is a region of frequent sandstorms and, thus, is a major sand and dust source area. Tazhong, a small mining village, is located near the center of the Taklimakan Desert at a distance of 220 km from the desert margins. Near Tazhong, we conducted a 2-year field investigation designed to monitor the diurnal variation of saltation activity using fast-responding piezoelectric saltation sensors (Sensits). Results suggest that saltation activity tends to occur more frequently during daytime in all seasons, relatively high levels of saltation activity are maintained from around 11:30 to around 16:30 local standard time (LST), because of stronger wind speed, higher soil temperature and lower relative humidity. During the spring and summer seasons, the saltation activity can occur at any time of the day, while there are some periods with zero saltation seconds at night and in the early morning during autumn and winter seasons. The results confirm that sandstorms tend to occur more frequently during daylight hours, so it may be helpful to forecast and guard against the occurrence of blowing sand or sandstorms in the Taklimakan Desert.  相似文献   

15.
This work studied the influence of meteorological conditions on particulate polycyclic aromatic hydrocarbons (PAHs) in the atmosphere of Higashi Hiroshima, Japan. The seasonal variation of particulate PAHs was also covered. It was found that ambient temperature, solar intensity and weekly rainfall had significant influence on the particulate PAH concentration based on correlation studies. Correlation of particulate PAHs with ambient temperature, solar intensity, weekly rainfall, wind speed and humidity was studied by using Pearson correlation analysis. Particulate PAHs had a strong negative correlation with ambient temperature and solar intensity. A moderate negative correlation with weekly rainfall was also observed. There was no significant correlation between particulate PAHs with wind speed as well as humidity. Besides, particulate PAHs were found to have significant positive correlation with sulfur dioxide and nitrogen dioxide while having a moderate negative correlation with ozone. The particulate PAHs in Higashi Hiroshima exerted distinct seasonal variation with a higher concentration in winter and lower concentration in summer. When compared among PAHs with different numbers of aromatic rings; 5-ring PAHs was found to exert the most distinct seasonal variation. The contribution of carcinogenic PAHs to total particulate PAH concentration was fairly constant at about 50% throughout the year.  相似文献   

16.
Using hindcasts of the Beijing Climate Center Climate System Model, the relationships between interannual variability (IAV) and intraseasonal variability (ISV) of the Asian-western Pacific summer monsoon are diagnosed. Predictions show reasonable skill with respect to some basic characteristics of the ISV and IAV of the western North Pacific summer monsoon (WNPSM) and the Indian summer monsoon (ISM). However, the links between the seasonally averaged ISV (SAISV) and seasonal mean of ISM are overestimated by the model. This deficiency may be partially attributable to the overestimated frequency of long breaks and underestimated frequency of long active spells of ISV in normal ISM years, although the model is capable of capturing the impact of ISV on the seasonal mean by its shift in the probability of phases. Furthermore, the interannual relationships of seasonal mean, SAISV, and seasonally averaged long-wave variability (SALWV; i.e., the part with periods longer than the intraseasonal scale) of the WNPSM and ISM with SST and low-level circulation are examined. The observed seasonal mean, SAISV, and SALWV show similar correlation patterns with SST and atmospheric circulation, but with different details. However, the model presents these correlation distributions with unrealistically small differences among different scales, and it somewhat overestimates the teleconnection between monsoon and tropical central-eastern Pacific SST for the ISM, but underestimates it for the WNPSM, the latter of which is partially related to the too-rapid decrease in the impact of E1 Nifio-Southern Oscillation with forecast time in the model.  相似文献   

17.
A regional climate model (RCM) has been applied to simulate the diurnal variations of the Asian summer monsoon during the early summer period. The ERA40 reanalysis data and the TRMM precipitation data are used to evaluate the performance of the model. The 5-year simulations show that the RCM could simulate well the diurnal cycle of the monsoon circulation over the region. A strong diurnal variation of circulation over the Tibetan Plateau (TP) can be observed at the 500-hPa level, with strong convergence and upward motion in the late afternoon. The diurnal variation of the 500-hPa relative vorticity over the TP associated with the corresponding diurnal variation of convergence may lead to the formation of a prominent plateau-scale cyclonic circulation over the TP during the evening to midnight period. The simulated diurnal variation of precipitation over land is generally better than that over the ocean, particularly over the regions close to the TP such as the Bangladesh region in the southern flank of the TP, where the well-known nocturnal maximum in precipitation is well captured by the RCM. However, the late-afternoon maximum in precipitation over the Southeast Asia region is not well simulated by the RCM. The model results suggest that the diurnal variation of precipitation over the southern flank of the TP is associated with the strong diurnal variation in the circulation over the TP.  相似文献   

18.
An extended cloud-clustering method to assess the seasonal variation of clouds is applied to five CMIP5 models. The seasonal variation of the total cloud radiative effect (CRE) is dominated by variations in the relative frequency of occurrence of the different cloud regimes. Seasonal variations of the CRE within the individual regimes contribute much less. This is the case for both observations, models and model errors. The error in the seasonal variation of cloud regimes, and its breakdown into mean amplitude and time varying components, are quantified with a new metric. The seasonal variation of the CRE of the cloud regimes is relatively well simulated by the models in the tropics, but less well in the extra-tropics. The stratocumulus regime has the largest seasonal variation of shortwave CRE in the tropics, despite having a small magnitude in the climatological mean. Most of the models capture the temporal variation of the CRE reasonably well, with the main differences between models coming from the variation in amplitude. In the extra-tropics, most models fail to correctly represent both the amplitude and time variation of the CRE of congestus, frontal and stratocumulus regimes. The annual mean climatology of the CRE and its amplitude in the seasonal variation are both underestimated for the anvil regime in the tropics, the cirrus regime and the congestus regime in the extra-tropics. The models in this study that best capture the seasonal variation of the cloud regimes tend to have higher climate sensitivities.  相似文献   

19.
Diurnal variations of the standard deviation σ g of the refractive index vertical gradient g n in the lower 300-meter atmospheric layer are first analyzed for the vast area of Eastern Siberia and Far East by using observation data obtained from 30 aerological stations for 10 years. This statistics is most variable in the Far North areas in the spring-summer period. The diurnal cycle of σ g is most diverse (in terms of both its character and amplitude) in the moderate climatic belt of the territory under study. Here, the maximum diurnal variability of σ g is observed in the summer and then, in the winter time. Diurnal variations of σ g in this region have significant amplitudes that are in many regions comparable with the amplitudes of its interseasonal variations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号