共查询到20条相似文献,搜索用时 15 毫秒
1.
Katsuo Tanaka 《Astrophysics and Space Science》1986,118(1-2):101-113
Extensive observations of solar flares made in high energy bands during the maximum of the present solar cycle are discussed with a special reference to the results from HINOTORI, and with attention to the relevant flare models. The hard X-ray (HXR) images from HINOTORI showed mostly coronal emission at 20–25 keV suggesting that the HXR is emitted from multiple coronal loops, consistent with the non-thermal electron beam model in a high density corona. The thermal HXR model seems to be inconsistent with some observations. Three types of flares which have been classified from the Hinotori results are described, along with newly discovered hot thermal component of 30–40 million K which contributes thermal HXR emission. A summary is given for the characteristics of the energy release in an impulsive burst; and an empirical model is described, which explains simultaneous energy releases in multiple loops and successive movements of the release site as suggested from the HXR morphology. The discovery of large blue-shifted hot plasma from the soft X-ray line spectrum leads to some quantitative arguments for the evaporating flare model. An electron-heated flare atmosphere appears to explain various observations consistently.Invited paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984. 相似文献
2.
P. B. Byrne 《Solar physics》1989,121(1-2):61-74
We present observational data on stellar flares from a range of wavelength regimes, many of which were obtained simultaneously. Physical parameters of these flares are derived and discussed in the frame-work of the general solar flare model. It is found that flares on dMe stars are solar-like, except in mean energy. The parameters of flares on RS CVn stars are more extreme, however, and may require new models for their interpretation. 相似文献
3.
A study is made of Lyman continuum observations of solar flares, using data obtained by the Harvard College Observatory EUV spectroheliometer on the Apollo Telescope Mount. We find that there are two main types of flare regions: an overall mean flare coincident with the H flare region, and transient Lyman continuum kernels which can be identified with the H and X-ray kernels observed by other authors. It is found that the ground level hydrogen population in flares is closer to LTE than in the quiet Sun and active regions, and that the level of Lyman continuum formation is lowered in the atmosphere from a mass column density m 5/sx 10–6 g cm–2 in the quiet Sun to m 3/sx 10–4 g cm–2 in the mean flare, and to m 10–3g cm–2 in kernels. From these results we derive the amount of chromospheric material evaporated into the high temperature region, which is found to be - 1015g, in agreement with observations of X-ray emission measures. A comparison is made between kernel observations and the theoretical predictions made by model heating calculations, available in the literature; significant discrepancies are found between observation and current particle-heating models. 相似文献
4.
G. A. Gurzadyan 《Astrophysics and Space Science》1979,62(1):45-53
In connection with the appearance of the first results of infrared observations of stellar flares, a more elaborate analysis ofnegative infrared flares as a phenomenon, predicted by the fastelectron hypothesis, has been carried out. As a result, the wavelength regions of negative flares are established for the stars of different spectral types as well as the calculated amplitudes of the negative flares (Tables I and II). The analysis of the infrared observations (c.f. Kilyachkoet al., 1978) lead to the following conclusions:
- The negative infrared flares discovered around 8000 Å is not in agreement with the theory in the case of the flare star UV Cet. Some traces of negative flares have been noted for a number of less powerful flares of EV Lac.
- The amplitudes of the recorded positive flares of UV Cet and EV Lac on λ8000 Å are in good agreement with the magnitudes predicted by the fast-electron hypothesis (non-thermal bremsstrahlung).
- In the future the negative flares around 8000 Å should be looked for in early-type flare stars of types M0-K5.
- For a positive discovery of negative flares, future observations must be carried out in the wavelength region of 1–3 μm.
5.
The recent observations of solar flares, made with a Lyot filter and a spectrograph in Hα, HeD3, higher Balmer lines, metallic lines, and continuum, are discussed. It is important to study the energy supply of non thermal particle/ conduction/ irradiation into the lower atmosphere from the optical observations with high temporal and spatial resolutions. Simultaneous observations from ground-based observatories and instruments on board satellites are necessary for understanding flare plasma of low and high energy.
相似文献6.
The recent observations of solar flares, made with a Lyot filter and a spectrograph in H, HeD3, higher Balmer lines, metallic lines, and continuum, are discussed. It is important to study the energy supply of non thermal particle/ conduction/ irradiation into the lower atmosphere from the optical observations with high temporal and spatial resolutions. Simultaneous observations from ground-based observatories and instruments on board satellites are necessary for understanding flare plasma of low and high energy. 相似文献
7.
It is shown that the chronology of flare star discoveries in the Pleiades cluster and the Orion association can be described satisfactorily by various distribution functions (gamma, binomial, decreasing exponential, and delta) for the mean frequencies of stellar flares. However, it has been found that this is due to the uncertainty in the observationally derived distribution function for the mean frequency of stellar flares. The most likely function is that derived by Ambartsumian, which has a physical basis.Translated fromAstrofizika, Vol. 38, No. 1, pp. 25–32, January–March, 1995. 相似文献
8.
9.
B. Lokanadham P. K. Subramanian Allan L. Kiplinger B. R. Dennis 《Astrophysics and Space Science》1986,119(1):5-8
The paper presents a detailed study of the high energy X-ray observation of the most unusual solar events observed on 4 and 7 June, 1980 with the Hard X-Ray Burst Spectrometer (HXRBS) on Solar Maximum Mission (SMM) satellite. The hard X-ray data of the events are also compared with the radio microwave fluxes.The X-ray time profiles of these flares are characterized by the occurrence of impulsive phase superposed with a number of narrow spikes before the occurrence of the main energetic events. Studies of the temporal and spectral properties of these events indicated a quasi-oscillatory nature of the sources. Various models for explaining the evolution of the events are considered and the sequential firing loop model seems to be consistent with the observations of the events.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984. 相似文献
10.
We describe observations of three flares made at 5 and 15 GHz with the VLA, two subflares near the limb on 1981 November 21 and 22, and an M7.7 flare on 1981 May 8. Even though the time histories of the November flares indicated simple impulsive bursts, the VLA observed no 5 GHz radiation at all from one flare, and from the other, the 15 GHz radiation emanated from a source which was smaller, lower and displaced from the 5 GHz source. Without the spatial information, we would have derived incorrect results from the assumption that photons of different energy (both at X-ray and radio wavelengths) arose from one homogeneous volume. The 1981 May 8 flare was intense and complex, having two. or more sources at both 5 and 15 GHz. Prior to the peak of the flare, the sources grew in size to > 20″ to 40″, after which they were not visible to the VLA; only (weak) subsources could be seen. These were located between or at the edge of the Hα ribbons and the two hard X-ray sources imaged by the Hinotori. Highly polarized, bursty radiation observed at Toyokawa at 1 and 2 GHz, indicated that an electron-cyclotron maser operated during the flare. We derive 360 to 660 gauss as the maximum field strength in flaring loops. 相似文献
11.
12.
13.
We have studied the evolution of electron energy and angular distributions using Monte Carlo technique for electron beams directed vertically downwards towards chromosphere for incident energies 30 keV, and 300 keV at different incidence angles. Using these distributions we have calculated microwave flux for different frequencies at a fixed column density as well as for a fixed frequency at different column densities. We have also calculated the total microwave flux coming out of solar atmosphere and have compared it with observations. Our results agree well with observational results and produce the observed nature of flux. 相似文献
14.
Hot regions in solar flares produce X-radiation and microwaves by thermal processes. Recent X-ray data make it possible to specify the temperature and emission measure of the soft X-ray source, by using, for instance, a combination of the 1–8 Å (peak response at about 2 keV) and the 0.5–3 Å (peak response at about 5 keV) broad-band photometers. The temperatures and emission measures thus derived satisfactorily explain the radio fluxes, within systematic errors of about a factor of 3. Comparison of 15 events with differing parameters shows that a hot solar flare region has an approximately isothermal temperature distribution. The time evolution of the correlation in a single event shows that the hot material originates in the chromosphere, rather than the corona. The density must lie between 1010 and 2 × 1011 cm–3. For an Importance 1 flare, this implies a stored energy of roughly 2 x 1030-1029 ergs. A refinement of the data will enable us to choose between conductive and radiative cooling models. 相似文献
15.
16.
17.
In a study of soft X-ray coronal images obtained with the Yohkoh spacecraft, two eruptive flares with remarkably similar X-ray structures were noted – most remarkably because the flares occurred at the same solar location (approximately 10 deg north latitude on the east limb) yet separated in time by three solar rotations. Between the times of the eruptions, the active region responsible for the first flare disappeared from Yohkoh images. An extremely similar X-ray active region replaced it by the third solar rotation. The recurring X-ray active region appearance and recurring flare activity after 86 days suggest that persistent subsurface flux emergence patterns might be responsible, and support previous arguments that active longitudes exist. 相似文献
18.
M. R. Kundu 《Solar physics》1996,169(2):389-402
We present a review of selected studies based upon simultaneous radio and X-ray observations of solar flares and coronal transients. We use primarily the observations made with large radio imaging instruments (VLA, BIMA, Nobeyama, and Nançay) along with Yohkoh/SXT and HXT and CGRO experiments. We review the recent work on millimeter imaging of solar flares, microwave and hard X-ray observations of footpoint emission from flaring loops, metric type IV continuum bursts, and coronal X-ray structures. We discuss the recent studies on thermal and nonthermal processes in coronal transients such as XBP flares, coronal X-ray jets, and active region transient brightenings.Dedicated to Cornelis de Jager 相似文献
19.
We propose an accurate analytical model for the source of hard X-ray emission from a flare in the form of a “thick target” with a reverse current to explain the results of present-day observations of solar flares onboard the GOES, Hinode, RHESSI, and TRACE satellites. The model, one-dimensional in coordinate space and two-dimensional in velocity space, self-consistently takes into account the fact that the beam electrons lose the kinetic energy of their motion along the magnetic field almost without any collisions under the action of the reverse-current electric field. Some of the electrons return from the emission source to the acceleration region without losing the kinetic energy of their transverse motion. Based on the observed hard X-ray bremsstrahlung spectrum, the model allows the injection spectrum of accelerated electrons to be reconstructed with a high accuracy. As an example, we consider the white-light flare of December 6, 2006, which was observed with a high spatial resolution in the optical wavelength range at the main maximum of hard X-ray emission. Within the framework of our model, we show that to explain the hard X-ray spectrum, the flux density of the energy transferred by electrons with energies above 18 keV was ~3 × 1013 erg cm?2 s?1. This exceeds the habitual values typical of the classical model of a thick target without a reverse current by two orders of magnitude. The electron density in the beam is also very high: ~1011 cm?3. A more careful consideration of plasma processes in such dense electron beams is needed when the physical parameters of a flare are calculated. 相似文献
20.
Cheng-Ming Tan Karl Ludwig Klein Yi-Hua Yan Satoshi Masuda Bao-Lin Tan Jing Huang Guo-Wu Yuan 《天文和天体物理学研究(英文版)》2021,(11):35-46
The energy and spectral shape of radio bursts may help us understand the generation mechanism of solar eruptions,including solar flares,coronal mass ejections,e... 相似文献