共查询到20条相似文献,搜索用时 15 毫秒
1.
Variations in the stable isotope abundances of transition metals have been observed in the geologic record and trying to understand and reconstruct the physical/environmental conditions that produced these signatures is an area of active research. It is clear that changes in oxidation state lead to large fractionations of the stable isotopes of many transition metals such as iron, suggesting that transition metal stable isotope signatures could be used as a paleo-redox proxy. However, the factors contributing to these observed stable isotope variations are poorly understood. Here we investigate how the kinetics of iron redox electrochemistry generates isotope fractionation. Through a combination of electrodeposition experiments and modeling of electrochemical processes including mass-transport, we show that electron transfer reactions are the cause of a large isotope separation, while mass transport-limited supply of reactant to the electrode attenuates the observed isotopic fractionation. Furthermore, the stable isotope composition of electroplated transition metals can be tuned in the laboratory by controlling parameters such as solution chemistry, reaction overpotential, and solution convection. These methods are potentially useful for generating isotopically-marked metal surfaces for tracking and forensic purposes. In addition, our studies will help interpret stable isotope data in terms of identifying underlying electron transfer processes in laboratory and natural samples. 相似文献
2.
温度为180—550℃,盐度(wt.%)分别为0、5、25和40条件下,在高压釜内完成了由硅胶合成石英的氧同位素分馏作用实验研究,目的是了解:①盐同位素效应;②△t值对同位素分馏的影响;③温度与同位素分馏系数的关系。研究资料表明:低温条件下矿物和纯水之间同位素平衡作用不可能发生;影响含氧矿物(初)之间氧同位素平衡速率的因素包括盐度、△t值大小和温度等;我们的研究还表明,盐度对同位素分馏作用同系数无影响,即不存在所谓的“同位素盐效应”。在180—550℃温度范围内,不同盐度条件下获得的石英-水氧同位素分馏实验方程为:10001nα_(石英-水)=3.306×10~5T~(-2)—2.71。 相似文献
3.
Silicon isotope fractionation during magmatic differentiation 总被引:3,自引:0,他引:3
Paul S. Savage R. Bastian Georg Kevin W. Burton Alex N. Halliday 《Geochimica et cosmochimica acta》2011,75(20):6124-6139
The Si isotopic composition of Earth’s mantle is thought to be homogeneous (δ30Si = −0.29 ± 0.08‰, 2 s.d.) and not greatly affected by partial melting and recycling. Previous analyses of evolved igneous material indicate that such rocks are isotopically heavy relative to the mantle. To understand this variation, it is necessary to investigate the degree of Si isotopic fractionation that takes place during magmatic differentiation. Here we report Si isotopic compositions of lavas from Hekla volcano, Iceland, which has formed in a region devoid of old, geochemically diverse crust. We show that Si isotopic composition varies linearly as a function of silica content, with more differentiated rocks possessing heavier isotopic compositions. Data for samples from the Afar Rift Zone, as well as various igneous USGS standards are collinear with the Hekla trend, providing evidence of a fundamental relationship between magmatic differentiation and Si isotopes. The effect of fractionation has been tested by studying cumulates from the Skaergaard Complex, which show that olivine and pyroxene are isotopically light, and plagioclase heavy, relative to the Si isotopic composition of the Earth’s mantle. Therefore, Si isotopes can be utilised to model the competing effects of mafic and felsic mineral fractionation in evolving silicate liquids and cumulates.At an average SiO2 content of ∼60 wt.%, the predicted δ30Si value of the continental crust that should result from magmatic fractionation alone is −0.23 ± 0.05‰ (2 s.e.), barely heavier than the mantle. This is, at most, a maximum estimate, as this does not take into account weathered material whose formation drives the products toward lighter δ30Si values. Mass balance calculations suggest that removal of continental crust of this composition from the upper mantle will not affect the Si isotopic composition of the mantle. 相似文献
4.
Copper has two naturally occurring stable isotopes of masses 63 and 65 which can undergo mass dependent fractionation during various biotic and abiotic chemical reactions. These interactions and their resulting Cu isotope fractionations can be used to determine the mechanisms involved in the cycling of Cu in natural systems. In this study, Cu isotope changes were investigated at the organismal level in the metal-accumulating desert plant, Prosopis pubescens. Initial results suggest that the lighter Cu isotope was preferentially incorporated into the leaves of the plant, which may suggest that Cu was actively transported via intracellular proteins. The roots and stems show a smaller degree of Cu isotope fractionation and the direction and magnitude of the fractionations was dependent upon the levels of Cu exposure. Based on this and previous work with bacteria and yeast, a trend is emerging that suggests the lighter Cu isotope is preferentially incorporated into biological components, while the heavier Cu isotope tends to become enriched in aqueous solutions. In bacteria, plants and animals, intracellular Cu concentrations are strictly regulated via dozens of enzymes that can bind, transport, and store Cu. Many of these enzymes reduce Cu(II) to Cu(I). These initial results seem to fit into a broader picture of Cu isotope cycling in natural systems where oxidation/reduction reactions are fundamental in controlling the distributions of Cu isotopes. 相似文献
5.
Olivier Rouxel Edward Sholkovitz Katrina J. Edwards 《Geochimica et cosmochimica acta》2008,72(14):3413-3430
Dissolved Fe concentrations in subterranean estuaries, like their river-seawater counterparts, are strongly controlled by non-conservative behavior during mixing of groundwater and seawater in coastal aquifers. Previous studies at a subterranean estuary of Waquoit Bay on Cape Cod, USA demonstrate extensive precipitation of groundwater-borne dissolved ferrous iron and subsequent accumulation of iron oxides onto subsurface sands. Waquoit Bay is thus an excellent natural laboratory to assess the mechanisms of Fe-isotope fractionation in redox-stratified environments and determine potential Fe-isotope signatures of groundwater sources to coastal seawater. Here, we report Fe isotope compositions of iron-coated sands and porewaters beneath the intertidal zone of Waquoit Bay. The distribution of pore water Fe shows two distinct sources of Fe: one residing in the upward rising plume of Fe-rich groundwater and the second in the salt-wedge zone of pore water. The groundwater source has high Fe(II) concentration consistent with anoxic conditions and yield δ56Fe values between 0.3 and −1.3‰. In contrast, sediment porewaters occurring in the mixing zone of the subterranean estuary have very low δ56Fe values down to −5‰. These low δ56Fe values reflect Fe-redox cycling and result from the preferential retention of heavy Fe-isotopes onto newly formed Fe-oxyhydroxides. Analysis of Fe-oxides precipitated onto subsurface sands in two cores from the subterranean estuary revealed strong δ56Fe and Fe concentration gradients over less than 2m, yielding an overall range of δ56Fe values between −2 and 1.5‰. The relationship between Fe concentration and δ56Fe of Fe-rich sands can be modeled by the progressive precipitation of Fe-oxides along fluid flow through the subterranean estuary. These results demonstrate that large-scale Fe isotope fractionation (up to 5‰) can occur in subterranean estuaries, which could lead to coastal seawater characterized by very low δ56Fe values relative to river values. 相似文献
6.
Calculation of sulfur isotope fractionation in sulfides 总被引:3,自引:0,他引:3
The increment method has been successfully applied to calculate thermodynamic isotope fractionation factors of oxygen in silicates, oxides, carbonates, and sulfates. In this paper, we modified the increment method to calculate thermodynamic isotope fractionation factors of sulfur in sulfides, based on chemical features of sulfur-metal bonds and crystal features of sulfide minerals. To approximate the bond strength of sulfides, a new constant, known as the Madelung constant, was introduced. The increment method was then extended to calculate the reduced partition function ratios of sphalerite, chalcopyrite, galena, pyrrhotite, greenockite, bornite, cubanite, sulvanite, and violarite, as well as the isotope fractionation factors between them over the temperature range from 0 to 1000 °C. The order of 34S enrichment in these nine minerals is pyrrhotite > greenockite > sphalerite > chalcopyrite > cubanite > sulvanite > bornite > violarite > galena. Our improved method constitutes another model for calculating the thermodynamic isotope fractionation factors of sulfur in sulfides of geochemical interest. 相似文献
7.
The oxygen isotope fractionation accompanying the hydrothermal dolomitization of CaCO3 between 252 and 295°C has been investigated. Dolomitization (which occurs via the crystallization of one or more intermediate magnesian calcite phases) is characterised by a progressive lowering in δ8O, which smoothly correlates with the change in the Mg/(Mg + Ca) and the ratios and with the sequential phase formation. The data support the proposals of Katz and Matthews (1977) that (a) all reaction occurs by solution and reprecipitation, (b) intermediate phases and dolomite form sequentially and (c) the intermediate phases form within limited solution zones surrounding the dissolving precursor. Calculated volumes of the solution zone for the aragonite → low magnesian calcite transformation are within the range 3.7–6.7 × 10?5 liters (out of 5 × 10?3 liters, the volume of the bulk solution used in the present study), and agree well with those calculated from strontium and magnesium partitioning data. Dolomite precipitates in apparent isotopic equilibrium with the bulk solution. The temperature dependence of the fractionation is defined by the equation 1000 InαD-H2O = 3.06 × 106T?2 ? 3.24 Dolomite-water fractionations from this equation are significantly lower than those obtained by extrapolation of the Northrop And Clayton (1966) calibration. The reaction zone model can be applied to explain near zero dolomite-calcite oxygen isotope fractionations reported by Epsteinet al. (1964). 相似文献
8.
Nicolas Estrade Jean Carignan Olivier F.X. Donard 《Geochimica et cosmochimica acta》2009,73(10):2693-390
Liquid-vapor mercury isotope fractionation was investigated under equilibrium and dynamic conditions. Equilibrium evaporation experiments were performed in a closed glass system under atmospheric pressure between 0 and 22 °C, where vapor above the liquid was sampled at chemical equilibrium. Dynamic evaporation experiments were conducted in a closed glass system under 10−5 bar vacuum conditions varying (1) the fraction of liquid Hg evaporated at 22 °C and (2) the temperature of evaporation (22-100 °C). Both, residual liquid and condensed vapor fractions were analyzed using stannous chloride CV-MC-ICP-MS.Equilibrium evaporation showed a constant liquid-vapor fractionation factor (α202/198) of 1.00086 ± 0.00022 (2SD, n = 6) within the 0-22 °C range. The 22 °C dynamic evaporations experiments displayed Rayleigh distillation fractionation behavior with liquid-vapor α202/198 = 1.0067 ± 0.0011 (2SD), calculated from both residual and condensed vapor fractions. Our results confirm historical data (1920s) from Brönsted, Mulliken and coworkers on mercury isotopes separation using evaporation experiments, for which recalculated δ202Hg′ showed a liquid-vapor α202/198 of 1.0076 ± 0.0017 (2SD). This liquid-vapor α202/198 is significantly different from the expected kinetic α202/198 value ((202/198)0.5 = 1.0101). A conceptual evaporation model of back condensation fluxes within a thin layer at the liquid-vapor interface was used to explain this discrepancy. The δ202Hg′ of condensed vapor fractions in the 22-100 °C temperature range experiments showed a negative linear relationship with 106/T2, explained by increasing rates of exchange within the layer with the increase in temperature.Evaporation experiments also resulted in non-mass-dependent fractionation (NMF) of odd 199Hg and 201Hg isotopes, expressed as Δ199Hg′ and Δ201Hg′, the deviation in ‰ from the mass fractionation relationship with even isotopes. Liquid-vapor equilibrium yielded Δ199Hg′/Δ201Hg′ relationship of 2.0 ± 0.6 (2SE), which is statistically not different from the one predicted for the nuclear field shift effect (Δ199Hg/Δ201Hg ≈ 2.47). On the other hand, evaporation under dynamic conditions at 22 °C led to negative anomalies in the residual liquid fractions that are balanced by positive anomalies in condensed vapors with lower Δ199Hg′/Δ201Hg′ ratios of 1.2 ± 0.4 (2SD). This suggests that either magnetic isotope effects may have occurred without radical chemistry or an unknown NMF process on odd isotopes operated during liquid mercury evaporation. 相似文献
9.
The isotopic composition of Ca (Δ44Ca/40Ca) in calcite crystals has been determined relative to that in the parent solutions by TIMS using a double spike. Solutions were exposed to an atmosphere of NH3 and CO2, provided by the decomposition of (NH4)2CO3, following the procedure developed by previous workers. Alkalinity, pH and concentrations of CO32−, HCO3−, and CO2 in solution were determined. The procedures permitted us to determine Δ(44Ca/40Ca) over a range of pH conditions, with the associated ranges of alkalinity. Two solutions with greatly different Ca concentrations were used, but, in all cases, the condition [Ca2+]>>[CO32−] was met. A wide range in Δ(44Ca/40Ca) was found for the calcite crystals, extending from 0.04 ± 0.13‰ to −1.34 ± 0.15‰, generally anti-correlating with the amount of Ca removed from the solution. The results show that Δ(44Ca/40Ca) is a linear function of the saturation state of the solution with respect to calcite (Ω). The two parameters are very well correlated over a wide range in Ω for each solution with a given [Ca]. The linear correlation extended from Δ(44Ca/40Ca) = −1.34 ± 0.15‰ to 0.04 ± 0.13‰, with the slopes directly dependent on [Ca]. Solutions, which were vigorously stirred, showed a much smaller range in Δ(44Ca/40Ca) and gave values of −0.42 ± 0.14‰, with the largest effect at low Ω. It is concluded that the diffusive flow of CO32− into the immediate neighborhood of the crystal-solution interface is the rate-controlling mechanism and that diffusive transport of Ca2+ is not a significant factor. The data are simply explained by the assumptions that: a) the immediate interface of the crystal and the solution is at equilibrium with Δ(44Ca/40Ca) ∼ −1.5 ± 0.25‰; and b) diffusive inflow of CO32− causes supersaturation, thus precipitating Ca from the regions exterior to the narrow zone of equilibrium. The result is that Δ(44Ca/40Ca) is a monotonically increasing (from negative values to zero) function of Ω. We consider this model to be a plausible explanation of most of the available data reported in the literature. The well-resolved but small and regular isotope fractionation shifts in Ca are thus not related to the diffusion of very large hydrated Ca complexes, but rather due to the ready availability of Ca in the general neighborhood of the crystal-solution interface. The largest isotopic shift which occurs as a small equilibrium effect is then subdued by supersaturation precipitation for solutions where [Ca2+]>>[CO32−] + [HCO3−]. It is shown that there is a clear temperature dependence of the net isotopic shifts that is simply due to changes in Ω due to the equilibrium “constants” dependence on temperature, which changes the degree of saturation and hence the amount of isotopically unequilibrated Ca precipitated. The effects that are found in natural samples, therefore, will be dependent on the degree of diffusive inflow of carbonate species at or around the crystal-liquid interface in the particular precipitating system, thus limiting the equilibrium effect. 相似文献
10.
Calcium isotope fractionation in calcite and aragonite 总被引:1,自引:0,他引:1
Nikolaus Gussone Florian Böhm Martin Dietzel Barbara M.A. Teichert Gert Wörheide 《Geochimica et cosmochimica acta》2005,69(18):4485-4494
Calcium isotope fractionation was measured on skeletal aragonite and calcite from different marine biota and on inorganic calcite. Precipitation temperatures ranged from 0 to 28°C. Calcium isotope fractionation shows a temperature dependence in accordance with previous observations: 1000 · ln(αcc) = −1.4 + 0.021 · T (°C) for calcite and 1000 · ln(αar) = −1.9 + 0.017 · T (°C) for aragonite. Within uncertainty the temperature slopes are identical for the two polymorphs. However, at all temperatures calcium isotopes are more fractionated in aragonite than in calcite. The offset in δ44/40Ca is about 0.6‰. The underlying mechanism for this offset may be related to the different coordination numbers and bond strengths of the calcium ions in calcite and aragonite crystals, or to different Ca reaction behavior at the solid-liquid interface. Recently, the observed temperature dependence of the Ca isotope fractionation was explained quantitatively by the temperature control on precipitation rates of calcium carbonates in an experimental setting (Lemarchand et al., 2004). We show that this mechanism can in principle also be applied to CaCO3 precipitation in natural environments in normal marine settings. Following this model, Ca isotope fractionation in marine Ca carbonates is primarily controlled by precipitation rates. On the other hand the larger Ca isotope fractionation of aragonite compared to calcite can not be explained by different precipitation rates. The rate control model of Ca isotope fractionation predicts a strong dependence of the Ca isotopic composition of carbonates on ambient CO32− concentration. While this model is in general accordance with our observations in marine carbonates, cultured specimens of the planktic foraminifer Orbulina universa show no dependence of Ca-isotope fractionation on the ambient CO32− concentration. The latter observation implies that the carbonate chemistry in the calcifying vesicles of the foraminifer is independent from the ambient carbonate ion concentration of the surrounding water. 相似文献
11.
高温下非传统稳定同位素分馏 总被引:4,自引:1,他引:4
过去十几年来,非传统稳定同位素地球化学在高温地质过程的研究中取得了的重大进展。多接收诱导耦合等离子质谱(MC-ICP-MS)的应用引发了稳定同位素分析方法的重大突破,使得精确测定重元素的同位素比值成为可能。本文总结了以Li、Fe和Mg同位素为代表的非传统稳定同位素在岩石地球化学研究中的应用。Li同位素目前被广泛地用于地幔地球化学、俯冲带物质再循环和变质作用的研究中,可以用来示踪岩浆的源区性质和扩散等动力学过程。不同价态的Fe在矿物熔体相之间的分配可以产生Fe同位素分馏,可以发生在地幔交代、部分熔融、分离结晶等过程中。岩浆岩的Mg同位素则大致反映其源区的特征,地幔的Mg同位素组成比较均一,这为研究低温地球化学过程中Mg同位素的分馏提供一个均一的背景。此外,Cl,Si,Cu,Ca,U等等同位素体系也具有广阔的应用前景。对同位素分馏机制的实验研究和理论模拟为理解非传统稳定同位素数据提供了必要的指导。实验表明,高温下具有不同的迁移速度的轻、重同位素可以产生显著的动力学同位素分馏,这一分馏可以在化学扩散、蒸发和凝华等过程中发生;同位素在矿物和熔体以及流体相中化学环境的差异使得不同相之间可以发生平衡分馏。而最近的硅酸盐岩浆的热扩散和热迁移实验则揭示了一种"新"的岩浆分异和同位素分馏机制。沿着温度梯度,硅酸盐岩浆可以发生显著的元素和同位素分异,湿的安山岩可以通过这种方式演变成花岗质成分,因此这个过程可能对陆壳的产生和演化有重大影响。如果温度梯度在岩浆作用中能长期存在,热扩散就可以产生稳定同位素的分馏,这一机制有别于传统的平衡和动力学同位素分馏。 而多个稳定同位素体系的正相关关系是示踪热迁移过程的最有力证据。在热扩散过程中,流体承载的物质的浓度和它的索瑞系数有关。但是这个系数对体系的很多参数非常敏感,变化极大,因此对热扩散效应的研究产生极大的困难。对热扩散实验的镁、钙和铁同位素测量表明,同位素比值的变化与体系的化学组成以及总温度无关,只和温度变化的幅度有关,这意味着即使元素的索瑞系数变化多端,某一元素的同位素之间的索瑞系数的差别总为常数。这一发现有助于简化对热扩散和索瑞系数这一基础物理问题的研究 。 相似文献
12.
Florian Böhm Nikolaus Gussone Anton Eisenhauer Stéphanie Reynaud 《Geochimica et cosmochimica acta》2006,70(17):4452-4462
The 44Ca/40Ca ratios of cultured (Acropora sp.) and open ocean (Pavona clavus, Porites sp.) tropical reef corals are positively correlated with growth temperature. The slope of the temperature-fractionation relation is similar to inorganic aragonite precipitates. However, δ44/40Ca of the coral aragonite is offset from inorganic and sclerosponge aragonite by about +0.5‰. This offset can neither be explained by the very fast, biologically controlled calcification of scleractinian corals, nor as a consequence of calcification from a partly closed volume of fluid. As corals actively transport calcium through several cell layers to the site of calcification, the most likely explanation for the offset is a biologically induced fractionation. Our results indicate a limited use of Ca isotopes in scleractinian corals as temperature proxy. 相似文献
13.
Alan Matthews Julian R. Goldsmith Robert N. Clayton 《Geochimica et cosmochimica acta》1983,47(3):645-654
Oxygen isotope fractionations between zoisite and water have been studied at 400–700°C, PH2O = 13.4 kbar, using the three-isotope method described by Matsuhisaet al. (1978) and Matthewset al. (1983a). The zoisite-waier exchange reaction takes place extremely slowly and consequently direct-exchange calibration of equilibrium fractionation factors was possible only at 600 and 700°C. Fractionation factors at 400–600°C were determined from samples hydrothermally crystallized from a glass of the anhydrous zoisite composition. At 600°C, both exchange procedures gave identical fractionations within experimental error. Scanning electron microscope studies showed that the zoisite-water exchange reaction occurs largely by solution-precipitation mass-transfer mechanisms. The slow kinetics of zoisite-water exchange may be typical of hydrous silicates, since additional experiments on tremolite-water and chlorite-water exchange also showed very low rates. When the zoisite-water fractionation factors determined in this study are combined with the quartz and albite-water data of Matsuhisaet al. (1979) and the calcite-water data of O'Nellet al. (1969), mineral-pair fractionations are obtained for which the coefficients “A” in the equation 1000 In α = A × 106T?2 are:
Ab | Cc | Zo | |
Q | 0.50 | 0.50 | 1.56 |
Ab | 0.00 | 1.06 | |
Cc | 1.06 |