首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Comptes Rendus Geoscience》2018,350(4):141-153
This study deals with the evolution of the hydrological cycle over France during the 21st century. A large multi-member, multi-scenario, and multi-model ensemble of climate projections is downscaled with a new statistical method to drive a physically-based hydrological model with recent improvements. For a business-as-usual scenario, annual precipitation changes generally remain small, except over southern France, where decreases close to 20% are projected. Annual streamflows roughly decrease by 10% (±20%) on the Seine, by 20% (±20%) on the Loire, by 20% (±15%) on the Rhone and by 40% (±15%) on the Garonne. Attenuation measures, as implied by the other scenarios analyzed, lead to less severe changes. However, even with a scenario generally compatible with a limitation of global warming to two degrees, some notable impacts may still occur, with for example a decrease in summer river flows close to 25% for the Garonne.  相似文献   

2.
气候变化下水文极端事件变化预测研究进展   总被引:6,自引:1,他引:6       下载免费PDF全文
全球气候变化对洪水、干旱等极端水文事件的影响已成为一个亟待解决的科学问题.针对国内外在气候变化下采用统计降尺度和降雨径流模型对水文极端事件进行预测的研究进展进行了系统分析,在分类阐述的基础上,总结了国内外最新的研究进展及在预估过程中存在的问题和解决方案,试图凝练出一些气候变化背景下水文极端事件预估的新思路.结果表明:为有效降低极端水文事件预估的不确定性,各种集合模拟技术、数据同化方法、强化观测技术及水文模型的尺度转换理论将是有效的解决途径.  相似文献   

3.
Effective information regarding environmental responses to future land-use and climate change scenarios provides useful support for decision making in land use planning, management and policies. This study developed an approach for modeling and examining the impacts of future land-use and climate change scenarios on streamflow, surface runoff and groundwater discharge using an empirical land-use change model, a watershed hydrological model based on various land use policies and climate change scenarios in an urbanizing watershed in Taiwan. The results of the study indicated that various demand and conversion policies had different levels of impact on hydrological components in all land-use scenarios in the study watershed. Climate changes were projected to have a greater impact in increasing surface runoff and reducing groundwater discharge than are land use changes. Additionally, the spatial distributions of land-use changes also influenced hydrological processes in both downstream and upstream areas, particularly in the downstream watershed. The impacts on hydrological components when considering both land use and climate changes exceeded those when only considering land use changes or climate changes, particularly on surface runoff and groundwater discharge. However, the proposed approach provided a useful source of information for assessing the responses of land use and hydrological processes to future land use and climate changes.  相似文献   

4.
Two data sets, annual temperature and precipitation time series from 19 observation stations in the Tarim River basin covering 1958 through 2002, were investigated by non-parametric tests to detect the trend and features of climate change and variability. Based on these data, the snow cover area (SCA) in situ for the period 1982–2001 was further analyzed to examine the effect of climate change on snow. The results showed that both the temperature and precipitation had a jump in the mid 1980s and significantly increased in winter and summer, respectively. The SCA of the entire basin showed a slowly increasing trend. Responses of the SCA to temperature and precipitation in the northern, western and southern regions showed that the effect of precipitation on SCA is larger than that of temperature. In vertical direction, the SCA in the zone below 2,500 m a.s.l. kept a slow increase, but that in the zone above 2,500 m a.s.l. was inching down. Comparatively, the lower altitude zone was apt to be affected by precipitation, while the higher altitude zone tended to be influenced by temperature. The mid zone from 2,500 to 5,000 m was the area most sensitive to and affected by climate change. Compared with that in the 1980s, both the snowing and melting rates were higher in the 1990s. Correlation analysis implied that the SCA change in the cold season was positively correlated with the contemporary precipitation change, but had no strong correlation with the contemporary temperature change.  相似文献   

5.
As an important water source and ecological barrier in the Yellow River Basin, the source region of the Yellow River (above the Huangheyan Hydrologic Station) presents a remarkable permafrost degradation trend due to climate change. Therefore, scientific understanding the effects of permafrost degradation on runoff variations is of great significance for the water resource and ecological protection in the Yellow River Basin. In this paper, we studied the mechanism and extent of the effect of degrading permafrost on surface flow in the source region of the Yellow River based on the monitoring data of temperature and moisture content of permafrost in 2013–2019 and the runoff data in 1960–2019. The following results have been found. From 2013 to 2019, the geotemperature of the monitoring sections at depths of 0–2.4 m increased by 0.16°C/a on average. With an increase in the thawing depth of the permafrost, the underground water storage space also increased, and the depth of water level above the frozen layer at the monitoring points decreased from above 1.2 m to 1.2–2 m. 64.7% of the average multiyear groundwater was recharged by runoff, in which meltwater from the permafrost accounted for 10.3%. Compared to 1960-1965, the runoff depth in the surface thawing period (from May to October) and the freezing period (from November to April) decreased by 1.5 mm and 1.2 mm, respectively during 1992–1997, accounting for 4.2% and 3.4% of the average annual runoff depth, respectively. Most specifically, the decrease in the runoff depth was primarily reflected in the decreased runoff from August to December. The permafrost degradation affects the runoff within a year by changing the runoff generation, concentration characteristics and the melt water quantity from permafrost, decreasing the runoff at the later stage of the permafrost thawing. However, the permafrost degradation has limited impacts on annual runoff and does not dominate the runoff changes in the source region of the Yellow River in the longterm.  相似文献   

6.
Hydrological impacts from climate change are of principal interest to water resource policy-makers and practicing engineers. Predictive climatic models have been extensively investigated to quantify the impacts. Palaeoclmatic investigations, on the other hand, show unequivocal and strong periodicity of climate variations in proxy evidence. Yet how to use the periodicity in future hydroclimatic timing and forecasting has received less attention. This paper examines the periodicity in Pleistocene–Holocene glacial–interglacial events and in modern precipitation records, and discusses a way in which the periodicity is used for hydroclimatic predictions. The analysis, based on published CO2, ΔT2H) and δ18O proxy data of polar ice cores and deep oceanic benthic fossils, shows a periodicity in a ~100, ~40 or 25 kyear duration consistent with Milankovitch orbital regulations during the glacial–interglacial periods. On a fine time scale, millennium and multi-decadal periodicity is observed in high-resolution proxy variations of Greenland ice cores and in instrumental precipitation records of the contiguous USA. A basic periodicity of decadal and multi-decadal changes in ~20 and ~10–15 year duration is apparent in wavelet frequency analysis of both ice core proxy and precipitation data. While the kyear-scale periodicity is found of global prevalence, the millennium and decadal variations vary in space and are region-specific. Based on these findings, a generalized time-downscaling hierarchy of periodicity is proposed as a potential approach for timing and forecasting future hydroclimatic conditions at a resolution relevant to the water resources engineering and management.  相似文献   

7.
Climate change films are relevant to geographers working in sub-disciplines, such as environmental management, climate science and visual studies. This paper assesses the usefulness of climate change films in light of ongoing debates in science communication and climate change communication about the best-known and most popular movies. Using a handful of English-language films as a sample, the paper asks how the usefulness of climate change films is to be determined if not by sole reference to the accuracy or truthfulness of factual information. The paper demonstrates that all types of films (from award-winning science documentaries to Hollywood blockbusters) have been debated and critiqued, especially in regard to scientific verisimilitude and image integrity. Usefulness is therefore not a matter of film type. Nor is it simply a matter of accuracy, because films containing inaccuracies have their supporters as well. The paper evaluates usefulness in terms of the work that climate change films do and the methods they use. I argue that the two key criteria for determining usefulness are teachability and integrity. In conclusion, I reinforce calls to detach the issue of usefulness from accurate science per se. Useful films are educative, truthful and trustworthy, in ways not always intended by filmmakers.  相似文献   

8.
海河流域河川径流对气候变化的响应机理   总被引:1,自引:0,他引:1       下载免费PDF全文
利用可变下渗容量(Variable Infiltration Capacity,VIC)模型,在海河流域选取了6个典型流域来率定VIC模型的参数。通过模型参数移植技术,建立了全流域的径流模拟平台。根据假定的气候变化情景,分析了海河流域河川径流对气候变化的响应机理。结果表明:在年平均气温升高2℃时,海河流域的径流量将减少6.5%;当年降水量增加或者减少10%时,海河流域的径流量将分别增加26%和减少23%;当汛期降水占年降水量的比例分别增加或者减少10%时,全流域的径流量将会增加12%或者减少7%;在空间上,在年平均气温升高和年降水量变化的情景下,海河流域西北部的河川径流比东南部更敏感;在降水年内分配变化的情景下,海河流域东南部的河川径流比西北部更敏感。总体上,年降水量越大,径流量对降水量的敏感性越小,对平均气温的敏感性也越小,而对降水年内分配的敏感性越大。  相似文献   

9.
A method for predicting the impact of climate change on slope stability   总被引:4,自引:0,他引:4  
 A major effect of man-induced climate change could be a generally higher frequency and magnitude of extreme climatological events in Europe. Consequently, the frequency of rainfall-triggered landslides could increase. However, assessment of the impact of climate change on landsliding is difficult, because on a regional scale, climate change will vary strongly, and even the sign of change can be opposite. Furthermore, different types of landslides are triggered by different mechanisms. A potential method for predicting climate change impact on landsliding is to link slope models to climate scenarios obtained through downscaling General Circulation Models (GCM). Methodologies, possibilities and problems are discussed, as well as some tentative results for a test site in South-East France. Received: 25 October 1997 · Accepted: 25 June 1997  相似文献   

10.
滦河流域土地利用/覆被变化的水文响应   总被引:3,自引:0,他引:3       下载免费PDF全文
以滦河流域为研究区,利用1985和2000年土地利用数据,结合SWAT分布式水文模型定量评价了流域土地利用/覆被变化的水文效应,并分析了流域地表径流变化与主要景观类型的响应关系。结果表明:SWAT(Soil and Water Assessment Tool)模型可以较好地模拟滦河流域的月流量过程,在研究区具有较好的适用性;1985—2000年流域林地向草地和耕地的转变导致流域年均地表径流和总径流量分别增加了12.6%和5.1%;并使得流域年均地表径流变化空间差异显著,整体呈增加趋势,且主要受到林地变化的影响,而在三道河子以上集水区地表径流的变化则主要受到耕地景观的影响。合理规划土地利用格局,对于流域水资源可持续利用具有重要意义。  相似文献   

11.
受全球气候变化影响,澜沧江-湄公河流域气象水文干旱发生了较大变化,预测未来流域干旱的时空变化与传播特征是应对气候变化、开展澜湄水资源合作的基础。利用SWAT模型通过气陆耦合方式模拟了澜沧江-湄公河流域历史(1960—2005年)和未来时期(2022—2050年,2051—2080年)的水文过程,采用标准化降水指数和标准化径流指数预估并分析了流域未来气象水文干旱时空变化趋势。结果表明:①澜沧江-湄公河流域未来降水呈增长趋势,气象干旱将有所缓解,但降水年内分配不均与流域蒸发的增加,将导致水文干旱更为严峻,干旱从气象到水文的传播过程加剧;②水文干旱具有明显的空间异质性,允景洪和清盛站的水文干旱最为严重,琅勃拉邦、穆达汉和巴色站次之,万象站最弱;③未来流域水文干旱事件发生频次略有减少,但其中重旱、特旱事件占比增加,极端干旱将趋多趋强,且空间变化更加显著。  相似文献   

12.
雅鲁藏布江流域气候和下垫面变化对径流的影响研究   总被引:3,自引:0,他引:3  
典型高原寒区雅鲁藏布江流域径流变化是反映该区域气候和下垫面变化的重要指标。在全球升温背景下,由于观测资料稀缺,导致缺乏针对整个流域的气候和下垫面变化对径流影响的研究。因此,本研究基于1986—2010年的气象数据和奴下水文站月尺度、动态土地利用数据等,利用改进的水文模型并结合不同的模拟策略厘清了流域1991—2010年不同时段间气候和下垫面变化对径流的影响。结果表明:在1991—2010年期间,不同时段间气候和下垫面变化对径流变化的贡献率差异较大,气候变化对径流变化的贡献率高于下垫面变化,且使径流量增加。从空间上看,气候变化对流域产流的贡献率在上游和中游都较大,在下游东北部的贡献率较小,而在该区域下垫面变化的贡献率较大。雪冰融水径流呈增加的趋势,对年径流的平均贡献率在21.1%~48.6%范围内,多年平均贡献率为33.6%;雪冰融水径流一般从4月开始增大,8月达到最大,10月达到消融末期。本研究的开展和发现既是雅鲁藏布江流域水文、水资源基础性研究的需要,具有重要的理论研究意义,同时也可为该流域的水资源保护、规划与管理提供科学理论和决策依据,具有重要的现实意义。  相似文献   

13.
Quantitative knowledge about the impacts of climate change on the hydrological regime is essential in order to achieve meaningful insights to address various adverse consequences related to water such as water scarcity, flooding, drought, etc. General circulation models (GCMs) have been developed to simulate the present climate and to predict future climatic change. But, the coarse resolution of their outputs is inefficient to resolve significant regional scale features for assessing the effects of climate change on the hydrological regimes, thus restricting their direct implementation in hydrological models. This article reviews hierarchy and development of climate models from the early times, importance and inter-comparison of downscaling techniques and development of hydrological models. Also recent research developments regarding the evaluation of climate change impact on the hydrological regime have been discussed. The article also provides some suggestions to improve the effectiveness of modelling approaches involved in the assessment of climate change impact on hydrological regime.  相似文献   

14.
Peatlands are a large potential source of methane (CH4) to the atmosphere. In order to investigate the effects of climate change on CH4 emission from northern ombrotrophic peatlands, a simulation model coupling water table dynamics with methane emission was developed for the Mer Bleue Bog in Ontario, Canada. The model was validated against reported values of CH4 flux from field measurements and the model outputs exhibited high sensitivity to acrotelm thickness, leaf area index, transmissivity and slope of water table. With a 2–4°C temperature rise over the 4-year simulation period, the rate of CH4 release dropped significantly to under 0.1 mg m−2 day−1. On the other hand, mean CH4 emission increased by >26-fold when the increase in precipitation was >15%. When looking at the combined effects, the highest CH4 release (13.3 mg m−2 day−1) was attained under the scenario of 2°C temperature rise and 25% precipitation increase. Results obtained in this study highlight the importance of avoiding more extreme climate change, which would otherwise lead to enhanced methane release from peatlands and further atmospheric warming through positive feedback.  相似文献   

15.
气候变化下淮河流域极端洪水情景预估   总被引:3,自引:0,他引:3       下载免费PDF全文
利用IPCC第4次评估公开发布的22个全球气候模式在A1B、A2和B1三种典型排放情景下的未来气温和降水预测结果,结合新安江月分布式水文模型,在对模型验证效果良好的基础上,参照集合预报方法,对未来90年(2010~2099年)气候变化下淮河流域的极端洪水进行预估。研究结果表明,从出现概率来看,淮河流域未来可能发生极端洪水年份的密集程度从大到小依次为A2情景、A1B情景、B1情景。A1B情景下,21世纪下半叶出现极端洪水的可能性增大,A2情景在2035~2065年以及2085年以后是极端洪水发生较为集中的时期。B1情景在21世纪70年代左右发生极端洪水的可能性较大。综合各种极端事件的定义方法,将极端洪水划定3个洪水量级。A2情景预估极端洪水的平均洪量在3种情景中最大,B1情景最小。3种情景未来一级极端洪水发生比例都比历史上偏大,A2情景下增加最多。二级极端洪水都较历史略有减少,三级极端洪水减少最显著。3种情景下各个量级极端洪水所占比例各不相同,A1B和A2情景二级以上极端洪水出现比例较大,B1情景下极端洪水量级多为三级,超1954年的一级极端洪水所占比例较小。  相似文献   

16.
Jordan is part of the arid and semi-arid region of the Middle East, where water resources are known to be scarce. Thorough planning is inevitable and must be applied wisely, especially as it is known that drought conditions were evidenced for many years in Jordan.Surface water average accounts for 693 MCM/year out of which 359 MCM/year is base flow and 334 MCM/year flood flow. Therefore, management of surface water has been given great attention in Jordan because of the overexploitation of groundwater resources. Hydrological simulation models interfaced with Geographical Information Systems (GIS) were examined in this study. GIS interfaced hydrological models were considered as a major tool for surface water management at a watershed scale because they are capable of presenting the relationship between the spatial and hydrological features of the watershed in an efficient way. This study aimed at exploring the advantages of using GIS-based hydrological models as a water management tool to study the largest river basin in Jordan namely, the Zarqa River basin.In this study, the Spatial Water Budget Model (SWBM) and HEC-HMS / HEC-GeoHMS extension model were used. The models were calibrated and validated based on King Talal Reservoir inflow for a period of eight years. The calibration was performed for the most sensitive parameters. The calibration for the two models was performed for the years 1979, 1980, 1981 and 1982. Satisfactory results were obtained for both models with an R2 of 0.90 and 0.85 for the HEC-HMS and SWBM model, respectively. Validation for the models was performed using the years 1993, 1994, 1995 and 1996, and the results were satisfactory with an R2 of 0.75 and 0.80 for the SWBM and HEC-HMS model, respectively. Models after their calibration and verification can then be used to test scenarios related to climate change and/or land-use change at the watershed scale.  相似文献   

17.
气候变化情景下渭河流域潜在蒸散量时空变化特征   总被引:15,自引:1,他引:15       下载免费PDF全文
根据渭河流域20个气象站1959~ 2008年逐日气象资料,以FAO Penman-Monteith法计算的各站逐日潜在蒸散量作为标准值,对基于气温的Hargreaves法进行参数校正以使其适用于渭河流域.应用统计降尺度模型SDSM将HadCM3输出数据降尺度到各站点,生成A2,B2两种情景下各站未来日最高、最低气温数...  相似文献   

18.
This study is focused on the western part of the French Mediterranean area, namely the Pyrénées-Orientales and Aude administrative departments. The water resources (surface and groundwater) in the region are sensitive to climate change. The study addresses the question of whether any trend in the annual and monthly series of temperature, rainfall and potential evapotranspiration (PET) already appears at the scale of this region. Two data sources have been used: (a) direct local measurements using the meteorological network; and (b) spatially interpolated data from the French weather service model SAFRAN for the period 1970–2006. The non-parametric Mann–Kendall test was applied to identify significant trends at the local scale and, because of the natural spatial variability of the Mediterranean climate, regional interpretation was also performed. The trends observed in the 13 catchments of interest are consistent with those observed at a larger scale. An increase in annual mean temperature and annual PET was observed throughout the study area, whereas annual precipitation has not exhibited any trend. The monthly scale has revealed strong seasonal variability in trend. The trend for an increase in monthly PET has been observed mainly in the spring, and has not been seen in the coastal areas. A trend for an increase in monthly temperature has been observed in June and in the spring throughout the entire area. Monthly rainfall has been found to decrease in June and increase in November throughout the area. The significant trends observed in rainfall and temperature seem to be consistent between the different data sources.  相似文献   

19.
Glaciers in the Tuotuo River basin, western China, have been monitored in recent decades by applying topographical maps and high-resolution satellite images. Results indicate that most of glaciers in the Tuotuo River basin have retreated in the period from 1968/1971 to 2001/2002, and their shrinkage area is 3.2% of the total area in the late 1960s. To assess the influence of glacier runoff on river runoff, a modified degree–day model including potential clear-sky direct solar radiation has been applied to the glaciated regions of the river basin over the period 1961–2004. It was found that glacier runoff has increased in the last 44 years, especially in the 1990s when a two-thirds increase in river runoff was derived from the increase in glacier runoff caused by loss of ice mass in the entire Tuotuo River basin.  相似文献   

20.
Quantifying 21st-century France climate change and related uncertainties   总被引:1,自引:0,他引:1  
We tackle here the question of past and future climate change at sub-regional or country scale with the example of France. We assess France climate evolution during the 20th and 21st century as simulated by an exhaustive range of global climate simulations. We first show that the large observed warming of the last 30 years can be simulated only if anthropogenic forcings are taken into account. We also suggest that human influence could have made a substantial contribution to the observed 20th century multi-decadal temperature fluctuations. We then show that France averaged annual mean temperature at the end of the 21st century is projected to be on the order of 4.5 K warmer than in the early 20th century under the radiative concentration pathways 8.5 (RCP8.5) scenario. Summer changes are greater than their winter counterpart (6 K versus 3.7 K). Near-future (2020–2049) changes are on the order of 2.1 K (with 2.6 K in summer and 1.8 K in winter). Model projections also suggest a substantial summer precipitation decrease (−0.6 mm/day), in particular over southern France, and a moderate winter increase, (0.3 mm/day), mostly over the northernmost part of France. Uncertainties about the amplitude of these precipitation changes remain large. We then quantify the various sources of uncertainty and study how their ranking varies with time. We also propose a physically-based metric approach to reduce model uncertainty and illustrate it with the case of summer temperature changes. Finally, timing and amplitude of France climate change in case of a global average 2-K warming are investigated. Aggressive mitigation pathways (such as RCP2.6) are absolutely required to avoid crossing or barely exceeding the 2-K global threshold. However, France climate change requiring adaptation measures is still to be expected even if we achieve to remain below the 2-K global target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号