首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
本文介绍1.26米红外望远镜出厂后的主要误差,用谐波分析法分离望远镜的各项主要误差(2~m显示误差,4~m17~5短周期跟踪误差以及长周期跟踪误差等),讨论误差产生原因,计算由这些原因引起的误差理论值,并与实测值进行比较,分析其对望远镜使用精度的影响,叙述消除误差的方法及实际效果。  相似文献   

3.
4.
2011年,国家天文台兴隆基地1.26 m红外望远镜进行了全面升级改造。主要讲述望远镜电控系统软件的设计与实现,用于实现望远镜各种观测策略和运动方式的自动化操作。为了提高稳定性和可靠性,软件基于有限状态机原理设计,定义了望远镜的状态集和动作集,以及各个状态间的状态转换图;同时给出了望远镜常见异常及其处理方式,并在本地控制的基础上提供远程控制接口,使得望远镜可方便纳入兴隆基地望远镜集中控制系统。该软件及其设计思想可推广至我国其他中小口径望远镜。  相似文献   

5.
结合中国的实际情况提出了一 新的中国21世纪的10米光学/红外望远镜的方案,它是属于一种非常规概念设计的望远镜。这种新的大望远镜方案吸收了或主要参考了Arecibo射电望远镜、美国的HobbyEberly9米望远镜和LAMOST方案的前身一光谱巡天望远镜方案。它的主镜是六角形子镜拼成的球面,在观测过程中主镜不动,由焦面的改正镜做跟踪,造价约为同样口径的常规设计望远镜的五分之一,并能满足绝大部分天文  相似文献   

6.
光学/红外望远镜和技术的进展   总被引:5,自引:2,他引:3  
天文望远镜和技术在20世纪末取得了空前的辉煌成就,并将取得更辉煌的成就(1)大型望远镜的研制口径10m的两架Keck望远镜已分别在1994年和1996年投入工作.ESOVLT四架8m望远镜中的第一架已在1998年Firstlight,最后一架也将在今年内Firstlight.两架Gemini8m中的一架和一架Subaru8m望远镜都已完成.HET9m望远镜正在最后调试.由两个8m望远镜组成的LBT将于2004年完成,一架10m(复制的Keck)和一架9m(复制的HET)望远镜正在研制中.这些望远镜已配备或将配备先进的光学、红外CCD照相机和光谱仪,如Keck的NIRSPEC、VLT的FORS、ISAAC等.巡天计划中SDSS、2dF、2MASS和DENIS仪器已完成,都已投入观测.LAMOST正在积极研制中,VISTA即将开始研制.现在CalTech等已开始研制口径30m的极大望远镜(ELT),ESO和NOAO已开始了口径100m望远镜的预研,中国和英国也提出了很好的ELT方案.(2)探测器的改进当前CCD的量子效率QE蓝片已达70%~80%,红片已达90%,已投入使用的最大的拼接的CCD为12k×8k,几个8k×8k的CCD已用在望远镜上.当前20k×18k的拼接的CCD正在研制中.天文观测上CCD已取代了照相机底片.红外波段HgCdTe1k×1k的CCD已投入工作,2k×2k的正在研制中.(3)光干涉系统的进展多个光干涉系统已投入观测并取得了一系列天文成果,如GI2T,COAST、IOTA,NPOI,PTI、ISI、SUSI、MIRA;一些光干涉系统正在发展中,如CHARA、MRO、LBT;特别是两架Keck望远镜、四架VLT都配以一些较小的望远镜组成巨大的干涉阵,前者最长基线140m,后者200m,将在今后的数年内完成并投入观测.(4)自适应光学系统的应用许多3~4m级的望远镜已配置或正在研制相应的自适应光学系统,红外和可见光波段的衍射极限的像已在3~4m级的望远镜上获得,Keck和ESO都正在发展用于10m和8m望远镜的自适应光学系统.正在研制和预研中的30m到100m口径的望远镜也都配有自适应光学和光干涉系统.注本报告以McleanIS等执笔的IAUCommission9三年进展报告(见ReportsonAstronomy1996~1999,IAUTransaction,Vol.24A,p.316~327)为蓝本,补充扩大而成.  相似文献   

7.
本文描述一个观测银道面和银心区红外发射的快速球载扫描红外望远镜系统,该吊篮已于1987年和1988年两次在中日合作高空气球越洋飞行航线上飞行,1988年的飞行中已获得若干观测资料。  相似文献   

8.
9.
8~10m级光学/红外望远镜的高分辨率光谱仪   总被引:1,自引:0,他引:1  
朱永田 《天文学进展》2001,19(2):295-295
介绍并比较了KeckSubaruVLTHET及Gemini中的5架8~10m天文望远镜的高分辨率光谱仪,分析这些仪器与2~4m级望远镜的阶梯光栅光谱仪或Coude光谱仪相比所采用的新设计思想和新技术.  相似文献   

10.
11.
1.26m红外望远镜是一台由国家天文台和广州大学联合建设的望远镜系统,测光观测是该望远镜的重要观测手段之一。但当前一直存在数据处理周期较长、处理过程需要人工处理等问题。为了提高广州大学合作团队的数据处理能力,提出了一种面向1.26 m红外望远镜半自动的测光处理管线,该管线在获取原始数据后,基于当日的观测记录重建FITS头文件信息,随后管线系统自动对图片进行预处理、定位目标星源、计算出目标星等相关操作,最后获得可利用的测光数据。这种方式高效、便捷,同时精度也得到了保证,它把当前主流测光模式中繁杂的、需要不断重复的步骤交由程序运行,从而节省了时间,显著提高了工作效率,解决了当前光学测光模式中图像数据的处理跟不上数据产出的难题,满足了广大科研工作者的需求。  相似文献   

12.
13.
红外太阳望远镜中的光电导行系统是高精度的反馈跟踪系统。在开环控制下,难以实现太阳望远镜的跟踪指标,所以必须使用光电导行作为目标位置反馈系统。但是在地平式系统跟踪过程中,光电导行望远镜中的像场会旋转,如果不进行消旋,光电导行系统就不能工作,这就需要解决光电导行系统中的像场旋转。本文在理论上分析了红外望远镜中光电导行系统的像场旋转,并给出了像在CCD面上的运动变化公式。  相似文献   

14.
8—10m级光学/红外望远镜的高分辨率光谱仪   总被引:1,自引:0,他引:1  
朱永田 《天文学进展》2001,19(3):336-345
介绍并比较Keck、Subaru、VLT、HET及Gemini中的5架8~10m天文望远镜的高分辨率光谱仪,分析这些仪器与2~4m级望远镜的阶梯光栅光谱仪或Coudé光谱仪相比所采用的新设计思想和新技术.  相似文献   

15.
本介绍了新近完成的红外球载望远镜于1987年在中日合作高空气球越洋飞行航线上所作的首次飞行,获得了该航线的一些工程参数,并测得红外测光系统的等效噪声功率,近红外为2×10^14W/√Hz,远红外为(1-2)×10^-13 W /√Hz。  相似文献   

16.
在太阳长狭缝光谱观测中,光谱的狭缝方向和色散方向应该分别与CCD探测器的两个边缘平行。但实际上,由于狭缝、光栅、CCD探测器的机械安装精度等原因,会造成他们之间的位置关系不匹配,导致得到的太阳光谱总是存在一定的倾斜和变形。即使有时这些倾斜很微小,也会对太阳光谱的平场计算造成严重影响,从而影响整个光谱数据的处理过程。对抚仙湖1 m新真空红外太阳望远镜多波段光谱仪得到的一组Hα光谱数据的倾斜量做了测量和分析,并讨论了其对太阳光谱平场计算的影响。  相似文献   

17.
斯皮策空间望远镜(Spitzer Space Telescope,SST)是现役口径最大的红外望远镜之一。可能是出于担心与我们国家的空间太阳望远镜混淆(Space Solar Telescope),所以在国内一般简称其为Spitzer,我们下面也将这样称呼它。它是继红外天文卫星(IRAS)之后美国宇航局(NASA)的又一个红外线望远镜。  相似文献   

18.
本文介绍一种称作三位调制的望远镜副镜调制新方法。在用望远镜作L和M波段的红外天文观测时,采用这种新调制方法,在一定条件下可以替代望远镜所做的双束转换运动而获得令人满意的结果。对于控制功能不是很强的望远镜,或者进行一些不允许望远镜摆动的特殊观测(如红外偏振测量),这种方法极为有用。本文介绍了这种新调制方法原理和电路,并且使用1.2米红外望远镜比较了用这种新调制方法和用通常的副镜二位调制方法对一组红外标准星的测量结果:在J和K波段;两种方法的结果大体相同,在L波段,新调制方法显示出明显的优越性。  相似文献   

19.
20.
2.16m望远镜红外自适应光学系统的误差和性能分析   总被引:9,自引:0,他引:9  
在自适应光学系统中,波前探测器的噪声,未完全补偿湍流所引起的误差以及变形镜的拟合误差是主要的误差源,本针对已经建立2.16m望远镜红外自适应光学系统,从伺服控制系统的角度分析了该系统的闭环噪声,大气湍流引起的误差以及该系统的闭环总体误差,该系统的闭环总体误差是光强及系统闭环带宽的函数,本还分析了该系统的有效性以及对大气湍流不同改善程度情况下的光强与闭环带宽的关系,并在此基础上给出了该系统的最佳  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号