首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. Four seismic refraction profiles have been interpreted which serve to indicate the structure of the lithosphere near the Mid-Atlantic Ridge close to the Azores. An east–west profile which crosses the ridge axis yields a crustal structure. Although energy is propagated across the ridge axis within the crust the axial region marks a clear barrier to propagation within the mantle. A profile parallel to the axis (4 my isochron) shows, below a 7.6 km/s layer, a low-velocity zone underlain by an 8.3 km/s refractor 9 km below the sea bed. On profies normal to the ridge axis higher velocities, which are observed on lines shot towards the ridge, can be attributed to this refractor if it has a dip of several degrees away from the ridge. On another profile parallel to the axis (9 my isochron) a velocity of about 8.3 km/s is only found to exist much deeper at about 30 km depth. These observations are interpreted in the light of seismic refraction results recently obtained by Lewis & Snydsman and of quantitative petrological models, such as that of Bottinga & Allègre. A velocity model based on Bottinga & Allègre's model allows us to understand our results qualitatively. In particular the two 8.3 km/s refractors at 9 and 30 km depth correspond to two different residual peridotite layers. The upper layer contains 1.5–2 wt per cent water and as the lithosphere moves away from the ridge axis the temperature in this layer becomes low enough to start hydration reactions. These cause the low-velocity zone observed at 4 my and the total disappearance of the shallow level refractor before 9 my.  相似文献   

2.
We have analysed the fundamental mode of Love and Rayleigh waves generated by 12 earthquakes located in the mid-Atlantic ridge and Jan Mayen fracture zone. Using the multiple filter analysis technique, we isolated the Rayleigh and Love wave group velocities for periods between 10 and 50  s. The surface wave propagation paths were divided into five groups, and average group velocities calculated for each group. The average group velocities were inverted and produced shear wave velocity models that correspond to a quasi-continental oceanic structure in the Greenland–Norwegian Sea region. Although resolution is poor at shallow depth, we obtained crustal thickness values of about 18  km in the Norwegian Sea area and 9  km in the region between Svalbard and Iceland. The abnormally thick crust in the Norwegian Sea area is ascribed to magmatic underplating and the thermal blanketing effect of sedimentary layers. Maximum crustal shear velocities vary between 3.5 and 3.9  km  s−1 for most paths. An average lithospheric thickness of 60  km was observed, which is lower than expected for oceanic-type structure of similar age. We also observed low shear wave velocities in the lower crust and upper mantle. We suggest that high heat flow extending to depths of about 30  km beneath the surface can account for the thin lithosphere and observed low velocities. Anisotropy coefficients of 1–5 per cent in the shallow layers and >7 per cent in the upper mantle point to the existence of polarization anisotropy in the region.  相似文献   

3.
Summary. In order to examine the development of the oceanic crust in the neighbourhood of a slowly spreading ridge, a seismic refraction experiment was carried out at 59° 30'N on the Reykjanes Ridge. Three 120 km long overlapped split profiles were shot parallel to the trend of the ridge, on the eastern flank, and recorded on up to five recording sonobuoys. The profiles were at distances of 0, 30 and 90km from the ridge axis, corresponding to approximate crustal ages of 0, 3 and 9 Myr. Data from the main profiles were supplemented by using a large chamber air gun during recovery of the buoys.
The analysis of the data combined standard travel-time interpretation, the 'tau' method of systematic travel-time inversion and detailed amplitude modelling using the Reflectivity Method to calculate synthetic seismograms. Detailed velocity-depth models were constructed for each of the profiles.
There is no indication of a significant magma chamber at the ridge crest, although a slight velocity inversion in layer 3 suggests a zone of elevated temperature. Away from the crest there was a slight positive velocity gradient in layer 3. Layer 2 was most effectively modelled by a region of varying velocity gradients, which thinned with age and the transition to layer 3 is marked by a sharp change in velocity gradient. The transition to mantle velocities is also best modelled by a high velocity gradient rather than an interface.
Although some lateral variation in properties is apparent along the profiles, the lateral velocity gradients were sufficiently weak to allow an effective analysis in terms of laterally uniform models.  相似文献   

4.
The dispersive properties of surface waves are used to infer earth structure in the Eastern Mediterranean region. Using group velocity maps for Rayleigh and Love waves from 7 to 100 s, we invert for the best 1-D crust and upper-mantle structure at a regular series of points. Assembling the results produces a 3-D lithospheric model, along with corresponding maps of sediment and crustal thickness. A comparison of our results to other studies finds the uncertainties of the Moho estimates to be about 5 km. We find thick sediments beneath most of the Eastern Mediterranean basin, in the Hellenic subduction zone and the Cyprus arc. The Ionian Sea is more characteristic of oceanic crust than the rest of the Eastern Mediterranean region as demonstrated, in particular, by the crustal thickness. We also find significant crustal thinning in the Aegean Sea portion of the backarc, particularly towards the south. Notably slower S -wave velocities are found in the upper mantle, especially in the northern Red Sea and Dead Sea Rift, central Turkey, and along the subduction zone. The low velocities in the upper mantle that span from North Africa to Crete, in the Libyan Sea, might be an indication of serpentinized mantle from the subducting African lithosphere. We also find evidence of a strong reverse correlation between sediment and crustal thickness which, while previously demonstrated for extensional regions, also seems applicable for this convergence zone.  相似文献   

5.
Summary. The Nootka fault zone is the boundary between the small Explorer and Juan de Fuca plates which are situated between the America and Pacific plates off western Canada. To investigate the crustal structure in the region, three explosive/large airgun refraction lines were shot into three ocean bottom seismometers (OBSs) with three-component geophone assemblies. In this phase of the study, P -wave velocity—depth models are interpreted by comparison of the travel time and amplitude characteristics of the observed data with theoretical seismograms computed using a WKBJ algorithm. The interpretation gives relatively consistent results for the upper crust. However, the structure of the lower crust is significantly different among the various profiles. Upper mantle velocities range from 7.5 to 8.3 kms−1 and the sub-bottom crustal thickness vanes from 6.4 to 11 km. Nevertheless, these seismic models are consistent in general terms with oceanic crustal models represented by ophiolite complexes. Some aspects of the differences among profiles can be explained by consideration of a recent tectonic model for the development of the fault zone. This requires, within a 1 Myr time interval, variations in the process of crustal formation at the ridge, crustal 'maturing', or both. The abnormally thick crust near a spreading centre may result in part from the complex interaction of the Juan de Fuca and Explorer plates with the larger and older America and Pacific plates. Upper mantle velocity variations are consistent with the concept of velocity anisotropy. The different record sections show that seismic energy is attenuated for ray paths traversing the Nootka fault zone.  相似文献   

6.
Summary. A structural model of the Mid-Atlantic Ridge at 37° N is proposed on the basis of travel-time data and synthetic seismograms. At the ridge axis the crust is only 3 km thick and overlies material with an anomalously low'upper mantle'velocity of 7.2 km s−1. Crustal thickening and the formation of layer 3 and a layer with velocity 7.2–7.3 km s−1 takes place within a few kilometres of the axis, producing a 6–7 km thick crust by less than 10 km from the axis. A normal upper mantle velocity of 8.1 km s−1 exists within 10 km of the axis. Shear waves propagate across the axis, thus precluding the existence of any sizeable magma chamber at shallow depth.  相似文献   

7.
A seismic-array study of the continental crust and upper mantle in the Ivrea-Yerbano and Strona-Ceneri zones (northwestern Italy) is presented. A short-period network is used to define crustal P - and S -wave velocity models from earthquakes. The analysis of the seismic-refraction profile LOND of the CROP-ECORS project provided independent information and control on the array-data interpretation.
Apparent-velocity measurements from both local and regional earthquakes, and time-term analysis are used to estimate the velocity in the lower crust and in the upper mantle. The geometry of the upper-lower crust and Moho boundaries is determined from the station delay times.
We have obtained a three-layer crustal seismic model. The P -wave velocity in the upper crust, lower crust and upper mantle is 6.1±0.2 km s−1, 6.5±0.3 km s−1 and 7.8±0.3 km s−1 respectively. Pronounced low-velocity zones in the upper and lower crust are not observed. A clear change in the velocity structure between the upper and lower crust is documented, constraining the petrological interpretation of the Ivrea-type reflective lower continental crust derived from small-scale petrophysical data. Moreover, we found a V P/ V S ratio of 1.69±0.04 for the upper crust and 1.82±0.08 for the lower crust and upper mantle. This is consistent with the structural and petrophysical differences between a compositionally uniform and seismically transparent upper crust and a layered and reflective lower crust. The thickness of the lower crust ranges from about 8 km in front of the Ivrea body (ARVO, Arvonio station) in the northern part of the array to a maximum of about 15 km in the southern part of the array. The lower crust reaches a minimum depth of 5 km below the PROV (Provola) station.  相似文献   

8.
Expanding spread profile at the northern Jan Mayen Ridge   总被引:1,自引:0,他引:1  
An expanding spread seismic profile at the central northern Jan Mayen Ridge, ESP-5, has yielded a crustal seismic velocity distribution which is similar to observations from the thinned continental crust at the Norwegian continental margin. The profile reveals a post-early Eocene sedimentary sequence, about 1. 5 km thick, overlying 1 km of volcanic extrusives and interbedded sediments. Below, there are about 3 km of pre-opening sediments above the seismic basement. The results indicate that the main ridge block is underlain by a thinned crust, possibly only 13.5 km thick. The results are compatible with a continental nature for the main ridge complex.  相似文献   

9.
Summary. The temperature field and rates of cooling and solidification of the oceanic crust and upper mantle at an ocean ridge have been calculated as a function of spreading rate. The thermal model of the accretion process incorporates latent heat release associated with solidification of the basalt. liquid forming the ocean crust and uses a heat supply boundary condition on the vertical ridge axis model boundary. It is assumed that while oceanic layer 2 cools rapidly by hydrothermal circulation, oceanic layer 3 cools predominantly by conduction. Basalt liquid injection into the upper part of oceanic layer 3 is shown to solidify instantaneously while that injected into lower crustal levels takes up to 0.4 Myr to solidify. Material solidifying instantaneously is interpreted as corresponding to the dolerite unit of the ocean crust while that taking a finite time to cool is interpreted as corresponding to the gabbroic unit. The rate of cooling of the crust is shown to be faster for slower spreading rates and consequently the thicknesses of the dolerite and gabbro units are predicted to thin and thicken respectively with increase in spreading rate. The width of the molten region, or magma chamber, within the crust at the ridge axis is shown to be approximately proportional to spreading rate with chamber half widths of 1.5 and 10.0 km for half spreading rate of 1.0 and 6.0 cm yr−1. Below a critical half spreading rate of about 0.65 cm yr−1 no molten region exists and the crust is entirely doleritic.  相似文献   

10.
Global mapping of upper mantle reflectors from long-period SS precursors   总被引:1,自引:0,他引:1  
Long-period precursors to SS resulting from underside reflections off upper mantle discontinuities ( SdS where d is the discontinuity depth) can be used to map the global distribution and depth of these reflectors. We analyse 5,884 long-period seismograms from the Global Digital Seismograph Network (1976-1987, shallow sources, transverse component) in order to identify SdS arrivals. Corrections for velocity dispersion, topography and crustal thickness at the SS bounce point, and lateral variation in mantle velocity are critical for obtaining accurate estimates of discontinuity depths. The 410 and 660 km discontinuities are observed at average depths of 413 and 653 km, and exhibit large-scale coherent patterns of topography with depth variations up to 40 km. These patterns are roughly correlated with recent tomographic models, with fast anomalies in the transition zone associated with highs in the 410 km discontinuity and lows in the 660 km discontinuity, a result consistent with laboratory measurements of Clapeyron slopes for the appropriate phase changes. The best resolved feature in these maps is a trough in the 660 km discontinuity in the northwest Pacific, which appears to be associated with the subduction zones in this region. Amplitude variations in SdS arrivals are not correlated with discontinuity depths and probably result from focusing and defocusing effects along the ray paths. The SdS arrivals suggest the presence of regional reflectors in the upper mantle above 400 km. However, only the strongest of these features are above probable noise levels due to sampling inadequacies.  相似文献   

11.
Observations of ice movements across the British Isles and of sea-level changes around the shorelines during Late Devensian time (after about 25 000 yr BP) have been used to establish a high spatial and temporal resolution model for the rebound of Great Britain and associated sea-level change. The sea-level observations include sites within the margins of the former ice sheet as well as observations outside the glaciated regions such that it has been possible to separate unknown earth model parameters from some ice-sheet model parameters in the inversion of the glacio-hydro-isostatic equations. The mantle viscosity profile is approximated by a number of radially symmetric layers representing the lithosphere, the upper mantle as two layers from the base of the lithosphere to the phase transition boundary at 400 km, the transition zone down to 670 km depth, and the lower mantle. No evidence is found to support a strong layering in viscosity above 670 km other than the high-viscosity lithospheric layer. Models with a low-viscosity zone in the upper mantle or models with a marked higher viscosity in the transition zone are less satisfactory than models in which the viscosity is constant from the base of the lithosphere to the 670 km boundary. In contrast, a marked increase in viscosity is required across this latter boundary. The optimum effective parameters for the mantle beneath Great Britain are: a lithospheric thickness of about 65 km, a mantle viscosity above 670 km of about (4-5) 1020 Pa s, and a viscosity below 670 km greater than 4 × 1021 Pa s.  相似文献   

12.
Summary. The unified seismic exploration program, consisting of 345 km of deep reflection profiling, a 200 km refraction profile, an expanding spread profile and near-surface high resolution reflection meaasurements, revealed a strongly differentiated crust beneath the Black Forest. The highly reflective lower crust contains numerous horizontal and dipping reflectors at depths of 13-14 km down to the crust-mantle boundary (Moho). The Moho appears as a flat horizontal first order discontinuity at a relatively shallow level of 25–27 km above a transparent upper mantle. From modelling of synthetic near-vertical and wide-angle seismograms using the reflectivity method the lower crust is supposed to be composed of laminae with an average thickness of about 100 m and velocity differences of greater than 10% increasing from top to bottom. The upper crust is characterised by mostly dipping reflectors, associated with bivergent underthrusting and accretion tectonics of Variscan age and with extensional faults of Mesozoic age. A bright spot at 9.5 km depth is characterised by low velocity material suggesting a fluid trap. It appears on all of the three profiles in the centre of the intersection region. The upper crust seems to be decoupled from the lowest crust by a relatively transparent zone which is' also identified as a low-velocity zone. This low velocity channel is situated directly above the laminated lower crust. The laminae in the Rhinegraben area are displaced vertically to greater depths indicating an origin before Tertiary rift formation and a subsidence of the whole graben wedge.  相似文献   

13.
本文用IGY/IGC期间全球地磁台网的资料计算出地磁太阳日变化(S)和太阴日变化(L)的电流体系,对比分析了南极区与北极区电流体系的特点。分析表明:(1)两极区的外源电流体系存在明显差别,这反映了产生该电流系的发电机过程(对S和L)和场向电流(对S)的不同。两极区磁场结构的特征可能是导致这一差异的根本原因。(2)两极区内源电流存在明显差异,这一方面归因于外源施感场(电流)的差异,另一方面也反映了两极区地下电导率的不同。分析表明,从总体来看,南极区地下电导率高于北极区  相似文献   

14.
Upper mantle shear structure of North America   总被引:5,自引:0,他引:5  
Summary. The waveforms and travel times of S and SS phases in the range 10°–60° have been used to derive upper mantle shear velocity structures for two distinct tectonic provinces in North America. Data from earthquakes on the East Pacific Rise recorded at stations in western North America were used to derive a tectonic upper mantle model. Events on the north-west coast of North America and earthquakes off the coast of Greenland provided the data to investigate the upper mantle under the Canadian shield. All branches from the triplications due to velocity jumps near 400 and 660 km were observed in both areas. Using synthetic seismograms to model these observations placed tight constraints on heterogeneity in the upper mantle and on the details of its structure. SS–S travel-time differences of 30 s along with consistent differences in waveforms between the two data sets require substantial heterogeneity to at least 350 km depth. Velocities in the upper 170 km of the shield are about 10 per cent higher than in the tectonic area. At 250 km depth the shield velocities are still greater by about 4.5 per cent and they gradually merge near 400 km. Below 400 km no evidence for heterogeneity was found. The two models both have first-order discontinuities of 4.5 per cent at 405 km and 7.5 per cent at 695 km. Both models also have lids with lower velocities beneath. In the western model the lid is very thin and of relatively low velocity. In the shield the lid is 170 km thick with very high elocity (4.78 km s-1); below it the velocity decreases to about 4.65 km s-1. Aside from these features the models are relatively smooth, the major difference between them being a larger gradient in the tectonic region from 200 to 400 km.  相似文献   

15.
Summary. The crustal structure beneath the Vema fracture zone and its flanking transverse ridge was determined from seismic refraction profiles along the fracture zone valley and across the ridge. Relatively normal oceanic crust, but with an upwarped seismic Moho, was found under the transverse ridge. We suggest that the transverse ridge represents a portion of tectonically uplifted crust without a major root or zone of serpentinite diapirism beneath it. A region of anomalous crust associated with the fracture zone itself extends about 20 km to either side of the central fault, gradually decreasing in thickness as the fracture zone is approached. There is evidence to suggest that the thinnest crust is found beneath the edges of the 20 km wide fracture zone valley. Under the fracture zone valley the crust is generally thinner than normal oceanic crust and is also highly anomalous in its velocity structure. Seismic layer 3 is absent, and the seismic velocities are lower than normal. The absence of layer 3 indicates that normal magmatic accretionary processes are considerably modified in the vicinity of the transform fault. The low velocities are probably caused by the accumulation of rubble and talus and by the extensive faulting and fracturing associated with the transform fault. This same fracturing allows water to penetrate through the crust, and the apparently somewhat thicker crust beneath the central part of the fracture zone valley may be explained by the resultant serpentinization having depressed the seismic Moho below its original depth.  相似文献   

16.
Summary. The phase velocity dispersion of fundamental mode Rayleigh waves (period range 13–127 s) is determined by the interstation method for three profiles that traverse the North Sea region of northwest Europe. The resulting observations have been combined to produce a regional phase velocity curve with 95 per cent confidence intervals, which belongs to the aseismic continental platform category of Knopoff.
Inversions of the regional phase velocity curve by the'Hedgehog'method indicate that the North Sea region is characterized by an upper mantle low-velocity zone of S -wave velocity 4.35–4.45 km/s between depths of approximately 85–200 km.  相似文献   

17.
Summary. The deep structure of the Faeroe–Shetland Channel has been investigated as part of the North Atlantic Seismic Project. Shot lines were fired along and across the axis of the Channel, with recording stations both at sea and on adjacent land areas. At 61°N, 1.7 km of Tertiary sediments overlies a 3.9–4.5 km s-1 basement interpreted as the top of early Tertiary volcanics. A main 6.0–6.6 km s-1 crustal refractor interpreted as old oceanic crust occurs at about 9 km depth. The Moho (8.0 ° 0.2 km s-1) is at about 15–17 km depth. There is evidence that P n may be anisotropic beneath the Faeroe–Shetland Channel. Arrivals recorded at land stations show characteristics best explained by scattering at an intervening boundary which may be the continent–ocean crustal contact or the edge of the volcanics.
The Moho delay times at the shot points, determined by time-term analysis, show considerable variation along the axis of the Channel. They correlate with the basement topography, and the greatest delays occur over the buried extension of the Faeroe Ridge at about 60° 15'N, where they are nearly 1 s more than the delays at 61°N after correction for the sediments. The large delays are attributed to thickening of the early Tertiary volcanic layer with isostatic downsagging of the underlying crust and uppermost mantle in response to the load, rather than to thickening of the main crustal ayer.
The new evidence is consistent with deeply buried oceanic crust beneath the Faeroe–Shetland Channel, forming a northern extension of Rockall Trough. The seabed morphology has been grossly modified by the thick and laterally variable pile of early Tertiary volcanic rocks which swamped the region, accounting for the anomalous shallow bathymetry, the transverse ridges and the present narrowness of the Channel.  相似文献   

18.
The crustal and upper mantle structure of the northwestern North Island of New Zealand is derived from the results of a seismic refraction experiment; shots were fired at the ends and middle of a 575 km-long line extending from Lake Taupo to Cape Reinga. The principal finding from the experiment is that the crust is 25 ± 2 km thick, and is underlain by what is interpreted to be an upper mantle of seismic velocity 7.6 ± 0.1 km s−1, that increases to 7.9 km s−1 at a depth of about 45 km. Crustal seismic velocities vary between 5.3 and 6.36 km s−1 with an average value of 6.04 km s−1. There are close geophysical and geological similarities between the north-western North Island of New Zealand and the Basin and Range province of the western United States. In particular, the conditions of low upper-mantle seismic velocities, thin crust with respect to surface elevation, and high heat-flow (70–100 mW m−2) observed in these two areas can be ascribed to their respective positions behind an active convergent margin for about the past 20 Myr.  相似文献   

19.
We use teleseismic three-component digital data from the Trabzon, Turkey broadband seismic station TBZ to model the crustal structure by the receiver function method. The station is located at a structural transition from continental northeastern Anatolia to the oceanic Black Sea basin. Rocks in the region are of volcanic origin covered by young sediments. By forward modelling the radial receiver functions, we construct 1-D crustal shear velocity models that include a lower crustal low-velocity zone, indicating a partial melt mechanism which may be the source of surfacing magmatic rocks and regional volcanism. Within the top 5 km, velocities increase sharply from about 1.5 to 3.5 km s−1. Such near-surface low velocities are caused by sedimentation, extending from the Black Sea basin. Velocities at around 20 km depth have mantle-like values (about 4.25 km s−1 ), which easily correlate to magmatic rocks cropping out on the surface. At 25 km depth there is a thin low-velocity layer of about 4.0 km s−1. The average Moho velocity is about 4.6 km s−1, and its depth changes from 32 to 40 km. Arrivals on the tangential components indicate that the Moho discontinuity dips approximately southwards, in agreement with the crustal thickening to the south. We searched for the solution of receiver functions around the regional surface wave group velocity inversion results, which helped alleviate the multiple solution problem frequently encountered in receiver function modelling.
Station TBZ is a recently deployed broadband seismic station, and the aim of this study is to report on the analysis of new receiver function data. The analysis of new data in such a structurally complex region provides constraining starting models for future structural studies in the region.  相似文献   

20.
In this study we image crustal structure beneath a magmatic continental rift to understand the interplay between crustal stretching and magmatism during the late stages of continental rifting: the Main Ethiopian Rift (MER). The northern sector of this region marks the transition from continental rifting in the East African Rift to incipient seafloor spreading in the southern Red Sea and western Gulf of Aden. Our local tomographic inversion exploits 172 broad-band instruments covering an area of 250 × 350 km of the rift and adjacent plateaux. The instruments recorded a total of 2139 local earthquakes over a 16-month period. Several synthetic tests show that resolution is good between 12 and 25 km depth (below sea level), but some horizontal velocity smearing is evident along the axis of the Main Ethiopian Rift below 16 km. We present a 3-D P -wave velocity model of the mid-crust and present the first 3-D Vp / Vs model of the region. Our models show high P -wave velocities (6.5 km s−1) beneath the axis of the rift at a depth of 12–25 km. The presence of high Vp / Vs ratios (1.81–1.84) at the same depth range suggest that they are cooled mafic intrusions. The high Vp / Vs values, along with other geophysical evidence, suggest that dyking is pervasive beneath the axis of the rift from the mid-crustal depths to the surface and that some portion of partial melt may exist at lower crustal depths. Although the crustal stretching factor across the Main Ethiopian Rift is ∼1.7, our results indicate that magma intrusion in narrow zones accommodates a large proportion of extensional strain, with similarities to slow-spreading mid-ocean ridge processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号