首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The clay mineralogy of the Newark Supergroup (Upper Triassic/Lower Jurassic) in the Connecticut Valley was studied by X-ray diffraction analysis. Clay minerals identified in 126 samples are illite, chlorite, smectite, kaolinite, vermiculite, expandable chlorite, mixed-layer illite/smectite, mixed-layer chlorite/smectite, and mixed-layer chlorite/vermiculite. In general, the rocks are illitic with subordinate amounts of chlorite. However, the various lithofacies in the Newark Supergroup are characterized by distinct clay-mineral assemblages. Red beds of floodplain origin contain clays mainly of detrital nature with 2M illite most abundant. Subordinate amounts of chlorite, smectite, vermiculite, kaolinite and mixed-layer illite/smectite are also present. An interstratified chlorite/vermiculite occurs in red mudstone underlying basalt flows. Lacustrine gray beds are generally characterized by the clay-mineral assemblage 1Md illite + chlorite with minor amounts of smectite ane expandable chlorite. An interstratified chlorite/smectite predominates in gray mudstone associated with perennial lake cycles in the East Berlin Formation. Black shales of deeper lacustrine origin contain the assemblage 1Md ifillite + trioctahedral smectite and traces of chlorite. Illite and smectite also occur as mixed-layer phases.In many respects, the distribution of clay minerals in the Connecticut Valley can be likened to the general scheme proposed for the Permo-Triassic basins of Europe and Africa. These display both vertical and horizontal variations in clay-mineral assemblages that reflect the chemical and spatiotemporal evolution of intrabasin depositional and diagenetic environments. Chemical data indicate that magnesium, especially, was concentrated in the black muds of large perennial lakes that intermittently occupied the Connecticut rift valley. Pore waters derived from these sediments played an important role in the development of Mg-rich 2 : 1 and interstratified clay minerals during early diagenesis.  相似文献   

2.
The results of the study of clay mineral alterations in Upper Pleistocene sediments of the southern trough in the Guaymas Basin (Gulf of California) due to the influence of hydrothermal solutions and heat produced by sill intrusions are discussed. Core samples from DSDP Holes 477 and 477A were taken for the analysis of clay minerals. Application of the method of modeling X-ray diffraction patterns of oriented specimens of the finely dispersed particles made it possible to establish the phase composition of clay minerals, determine their structural parameters, and obtain reliable quantitative estimates of their contents in natural mixtures. The modeling data allowed us to characterize reliably the transformation of clay minerals in sediments of the hydrothermally active southern trough in the Guaymas Basin. In Upper Pleistocene sandy–clayey sediments of the southern trough, changes in the composition of clay minerals occurred under the influence of a long-living hydrothermal system. Its lower part (interval 170.0–257.5 m) with maximum temperatures (~300°C) was marked by the formation of chlorite. Terrigenous clay minerals are not preserved here. Saponite appears at a depth of 248 m in the chlorite formation zone. Higher in the sedimentary section, the interval 146–170 m is also barren of terrigenous clay minerals. Sediments of this interval yielded two newly formed clay minerals (chlorite and illite), which were formed at lower temperatures (above 180°C and below 300°C, approximately up to ~250°C), while the relatively low-temperature upper part (110–146 m) of the hydrothermal system (from ~140°C to ~180°C) includes the mixture of terrigenous and newly formed clay minerals. Terrigenous illite is preserved here. Illitization of the mixed-layer illite–smectite was subjected to illitization. The terrigenous montmorillonite disappeared, and chlorite–smectite with 5–10% of smectite layers were formed. In the upper interval (down to approximately 110 mbsf), the composition of terrigenous clay minerals remains unchanged. They are composed of the predominant mixed-layer illite–smectite and montmorillonite, the subordinate illite, mixed-layer chlorite–smectite with 5% of smectite layers, mixed-layer kaolinite–smectite with 30% of smectite layers, and kaolinite. This composition of clay minerals changed under the influence of sill intrusions into the sedimentary cover at 58–105 m in the section of Hole 477. The most significant changes are noted in the 8-m-thick member above the sill at 50–58 m. The upper part of this interval is barren of the terrigenous mixed-layer illite–smectite, which is replaced by the newly formed trioctahedral smectite (saponite). At the same time, the terrigenous dioctahedral smectite (montmorillonite) is preserved. The composition of terrigenous clay minerals remains unchanged at the top of the unit underlying the sill base.  相似文献   

3.
Dioctahedral smectite is present as a retrograde alteration product of chlorite in Permian-Triassic red slates of the Malaguide Complex in Sierra de Espuña (Betic Cordillera). Mineral assemblages and textures, illite crystallinity indices, and fluid inclusion data indicate sub-greenschist facies conditions that reached at least 180°C in the higher-grade tectonic unit of the Malaguide Complex, preceding formation of smectite. Smectite, having K as the dominant interlayer cation, occurs ubiquitously intercalated with trioctahedral chlorite as thin packets of layers and as individual layers that commonly change to chlorite along layers. Although some chlorite is typically homogeneous and trioctahedral, much chlorite shows signs of alteration and has compositions corresponding to different degrees of smectite contaimination. The incompatibility of metamorphic grade with the occurrence of smectite, the general association of chlorite and smectite, and the textural relations collectively show that dioctahedral smectite is derived through replacement of trioctahedral chlorite. Such replacement occurs on a regional basis and demonstrates that caution must be used in interpreting the occurrence of smectite in pelites as being due to prograde processes. Alteration of trioctahedral chlorite under oxidizing conditions due to introduction of phreatic water after uplift of the Betic Cordillera is proposed as the cause of formation of smectite.  相似文献   

4.
Many chloritic minerals in low-grade metamorphic or hydrothermally altered mafic rocks exhibit abnormal optical properties, expand slightly upon glycolation (expandable chlorite) and/or have excess AlVI relative to AlIV, as well as significant Ca, K and Na contents. Chloritic minerals with these properties fill vesicles and interstitial void space in low-grade metabasalt from northern Taiwan and have been studied with a combination of TEM/AEM, EMPA, XRD, and optical microscopy. The chloritic minerals include corrensite, which is an ordered 1:1 mixed-layer chlorite/smectite, and expandable chlorite, which is shown to be a mixed-layer chlorite/corrensite. Corrensite and some mixed-layer chlorite/corrensite occur as rims of vesicles and other cavities, while later-formed mixed-layer chlorite/corrensite occupies the vesicle cores. The TEM observations show that the mixed-layer chlorite/corrensite has ca. 20%, and the corrensite has ca. 50% expandable smectite-like layers, consistent with XRD observations and with their abnormal optical properties. The AEM analyses show that high Si and Ca contents, high AlVI/AlIV and low FeVI/(Fe+Mg)VI ratios of chlorites are correlated with interstratification of corrensite (or smectite-like) layers in chlorite. The AEM analyses obtained from 200–500 Å thick packets of nearly pure corrensite or chlorite layers always show that corrensite has low AlIV/SiIV and low FeVI/(Fe+Mg)VI, while chlorite has high AlIV/SiIV and high FeVI/(Fe+Mg)VI. This implies that the trioctahedral smectite-like component of corrensite has significantly lower AlIV/SiIV and FeVI/(Fe+Mg)VI. The ratios of FeVI/(Fe+Mg)VI and AlIV/SiIV thus decrease in the order chlorite, corrensite, smectite. The proportions of corrensite (or smectite-like) layers relative to chlorite layers in low-grade rocks are inferred to be controlled principally by Fe/Mg ratio in the fluid or the bulk rock and by temperature. Compositional variations of chlorites in low-grade rocks, which appear to correlate with temperature or metamorphic grade, more likely reflect variable proportions of mixed-layered components. The assemblages of trioctahedral phyllosilicates tend to occur as intergrown discrete phases, such as chlorite-corrensite, corrensite-smectite, or chlorite-corrensite-smectite. A model for the corrensite crystal structure suggests that corrensite should be treated as a unique phase rather than as a 1:1 ordered mixed-layer chlorite/smectite.  相似文献   

5.
张德玉 《沉积学报》1993,11(1):111-120
根据三个沉积岩芯的研究,马里亚纳海槽和西菲律宾海盆更新世以来的沉积物中粘土矿物明显不同:前者以海槽内基性火山物质蚀变形成的蒙皂石为主,伴随少量铁镁绿泥石和伊利石;后者以来自海盆以西陆上岩石风化形成的伊利石为主,其次为蒙皂石、普通绿泥石和高岭石。这种差别除与物源有关外,主要与两个海盆中的火山活动有关。海槽内粘土矿物也有差异,迷可能与海底热液活动的影响有关。古气候对粘土矿物也有影响,但在海槽则被频繁的火山活动所掩盖。  相似文献   

6.
The Upper Red Formation (URF) comprises over 1–5 km of late Miocene siliciclastic sediments in the Central Iran Basin. The formation is dominated by volcaniclastic conglomerates and arenites. The prevailing arid conditions during most of the basin's history resulted in deposition of predominantly organic‐poor, red sediments with gypsum and zeolites. This investigation concentrates on the mineralogy and geochemistry of the URF in the southern and northern margins of the basin where the formation was buried to depths of 2.4 and 6.6 km, respectively. Fine fraction mineral separates from the southern margin consist of nearly pure smectite and zeolites at a depth of 400 m and smectite with minor quartz and calcite at 1800 m. Shallow samples (1350 m) from the northern section are rich in smectite, illite/smectite with some discrete illite and chlorite. This assemblage is progressively replaced by discrete illite and chlorite with increasing burial depth so that only these two minerals are found at depths greater than 4300 m. The initial alteration process involved replacement of glass and volcanic lithics by smectite and zeolites in both margins of the basin. Increased depth of burial in the northern margin resulted in the progressive isochemical alteration of smectite to discrete illite and chlorite. Diagenesis of clay assemblages occurred essentially in a closed system. Solute products of glass hydrolysis reactions were retained in highly alkaline, saline ground waters from which zeolites, carbonates and oxides precipitated as cements. It is unlikely that these sediments were ever significantly leached by meteoric waters or by organic acids generated during burial diagenesis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
The Rosia Poieni deposit is the largest porphyry copper deposit in the Apuseni Mountains, Romania. Hydrothermal alteration and mineralization are related to the Middle Miocene emplacement of a subvolcanic body, the Fundoaia microdiorite. Zonation of the alteration associated with the porphyry copper deposit is recognized from the deep and central part of the porphyritic intrusion towards shallower and outer portions. Four alteration types have been distinguished: potassic, phyllic, advanced argillic, and propylitic. Potassic alteration affects mainly the Fundoaia subvolcanic body. The andesitic host rocks are altered only in the immediate contact zone with the Fundoaia intrusion. Mg-biotite and K-feldspar are the main alteration minerals of the potassic assemblage, accompanied by ubiquitous quartz; chlorite, and anhydrite are also present. Magnetite, pyrite, chalcopyrite and minor bornite, are associated with this alteration. Phyllic alteration has overprinted the margin of the potassic zone, and formed peripheral to it. It is characterized by the replacement of almost all early minerals by abundant quartz, phengite, illite, variable amounts of illite-smectite mixed-layer minerals, minor smectite, and kaolinite. Pyrite is abundant and represents the main sulfide in this alteration zone. Advanced argillic alteration affects the upper part of the volcanic structure. The mineral assemblage comprises alunite, kaolinite, dickite, pyrophyllite, diaspore, aluminium-phosphate-sulphate minerals (woodhouseite-svanbergite series), zunyite, minamyite, pyrite, and enargite (luzonite). Alunite forms well-developed crystals. Veins with enargite (luzonite) and pyrite in a gangue of quartz, pyrophyllite and diaspore, are present within and around the subvolcanic intrusion. This alteration type is partially controlled by fractures. A zonal distribution of alteration minerals is observed from the centre of fractures outwards with: (1) vuggy quartz; (2) quartz + alunite; (3) quartz + kaolinite ± alunite and, in the deeper part of the argillic zone, quartz + pyrophyllite + diaspore; (4) illite + illite-smectite mixed-layer minerals ± kaolinite ± alunite, and e) chlorite + albite + epidote. Propylitic alteration is present distal to all other alteration types and consists of chlorite, epidote, albite, and carbonates. Mineral parageneses, mineral stability fields, and alteration mineral geothermometers indicate that the different alteration assemblages are the result of changes in both fluid composition and temperature of the system. The alteration minerals reflect cooling of the hydrothermal system from >400 °C (biotite), to 300–200 °C (chlorite and illite in veinlets) and to lower temperatures of kaolinite, illite-smectite mixed layers, and smectite crystallization. Hydrothermal alteration started with an extensive potassic zone in the central part of the system that passed laterally to the propylitic zone. It was followed by phyllic overprint of the early-altered rocks. Nearly barren advanced argillic alteration subsequently superimposed the upper levels of the porphyry copper alteration zones. The close spatial association between porphyry mineralization and advanced argillic alteration suggests that they are genetically part of the same magmatic-hydrothermal system that includes a porphyry intrusion at depth and an epithermal environment of the advanced argillic type near the surface.Editorial handling: B. Lehmann  相似文献   

8.
为揭示伦坡拉盆地渐新世—中新世之交黏土矿物蕴含的古气候信息,探讨其与青藏高原隆升及全球气候响应过程的关系,利用X射线衍射和荧光光谱分析对蒋日阿错剖面的黏土矿物特征进行了深入研究。结果表明:区内泥质岩中黏土矿物以伊/蒙混层矿物为主,伊利石次之,仅含有少量绿泥石和蒙脱石。黏土矿物的垂向组合特征显示伊利石和绿泥石含量在剖面下部低、上部高,伊/蒙混层含量与之相反,伊/蒙混层和伊利石在剖面中部呈明显波动变化,蒙脱石只出现在剖面中下部,可能为区域火山喷发产物在碱性环境中蚀变而成。伊利石结晶度变化于0.24°~0.48°,平均值为0.41°,表明样品未发生明显成岩蚀变,主微量元素比值指示研究区物源位置未发生较大改变,因此研究剖面黏土矿物特征可以有效反映伦坡拉盆地古气候演化过程。根据自生黏土矿物的习性指出伦坡拉盆地在渐新世—中新世之交出现了一次明显的降温事件,并且这次降温在青藏高原内部及周缘地区普遍存在,但造成这次降温事件的根本原因仍值得进一步探讨。  相似文献   

9.
Iheya‐North‐Knoll is one of the small knolls covered with thick sediments in the Okinawa Trough back‐arc basin. At the east slope of Iheya‐North‐Knoll, nine hydrothermal vents with sulfide mounds are present. The Integrated Ocean Drilling Program (IODP) Expedition 331 studied Iheya‐North‐Knoll in September 2010. The expedition provided us with the opportunity to study clay minerals in deep sediments in Iheya‐North‐Knoll. To reveal characteristics of clay minerals in the deep sediments, samples from the drilling cores at three sites close to the most active hydrothermal vent were analyzed by X‐ray diffraction, scanning electron microscope and transmission electron microscope. The sediments are classified into Layer 0 (shallow), Layer 1 (deep), Layer 2 (deeper) and Layer 3 (deepest) on the basis of the assemblage of clay minerals. Layer 0 contains no clay minerals. Layer 1 contains smectite, kaolinite and illite/smectite mixed‐layer mineral. Layer 2 contains chlorite, corrensite and chlorite/smectite mixed‐layer mineral. Layer 3 is grouped into three sub‐layers, 3A, 3B and 3C; Sub‐layer 3A contains chlorite and illite/smectite mixed‐layer mineral, sub‐layer 3B contains chlorite/smectite and illite/smectite mixed‐layer minerals, and sub‐layer 3C contains chlorite and illite. Large amounts of di‐octahedral clay minerals such as smectite, kaolinite, illite and illite/smectite mixed‐layer mineral are found in Iheya‐North‐Knoll, which is rarely observed in hydrothermal fields in mid‐ocean ridges. Tri‐octahedral clay minerals such as chlorite, corrensite and chlorite/smectite mixed‐layer mineral in Iheya‐North‐Knoll have low Fe/(Fe + Mg) ratios compared with those in mid‐ocean ridges. In conclusion, the characteristics of clay minerals in Iheya‐North‐Knoll differ from those in mid‐ocean ridges; di‐octahedral clay minerals and Fe‐poor tri‐octahedral clay minerals occur in Iheya‐North‐Knoll but not in mid‐ocean ridges.  相似文献   

10.
西藏羊八井地热田水热蚀变   总被引:5,自引:1,他引:5       下载免费PDF全文
朱梅湘  徐勇 《地质科学》1989,(2):162-175
本文对羊八井地热田钻扎ZK-201、ZK-301和ZK-308的岩心进行了较系统的蚀变矿物学、岩石学和流体包体研究。划分出6个蚀变矿物共生组合及蚀变分带,讨论了蚀变过程中岩石化学变化的特点,并推测了蚀变的温度和酸碱度条件。研究表明,热田曾处于极度的活动状态,最高温度达220-240℃,由于冷水的入侵,热田在目前钻探所及范围已冷却了50-70℃。蚀变矿物分布模式表明,目前热田流体主通道位于北部,热田进一步的开发应以寻找北部深部高温流体为主。  相似文献   

11.
Smectite, illite, celadonite and chlorite are the major products of alteration of rhyolites and andesites, in the upper part of the Los Azufres geothermal system. Changes in mineral assemblages and composition of phases are observed as a function of depth and host rock lithology. Two different sequences characterize the rhyolites and the andesites from the surface to a depth of about 1500 m: kaolinitesmectite (±interlayered illite/smectite)illitemuscovite (rhyolites), and kaolinitesmectite (±interlayered illite/smectite)illite+celadoniteillite+chloritechlorite (andesites).Illite, and chlorite at depth, are largely dominant. Similar substitutions and correlations among chemical constituents characterize illites from rhyolites or andesites, but their compositions in the two host rock lithologies exhibit slight but significant differences, especially in their Fe and Mg contents which are the highest in illites from andesites. Illite exhibits progressive changes in composition with depth: a strong increase in the K content in the interlayer, together with an increase of the Fe content in the octahedral site. These changes correspond to a slight increase in the molar fraction of Fe-(Mg) celadonite end-members, and mostly to a dramatic decrease of pyrophyllite with increasing temperature.Temperature of the mineralogical and compositional changes was estimated from fluid inclusions studies, combined with other geothermometric approaches (chemical geothermometers and direct measurements). Variation of X-pyrophyllite with temperature is proposed as a geothermometer for different host rock lithologies. Transitions between the stability fields of illite±interstratified illite-smectite and illite+chlorite is around 200±30° C, and between illite+chlorite and chlorite around 290±20° C.  相似文献   

12.
对辽河三角洲大凌河河口湿地地区ZK3钻孔的58个沉积物样品中碎屑矿物和黏土矿物进行鉴定和分析,结果显示:碎屑矿物中轻矿物占比大,平均含量为95.7%,主要包括斜长石(43.89%)、钾长石(28.10%)和石英(22.45%);重矿物平均含量仅为4.3%,主要为普通角闪石(38.03%)、绿帘石(27.51%)和自生重晶石(12.01%)。黏土矿物中伊利石平均含量(50.3%)最高,其次为蒙脱石(24.5%)、绿泥石(12.7%)和高岭石(12.6%),黏土矿物组合为伊利石-蒙脱石-绿泥石-高岭石型。ZK3孔晚更新世以来沉积物的物源有所差异,但总体上来说,除河道和湖相沉积时期物源主要来自大凌河外,其它沉积环境中沉积物主要来自辽河和大辽河,物源相对稳定。黏土矿物组合特征所指示的气候变化过程与本区域的孢粉数据有很好的对应关系:45~31 ka BP处于庐山—大理的间冰期阶段,蒙脱石/(伊利石+绿泥石)比值较大,指示气候温和湿润;31~11 ka BP为大理冰期阶段,蒙脱石/高岭石比值较低,指示气候寒冷干燥;11 ka BP至今为冰后期阶段,随着新仙女木事件(YD)的结束,温度逐渐回升,蒙脱石/(伊利石+绿泥石)比值升高,指示气候温暖湿润。  相似文献   

13.
周健  王河锦 《地质论评》2002,48(4):361-364
运用X射线衍射分析技术,计算了成岩带、近变质带粘土矿物C^*方向的粒度。根据阿尔卑斯造山带前陆碎屑岩粘土矿物粒度与伊利石结晶指数的关系,推导出了伊利石、绿泥石、蒙脱石、伊蒙混层、高岭石和叶蜡石的c^*方向粒度变化趋势曲线。结果表明,大多数产于成岩带和近变质带的粘矿物其c6*方向粒工为几至几十纳米。成岩带和近为质带是一维天然纳为级土帮物的产地。  相似文献   

14.
Wadi Queih basin hosts a ~2,500-m thick Neoproterozoic volcanoclastic successions that unconformably lie over the oldest Precambrian basement. These successions were deposited in alluvial fan, fluviatile, lacustrine, and aeolian depositional environments. Diagenetic minerals from these volcaniclastic successions were studied by X-ray diffractometry, scanning electron microscopy, and analytical electron microscopy. The diagenetic processes recognized include mechanical compaction, cementation, and dissolution. Based on the framework grain–cement relationships, precipitation of the early calcite cement was either accompanied or followed by the development of part of the pore-lining and pore-filling clay cements. Secondary porosity development occurred due to partial to complete dissolution of early calcite cement and feldspar grains. In addition to calcite, several different clay minerals including kaolinite, illite, and chlorite with minor smectite occur as pore-filling and pore-lining cements. Chlorite coating grains helps to retain primary porosity by retarding the envelopment of quartz overgrowths. Clay minerals and their diagenetic assemblages has been distinguished between primary volcaniclastics directly produced by pyroclastic eruptions and epiclastic volcaniclastics derived from erosion of the pre-existing volcanic rocks. Phyllosilicates of the epiclastic rocks display wider compositional variations owing to wide variations in the mineralogical and chemical compositions of the parent material. Most of the phyllosilicates (kaolinite, illite, chlorite, mica, and smectite) are inherited minerals derived from the erosion of the volcanic basement complex, which had undergone hydrothermal alteration. Smectites of the epiclastic rocks are beidellite–montmorillonite derived from the altered volcanic materials of the sedimentary environment. Conversely, phyllosilicate minerals of the pyroclastic rocks are dominated by kaolinite, illite, and mica, which were formed by pedogenetic processes through the hydrothermal influence.  相似文献   

15.
The Murgul (Artvin, NE Turkey) massive sulfide deposit is hosted dominantly by Late Cretaceous calc-alkaline to transitional felsic volcanics. The footwall rocks are represented by dacitic flows and pyroclastics, whereas the hanging wall rocks consist of epiclastic rocks, chemical exhalative rocks, gypsum-bearing vitric tuff, purple vitric tuff and dacitic flows. Multi-element variation diagrams of the hanging wall and footwall rocks exhibit similar patterns with considerable enrichment in K, Rb and Ba and depletion in Nb, Sr, Ti and P. The chondrite-normalized rare earth element (REEs) patterns of all the rocks are characterized by pronounced positive/negative Eu anomalies as a result of different degrees of hydrothermal alteration and the semi-protected effects of plagioclase fractionation.Mineralogical results suggest illite, illite/smectite + chlorite ± kaolinite and chlorite in the footwall rocks and illite ± smectite ± kaolinite and chlorite ± illite in the hanging wall rocks. Overall, the alteration pattern is represented by silica, sericite, chlorite and chlorite–carbonate–epidote–sericite and quartz/albite zones. Increments of Ishikawa alteration indexes, resulting from gains in K2O and losses in Na2O and the chlorite–carbonate–pyrite index towards to the center of the stringer zone, indicate the inner parts of the alteration zones. Calculations of the changes in the chemical mass imply a general volume increase in the footwall rocks. Abnormal volume increases are explained by silica and iron enrichments and a total depletion of alkalis in silica zone. Relative K increments are linked to the sericitization of plagioclase and glass shards and the formation of illite/smectite in the sericite zone. In addition, Fe enrichment is always met by pyrite formation accompanied by quartz and chlorite. Illite is favored over chlorite, smectite and kaolinite in the central part of the ore body due to the increase in the (Al + K)/(Na + Ca) ratio. Although the REEs were enriched in the silicification zone, light REEs show depletion in the silicification zone and enrichment in the other zones in contrast to the heavy REEs' behavior. Hydrothermal alteration within the hanging wall rocks, apart from the gypsum-bearing vitric tuffs, is primarily controlled by chloritization with proportional Fe and Mg enrichments and sericitization.The δ18O and δD values of clay minerals systematically change with increasing formation temperature from 6.6 to 8.7‰ and − 42 to − 50‰ for illites, and 8.6 and − 52‰ for chlorite, respectively. The O- and H-stable isotopic data imply that hydrothermal-alteration processes occurred at 253–332 °C for illites and 136 °C for chlorite with a temperature decrease outward from the center of the deposit. The positive δ34S values (20.3 to 20.4‰) for gypsum suggest contributions from seawater sulfate reduced by Fe-oxide/-hydroxide phases within altered volcanic units. Thus, the hydrothermal alteration possibly formed via a dissolution–precipitation mechanism that operated under acidic conditions. The K–Ar dating (73–62 Ma) of the illites indicates an illitization process from the Maastrichtian to Early Danian period.  相似文献   

16.
There is convincing evidence from field data that smectite clay undergoes conversion primarily to illite and chlorite if it is fully water-saturated and heated. The conversion may take place through mixed-layer formation with increasing illite/smectite ratio at higher temperatures and pressures. This process requires dehydration of the interlamellar space, for which either an external pressure or drying are needed. An alternative mechanism that takes place without dehydration, is dissolution of smectite and neoformation of illite. Both processes imply reorganization of the smectite crystal lattice for which the activation energy is fairly high, meaning that the conversion is negligible at temperatures lower than about 60°C. At elevated temperatures the conversion rate is controlled by the access to potassium for either mechanism.

An ongoing detailed investigation of this subject has led to a tentative model for the smectite-to-illite conversion in natural sediments and in canister-embedding clay in high-level radioactive waste (HLW) repositories.  相似文献   


17.
Hydrothermal alteration, involving chiefly chlorite and illite, is extensively distributed within host rocks of the Pleistocene Hishikari Lower Andesites (HLA) and the Cretaceous Shimanto Supergroup (SSG) in the underground mining area of the Hishikari epithermal gold deposit, Kagoshima, Japan. Approximately 60% of the mineable auriferous quartz‐adularia veins in the Honko vein system occur in sedimentary rocks of the SSG, whereas all the veins of the Yamada vein system occur in volcanic rocks of the HLA. Variations in the abundance and chemical composition of hydrothermal minerals and magnetic susceptibility of the hydrothermally altered rocks of the HLA and SSG were analyzed. In volcanic rocks of the HLA, hydrothermal minerals such as quartz, chlorite, adularia, illite, and pyrite replaced primary minerals. The amount of hydrothermal minerals in the volcanic rocks including chlorite, adularia, illite, and pyrite as well as the altered and/or replaced pyroxenes and plagioclase phenocrysts increases toward the veins in the Honko vein system. The vein‐centered variation in mineral assemblage is pronounced within up to 25 m from the veins in the peripheral area of the Honko vein system, whereas it is not as apparent in the Yamada vein system. The hydrothermal minerals in sandstone of the SSG occur mainly as seams less than a few millimeters thick and are sporadically observed in halos along the veins and/or the seams. The alteration halos in sandstone of the SSG are restricted to within 1 m of the veins. In the peripheral area of the Honko vein system, chlorite in volcanic rocks is characterized by increasing in Al in its tetrahedral layer and the Fe/Fe + Mg ratio toward the veins, while illite in volcanic rocks has relatively low K and a restricted range of Fe/Fe + Mg ratios. Temperature estimates derived from chlorite geothermometry rise toward the veins within the volcanic rocks. The magnetic susceptibility of tuff breccia of the HLA varies from 21 to less than 0.01 × 10?3 SI within a span of 40 m from the veins and has significant variation relative to that of andesite (27–0.06 × 10?3 SI). The variation peripheral to the Honko vein system correlates with an increase in the abundance of hematite pseudomorphs after magnetite, the percentage of adularia and chlorite with high Fe/Fe + Mg ratios, and the degree of plagioclase alteration with decreasing distance to the veins. In contrast, sedimentary rocks of the SSG maintain a consistent magnetic susceptibility across the alteration zone, within a narrow range from 0.3 to 0.2 × 10?3 SI. Magnetic susceptibility of volcanic rocks of the HLA, especially tuff breccia, could serve as an effective exploration tool for identifying altered volcanic rocks.  相似文献   

18.
Aluminous, high-temperature clay minerals form from alteration of tholeiitic basaltic glass and calcic plagioclase during hydrothermal venting on the crest of the East Pacific Rise at 21°N. The clay alteration assemblages are layered crusts (up to 1 mm thick) completely replacing glass and calcic plagioclase adjacent to surfaces exposed to hydrothermal fluids. The interiors of the affected basalt samples have unaltered appearances and oxygen isotopic compositions just slightly heavier than that of MORB. The surficial alteration crusts are mixtures of beidellitic smectite (aluminous, dioctahedral), randomly interstratified mixed-layer Al-rich chlorite/smectite, minor chlorite, an x-ray amorphous aluminosilicate material, and possible minor serpentine (amesite). A δ18O value of +4.1 ± 0.2%. (SMOW) is determined for the beidellitic smectite. Assuming that this smectite equilibrated with hydrothermal fluid having an oxygen isotope value between that of seawater (0%.) and 350°C hydrothermal fluid from EPR, 21°N vents (+1.6%.), an equilibration temperature between 290°C and 360°C is calculated for the beidellitic smectite. This is substantially higher than any previously reported temperature for an oceanic smectite. The mixed-layer Al-rich chlorite/smectite has a δ18O value of +3.5%., which corresponds to equilibration at 295°–360°C. The aluminous composition of the alteration assemblage is uncommon for clay minerals produced by submarine hydrothermal basalt alteration. We suggest that this assemblage is largely the product of high-temperature interaction between basalt glass + plagioclase and Mg-poor, acidic hydrothermal fluids, with possibly some contribution of Mg from bottom seawater, and that the aluminous clays either incorporate Al3+ remobilized from basalt by lowpH hydrothermal fluids, or are residual phases remaining after intense alteration of basaltic glass + plagioclase.  相似文献   

19.
Phyllosilicates occurring as replacements of olivine, clinopyroxene and interstitial materials and as veins or fracture-fillings in hydrothermally altered basalts from DSDP Hole 504B, Leg 83 have been studied using transmission and analytical electron microscopy. The parageneses of phyllosilicates generally change systematically with depth and with the degree of alteration, which in turn is related to permeability of basalts. Saponite and some mixed-layer chlorite/smectite are the dominant phyllosilicates at the top of the transition zone. Chlorite, corrensite, and mixed-layer chlorite/corrensite occur mainly in the lower transition zone and upper levels of the sheeted dike zone. Chlorite, talc, and mixed-layer talc/chlorite are the major phyllosilicates in the sheeted dike zone, although replacement of talc or ohvine by saponite is observed. The phyllosilicates consist of parallel or subparallel discrete packets of coherent layers with packet thicknesses generally ranging from< 100 Å to a few hundred Å. The packets of saponite layers are much smaller or less well defined than those of chlorite, corrensite and talc, indicating poorer crystal-linity of saponite. by contrast, chlorite and talc from the lower transition zone and the sheeted dike zone occur in packets up to thousands of Å thick. The Si/(Si+Al) ratio of these trioctahedral phyllosilicates increases and Fe/(Fe+Mg) decreases in the order chlorite, corrensite, saponite, and talc. These relations reflect optimal solid solution consistent with minimum misfit of articulated octahedral and tetrahedral sheets. Variations in composition of hydrothermal fluids and precursor minerals, especially in Si/(Si+Al) and Fe/(Fe+Mg) ratios, are thus important factors in controlling the parageneses of phyllosilicates. The phyllosilicates are generally well crystallized discrete phases, rather than mixed-layered phases, where they have been affected by relatively high fluid/rock ratios as in high-permeability basalts, in veins, or areas adjacent to veins. Intense alteration in basalts with high permeability (indicating high fluid/rock ratios) is characterized by pervasive albitization and zeolitization. Minimal alteration in the basalts without significant albitization and zeolitization is characterized by the occurrence of saponite±mixed-layer chlorite/smectite in the low-temperature alteration zone, and mixed-layer chlorite/corrensite or mixed-layer talc/chlorite in the high-temperature alteration zone. Textural non-equilibrium for phyllosilicates is represented by mixed layering and poorly defined packets of partially incoherent layers. The approach to textural equilibrium was controlled largely by the availability of fluid or permeability.Contribution No. 488 from the Mineralogical Laboratory, Department of Geological Sciences, The University of Michigan  相似文献   

20.
We analyzed the clay mineral assemblages, content and mineralogical characteristics of Hole U1438A sediment recovered from Amami Sankaku Basin during International Ocean Discovery Program (IODP) expedition 351. The results show that the clay minerals are mainly composed of illite (average 57%), smectite (average 26%), chlorite (average 14%) and minor kaolinite(average 3%). The crystallinity of illite in all samples are good (<0.4 Δ° 2θ), and the chemical indexes of illite in all samples are low (<0.4). Both indicate that illite in Hole U1438A formed in cold and dry climate. By comparing clay mineral assemblages of hole U1438A and the potential sediment sources, we suggest that smectite be mainly derived from the volcanic materials around Amami Sankaku Basin. Illite, chlorite and kaolinite are mainly derived from the Asian dust. The ratios of (illite+chlorite)/smectite show a phased increase over the last 350 ka, which is consistent with the cold and drying trend of the Asian continent since late Pleistocene. The high ratios of (illite+chlorite)/smectite and (illite+chlorite)/kaolinite during glacial period indicate that much more Asian dust was input into the Amami Sankaku Basin, which are responded to the aridity of Asian continent and strengthened east Asian Monsoon during glacial period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号