首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The evolution of the European Cenozoic Rift System (ECRIS) and the Alpine orogen is discussed on the base of a set of palaeotectonic maps and two retro-deformed lithospheric transects which extend across the Western and Central Alps and the Massif Central and the Rhenish Massif, respectively.During the Paleocene, compressional stresses exerted on continental Europe by the evolving Alps and Pyrenees caused lithospheric buckling and basin inversion up to 1700 km to the north of the Alpine and Pyrenean deformation fronts. This deformation was accompanied by the injection of melilite dykes, reflecting a plume-related increase in the temperature of the asthenosphere beneath the European foreland. At the Paleocene–Eocene transition, compressional stresses relaxed in the Alpine foreland, whereas collisional interaction of the Pyrenees with their foreland persisted. In the Alps, major Eocene north-directed lithospheric shortening was followed by mid-Eocene slab- and thrust-loaded subsidence of the Dauphinois and Helvetic shelves. During the late Eocene, north-directed compressional intraplate stresses originating in the Alpine and Pyrenean collision zones built up and activated ECRIS.At the Eocene–Oligocene transition, the subducted Central Alpine slab was detached, whereas the West-Alpine slab remained attached to the lithosphere. Subsequently, the Alpine orogenic wedge converged northwestward with its foreland. The Oligocene main rifting phase of ECRIS was controlled by north-directed compressional stresses originating in the Pyrenean and Alpine collision zones.Following early Miocene termination of crustal shortening in the Pyrenees and opening of the oceanic Provençal Basin, the evolution of ECRIS was exclusively controlled by west- and northwest-directed compressional stresses emanating from the Alps during imbrication of their external massifs. Whereas the grabens of the Massif Central and the Rhône Valley became inactive during the early Miocene, the Rhine Rift System remained active until the present. Lithospheric folding controlled mid-Miocene and Pliocene uplift of the Vosges-Black Forest Arch. Progressive uplift of the Rhenish Massif and Massif Central is mainly attributed to plume-related thermal thinning of the mantle-lithosphere.ECRIS evolved by passive rifting in response to the build-up of Pyrenean and Alpine collision-related compressional intraplate stresses. Mantle-plume-type upwelling of the asthenosphere caused thermal weakening of the foreland lithosphere, rendering it prone to deformation.  相似文献   

2.
初论板内造山带   总被引:55,自引:10,他引:45  
张长厚 《地学前缘》1999,6(4):295-308
讨论了关于板内造山带含义的不同认识。指出板内造山带是一种特殊类型的造山带,而不是板缘造山带或板间造山带持续发展的结果。简要介绍分别发育在4 个大陆的不同时代的板内造山带,总结板内造山带在区域大地构造位置、造山带构造格局、构造变形与变质作用、岩浆活动与沉积作用、造山带构造演化等方面与板缘造山带的差异。板内造山带形成于相对较老且强硬的岩石圈板块内部,造山带内部构造单元不具有平行于造山带走向分布的特征,即不具有线状构造格局,构造变形具有地台基底乃至整个地壳卷入的厚皮构造性质,同造山区域变质作用微弱,同造山岩浆活动、沉积作用和构造变形均无极性演化趋势。岩石圈拆沉作用(delamination) 可较好地解释板内造山带的火山活动特征。尽管板块间相互作用( 俯冲或碰撞)所产生的水平挤压应力似乎更易于阐明板内造山带的收缩变形特征;但是,板块间相互碰撞或俯冲产生的边界应力可否有效地被远程传递,尚有待进一步研究和解决。将板块间相互作用的水平应力场与岩石圈纵向物质与能量调整( 重力、热力等) 因素作综合考虑,可能是解决板内造山带造山作用机制的有效途径  相似文献   

3.
板内造山作用与成矿   总被引:14,自引:3,他引:14  
中国大陆广泛分布强烈的板内变形和造山作用,传统的板块构造理论常常将其解释为板块边缘汇聚力的远程效应。然而,中国大陆的板内造山作用与汇聚板块边界之间缺乏可预期的动力学联系,不能简单地解释为大陆碰撞或板块俯冲的远程效应。本文提出另一种可供选择的解释,认为板内变形主要取决于岩石圈不均一性。相邻的板块拼合在一起形成统一板块之后,区域地质演化进入板内阶段。板块碰撞导致的岩石圈不均一性和重力不稳定性可以触发强烈的板内变形甚至造山作用,其延迟时间的长短取决于岩石圈不稳定性的程度和地球深部的热扰动。与板缘造山带相比,板内造山作用缺少板块俯冲-碰撞过程,板内造山带的演化历史相对简单,通常是以岩石圈拆沉作用开始,以地壳的垂向增生为特征,最后以岩石圈拆沉作用结束或形成重力不稳定岩石圈。因此,板内造山作用一般沿着古造山带发育。古造山带岩石圈结构低成熟度的特点不仅是岩石圈不稳定性的主要原因之一,而且由于挥发分和含矿元素的富集在活化过程中具有很强的成矿潜力。板内造山带的成矿作用依赖于深埋在岩石圈-软流圈系统不同深度水平上含矿流体的突然释放,主要发生在造山作用初始阶段和造山后伸展阶段。  相似文献   

4.
李涛  王宗秀 《地学前缘》2005,12(3):125-136
与洋陆俯冲关系不同,在板内汇聚过程中,大陆岩石圈固有的多圈层、多界面结构的特点,使得地块的俯冲变形伴有多圈层顺层拆离解耦的行为,使变形结构复杂化。虽然多圈层界面拆离解耦所引发的地震点群空间分布不像洋陆俯冲关系那么规则完美,但是依据地震群与破裂位置、破裂与岩石圈分层力学特性的依次控制关系,运用深度/频次、平面密度等统计方法,再以各种地球物理实测手段得到的岩石圈结构构造数据作为界面标定依据,还是能够得出诸如拆离解耦的界面深度、界面归属和区域层间变形范围等重要的几何学信息,这些变形几何学、运动学数据是构建大陆岩石圈板内汇聚造山特别是盆山耦合模式时的关键性的依据。文中通过对塔里木盆地及周缘造山带的相关研究,在岩石圈层拆离解耦状态及其与盆山构造格局之间的关系方面得出以下几点认识:(1)塔里木盆地及周缘造山带岩石圈的主拆离解耦层均发育于中地壳,但随各区中地壳的具体深度位置不同而有所差别;(2)塔西南/西昆仑盆山构造耦合关系是构建于岩石圈尺度上的,塔北/南天山盆山耦合关系是构建于地壳尺度上的;(3)地震活动的密集程度及密集带的展布与天山的变形强度、隆升状态和地貌阶段类型的变化规律有着近乎完美的精确匹配关系;(4)塔北/南天山和塔西南/西昆仑对应于岩石圈的强拆离解耦区,塔东北/东天山和塔东南/阿尔金山之间无耦合关系,其边缘带对应于岩石圈弱拆离解耦和无拆离解耦区;(5)塔里木盆地总体上的弱变形状态与其岩石圈弱或未拆离解耦类型占据总面积90%的情形相适应;(6)塔里木地块以驱动、阻挡约束、平移滚筒约束和克拉通过渡等多重“身份”存在于相邻单元“包围”的力学环境中。  相似文献   

5.
大陆碰撞造山样式与过程:来自特提斯碰撞造山带的实例   总被引:2,自引:0,他引:2  
张洪瑞  侯增谦 《地质学报》2015,89(9):1539-1559
本文选取特提斯域内比利牛斯、阿尔卑斯、扎格罗斯、喜马拉雅-青藏高原四个地球上最年轻的陆-陆碰撞造山带,对其造山带结构、类型、物质组成、构造岩浆过程等方面进行详细介绍,进而讨论各个造山带的差异性及其缘由,分析碰撞造山普遍性规律。资料分析表明,四个碰撞造山带具有不同的结构和组成。根据板块汇聚方向与造山带边界间的夹角可将造山带分为正向和斜向两种;根据造山带结构可将碰撞带分为对称式和不对称式两种。由此本文将碰撞造山带划分为四种基本式样:正向对称式、正向不对称式、斜向对称式、斜向不对称式,分别以比利牛斯、青藏高原、阿尔卑斯和扎格罗斯碰撞带为代表。综合分析四个造山带碰撞以来的岩浆构造活动,本文发现完整的碰撞过程可以划分为三个阶段,第一阶段主要发生挤压缩短、地壳加厚,高压变质和钙碱性火山岩浆活动;第二阶段以大规模走滑系统发育和高钾钙碱性或钾质火山岩浆作用为特征;第三个阶段挤压应力向碰撞带两侧扩展,同时伴有大型伸展构造系统的发育。在这三阶段演化历程中,比利牛斯只进行到第一阶段,成为幼年夭折的碰撞带;扎格罗斯进行到第二阶段,出现调节挤压应变的走滑系统和钾质超钾质岩浆活动;青藏高原和阿尔卑斯进行到第三个阶段,以发育大型伸展构造和钾质、超钾质岩浆活动为特征,但后者在造山带物质组成和汇聚速率方面显示出比前者更成熟的造山演化程度。因此认为岩石圈组成是碰撞造山带结构的主要控制因素,如果上覆板块具有相对不稳定的岩石圈,会使得碰撞带后陆发育宽广的构造岩浆带,造成造山带呈不对称式结构。  相似文献   

6.
After accretion of the Pampean continental fragment to the western Rio de la Plata craton margin (530 Ma), subsequent deformation, crustal anatexis and plutonism may have been intraplate responses to Brasiliano-PanAfrican collisional tectonism on the eastern margin during the amalgamation of Gondwana. Investigations of intraplate orogens such as the Tien Shan and the Ancestral Rocky Mountains, as well as of analogue and numerical models, permit discrimination of two early Paleozoic tectonomagmatic phases in the Sierras Pampeanas. The first involved marginal trough subduction and calc-alkaline magmatism, culminating in accretion of the Pampean terrane to the western craton edge; the second was characterized by crustal anatexis and peraluminous plutonism, penetrative deformation and high-angle reverse faulting resulting from continental collision on the eastern craton margin.Field observations from modern (Tien Shan) and ancient (Ancestral Rocky Mountains) intraplate chains, deep seismic and borehole data, radiometric and fission-track data constitute control for analogue and numerical models of intraplate deformation resulting from continental collision. Near-simultaneous continent-wide deformation, regularly spaced ranges/buckles, reverse-fault initiation at fold hinges of buckles, and doubling of crustal thickness are replicated in structural arrays formed in four-layer analogue models of lithospheric buckling. These data have significant implications for the ductile deformation, crustral thickening and post-subduction plutonism that spanned central South America in Late Cambrian time.  相似文献   

7.
摘要:大陆造山带与沉积盆地之间具有十分密切的内在联系,空间上相互依存,物质上相互补偿,构造上相互作用,时间上同步演化。这些内在联系体现在统一的形成机制上:大陆造山带和沉积盆地是在大陆边缘俯冲板片脱水熔融和大陆内部地幔柱(枝)上隆的热动力作用下,地壳由盆向山侧向流动,导致盆山地壳物质发生循环运动。青藏高原与周边盆地的耦合作用十分典型。青藏高原不是印度板块与欧亚板块碰撞的结果,而是形成于下地壳流动驱动的板内盆山作用。青藏高原板内盆山耦合可分为两个阶段:(1)板内造山成盆阶段,表现为180~120 Ma→65~30 Ma→23~7 Ma从青藏高原北部和东部盆山系统→青藏高原中部盆山系统→青藏高原南部盆山系统有序迁移,以构造隆升、水平运动、地质作用和大规模板内金属成矿为特征;(2)均衡成山成盆阶段,表现为从36 Ma开始,青藏高原整体快速隆升和周边沉积盆地边缘坳陷带巨厚的磨拉石沉积,以36 Ma B.P.、25 Ma B.P.、18~12 Ma B.P.、 08 Ma B.P.和015 Ma B.P.等一系列脉动式快速隆升、垂直运动、地理作用和水系 环境变化为特征。大陆板内盆山构造演化经历从伸展构造向挤压构造的转换,伴随盆地主动作用转变成造山带主动作用。大陆下地壳流动和盆山耦合形成非安德森式的低角度拆离断层、波状起伏逆冲断层和异常共轭关系走滑断层。  相似文献   

8.
The geological inventory of the Variscan Bohemian Massif can be summarized as a result of Early Devonian subduction of the Saxothuringian ocean of unknown size underneath the eastern continental plate represented by the present-day Teplá-Barrandian and Moldanubian domains. During mid-Devonian, the Saxothuringian passive margin sequences and relics of Ordovician oceanic crust have been obducted over the Saxothuringian basement in conjunction with extrusion of the Teplá-Barrandian middle crust along the so-called Teplá suture zone. This event was connected with the development of the magmatic arc further east, together with a fore-arc basin on the Teplá-Barrandian crust. The back-arc region – the future Moldanubian zone – was affected by lithospheric thinning which marginally affected also the eastern Brunia continental crust. The subduction stage was followed by a collisional event caused by the arrival of the Saxothuringian continental crust that was associated with crustal thickening and the development of the orogenic root system in the magmatic arc and back-arc region of the orogen. The thickening was associated with depression of the Moho and the flux of the Saxothuringian felsic crust into the root area. Originally subhorizontal anisotropy in the root zone was subsequently folded by crustal-scale cusp folds in front of the Brunia backstop. During the Visean, the Brunia continent indented the thickened crustal root, resulting in the root's massive shortening causing vertical extrusion of the orogenic lower crust, which changed to a horizontal viscous channel flow of extruded lower crustal material in the mid- to supra-crustal levels. Hot orogenic lower crustal rocks were extruded: (1) in a narrow channel parallel to the former Teplá suture surface; (2) in the central part of the root zone in the form of large scale antiformal structure; and (3) in form of hot fold nappe over the Brunia promontory, where it produced Barrovian metamorphism and subsequent imbrications of its upper part. The extruded deeper parts of the orogenic root reached the surface, which soon thereafter resulted in the sedimentation of lower-crustal rocks pebbles in the thick foreland Culm basin on the stable part of the Brunia continent. Finally, during the Westfalian, the foreland Culm wedge was involved into imbricated nappe stack together with basement and orogenic channel flow nappes.  相似文献   

9.
The Tethyside orogen, a direct consequence of the separation of the Gondwanaland and the accretion of Eurasia, is a huge composite orogenic system that was generated during Paleozoic–Mesozoic Tethyan accretionary and Cenozoic continent–continent collisional orogenesis within the Tethyan domain. The Tethyside orogenic system consists of a group of diverse Tethyan blocks, including the Istanbul, Sakarya, Anatolide–Taurides, Central Iran, Afghanistan, Songpan–Ganzi, Eastern Qiangtang, Western Qiangtang, Lhasa, Indochina, Sibumasu, and Western Burma blocks, which were separated from Gondwana, drifted northwards, and accreted to the Eurasian continent by opening and closing of two successive Tethyan oceanic basins (Paleo-Tethyan and Neo-Tethyan), and subsequent continental collision.The Tethyan domain represents a metallogenic amalgamation across diverse geodynamic settings, and is the best endowed of all large orogenic systems, such as those associated with the Cordilleran and Variscan orogenies. The ore deposits within the Tethyan domain include porphyry Cu–Mo–Au, granite-related Sn–W, podiform chromite, sediment-hosted Pb–Zn deposits, volcanogenic massive sulfide (VMS) Cu–Pb–Zn deposits, epithermal and orogenic Au polymetallic deposits, as well as skarn Fe polymetallic deposits. At least two metallogenic supergroups have been identified within the eastern Tethyan metallogenic domain (ETMD): (1) metallogenesis related to the accretionary orogen, including the Zhongdian, Bangonghu, and Pontides porphyry Cu belts, the Pontides, Sanandaj–Sirjan, and Sanjiang VMS belts, the Lasbela–Khuzdar sedimentary exhalative-type (SEDEX) Pb–Zn deposits, and podiform chromite deposits along the Tethyan ophiolite zone; and (2) metallogenesis related to continental collision, including the Gangdese, Yulong, Arasbaran–Kerman and Chagai porphyry Cu belts, the Taurus, Sanandaj–Sirjan, and Sanjiang Mississippi Valley-type (MVT) Pb–Zn belts, the Southeast Asia and Tengchong–Lianghe Sn–W belts or districts, the Himalayan epithermal Sb–Au–Pb–Zn belt, the Piranshahr–Saqez–Sardasht and Ailaoshan orogenic Au belts, and the northwest Iran and northeastern Gangdese skarn Fe polymetallic belts. Mineral deposits that are generated with tectonic evolution of the Tethys form in specific settings, such as accretionary wedges, magmatic arcs, backarcs, and passive continental margins within accretionary orogens, and the foreland basins, foreland thrust zones, collisional sutures, collisional magmatic zones, and collisional deformation zones within collisional orogens.Synthesizing the architecture and tectonic evolution of collisional orogens within the ETMD and comparisons with other collisional orogenic systems have led to the identification of four basic types of collision: orthogonal and asymmetric (e.g., the Tibetan collision), orthogonal and symmetric (Pyrenees), oblique and symmetric (Alpine), and oblique and asymmetric (Zagros). The tectonic evolution of collisional orogens typically includes three major processes: (1) syn-collisional continental convergence, (2) late-collisional tectonic transform, and (3) post-collisional crustal extension, each forming distinct types of ore deposits in specific settings. The resulting synthesis leads us to propose a new conceptual framework for the collision-related metallogenic systems, which may aid in deciphering relationships among ore types in other comparable collisional orogens. Three significant processes, such as breaking-off of subducted Tethyan slab, large-scale strike-slip faulting, shearing and thrusting, and delamination (or broken-off) of lithosphere, developed in syn-, late- and post-collisional periods, repsectively, were proposed to act as major driving forces, resulting in the formation of the collision-related metallogenic systems. Widespread appearance of juvenile crust and intense inteaction between mantle and crust within the Himalayan–Zagros orogens indicate that collisional orogens have great potential for the discovery of large or giant mineral deposits.  相似文献   

10.
赵子福  代富强  陈启 《地球科学》2019,44(12):4119-4127
俯冲到地幔深度的地壳物质不可避免地在板片-地幔界面与地幔楔发生相互作用,由此形成的超镁铁质交代岩就是造山带镁铁质火成岩的地幔源区.因此,造山带镁铁质火成岩为研究俯冲地壳物质再循环和壳-幔相互作用提供了重要研究对象.为了揭示俯冲陆壳物质再循环的机制和过程,对大别造山带碰撞后安山质火山岩开展了元素和同位素地球化学研究.这些安山质火山岩的SIMS锆石U-Pb年龄为124±3~130±2 Ma,表明其形成于早白垩世.此外,残留锆石的U-Pb年龄为中新元古代和三叠纪,分别对应于大别-苏鲁造山带超高压变火成岩的原岩年龄和变质年龄.它们具有岛弧型微量元素特征、富集的Sr-Nd-Hf同位素组成,以及变化的且大多不同于正常地幔的锆石δ18O值.这些元素和同位素特征指示,这些安山质火山岩是交代富集的造山带岩石圈地幔部分熔融的产物.在三叠纪华南陆块俯冲于华北陆块之下的过程中,俯冲华南陆壳来源的长英质熔体交代了上覆华北岩石圈地幔楔橄榄岩,大陆俯冲隧道内的熔体-橄榄岩反应产生了富沃、富集的镁铁质地幔交代岩.这种地幔交代岩在早白垩世发生部分熔融,就形成了所观察到的安山质火山岩.因此,碰撞造山带镁铁质岩浆岩的地幔源区是通过大陆俯冲隧道内板片-地幔相互作用形成的,而加入地幔楔中长英质熔体的比例决定了这些镁铁质岩浆岩的岩石化学和地球化学成分.   相似文献   

11.
新生代以来,中国西部的一系列古老造山带和盆地在印-亚板块汇聚作用下重新复活,在青藏高原外围形成了现今全球最大的陆内挤压构造域,被称为环青藏高原盆山体系,其形成过程与机制对深入认识陆-陆碰撞如何影响大陆内部变形有重要意义。柴达木盆地是中国西部重要的新生代沉积盆地,四周均被巨型造山带所围限,共同构成了环青藏高原盆山体系北东段的主体。本文利用最新的石油地震勘探数据、地表地质和已发表的深反射地震数据,将上地壳变形与岩石圈深部变形有机结合,系统刻画了柴达木盆地与周缘三大造山带之间岩石圈尺度的构造耦合关系,在此基础上探讨环青藏高原盆山体系北东段的盆山汇聚过程与机制。柴达木盆地与南侧祁曼塔格—东昆仑山、北东侧南祁连山之间在上地壳尺度发育一系列倾向造山带的基底卷入高角度逆断裂体系,自新生代早期就开始活动,以垂直的基底抬升为主,水平缩短量有限;在下地壳和岩石圈地幔深度则发育倾向盆地一侧的深大断裂,使得柴达木盆地与周缘造山带之间发生截然的莫霍面错断。这些变形特征揭示柴达木盆地与南侧祁曼塔格—东昆仑山、北东侧南祁连山之间发育岩石圈尺度的构造楔,即盆地的岩石圈楔入至增厚的造山带下地壳,其发育主要受盆地与造山带...  相似文献   

12.
造山带构造研究中几个重要学术概念问题的讨论   总被引:1,自引:0,他引:1  
张长厚  吴正文 《地质论评》2002,48(4):337-344
简要分析和评述了造山带构造研究中的几个重要学术概念问题:造山带,造山带类型、造山作用和造山过程、造山带构造格局、造山作用模式。指出不宜将造山带定义直接与板块边缘构造位置和板块间相互作用联系在一起;造山作用和造山带不仅出现在板块之间相互作用的地带,而且可以出现在远离板边界的地方--即所谓板内造山带。强调了板内造山带研究的重要性,提出了确定板内造山的主要依据,指出在造山带分类、造山带构造山带。强调了板内造山带研究的重要性,提出了确定内造山带的主要依据,指出在造山带分类、造山带构造格局和造山作用过程中应充分注意内造山带的客观存在,以及板内造山带成因动力机制研究中需要着重考虑的重要方面。  相似文献   

13.
The subduction phase in the development of the Variscan Orogen in SW Europe was followed by an extended period of ‘intracontinental’ tectonics. The progressive temperature rise in the hinterland during plate convergence was accompanied by widespread partial melting in the lower crust and the nucleation of kilometric buckle folds and crustal‐scale shear zones in the stronger upper crust. Thermal mechanical weakening in the core of the orogen was contemporaneous with shortening and thickening in the foreland fold‐and‐thrust belt. We evaluate lithospheric strength profiles in the hinterland and foreland based on the metamorphic and structural record for three tectonic stages. We find that lower crustal strength varied in space as well as in time during orogenesis. Strength contrasts between the foreland and the hot hinterland during convergence may have led to the additional indentation of the foreland into the hinterland of the Ibero‐Armorican Arc.  相似文献   

14.
陈仁旭  郑永飞 《地球科学》2019,44(12):4095-4101
俯冲带是地壳与地幔之间物质交换的主要场所.前人对大洋俯冲带壳幔相互作用进行了大量研究,但是对俯冲带壳幔相互作用的物理化学过程和机理仍缺乏明确认识.在大陆俯冲带出露有造山带橄榄岩,它们来自俯冲板片之上的地幔楔,是解决这个问题的理想样品.通过对大别-苏鲁和柴北缘造山带橄榄岩进行系统的岩石学和地球化学研究,发现地幔楔橄榄岩由于俯冲地壳的交代作用而含有新生锆石和残留锆石,它们能为地壳交代作用时间、交代介质来源、性质和组成提供制约.地幔楔橄榄岩在大陆碰撞过程的不同阶段受到了俯冲大陆地壳衍生的多期不同性质流体的交代作用.地幔楔橄榄岩还受到了陆壳俯冲之前古俯冲洋壳衍生流体的交代作用.深俯冲陆壳衍生熔体与橄榄岩反应形成的石榴辉石岩具有高的水含量,能提供高水含量的地幔源区.   相似文献   

15.
The Tatricum, an upper crustal thrust sheet of the Central Western Carpathians, comprises pre-Alpine crystalline basement and a Late Paleozoic-Mesozoic sedimentary cover. The sedimentary record indicates gradual subsidence during the Triassic, Early Jurassic initial rifting, a Jurassic-Early Cretaceous extensional tectonic regime with episodic rifting events and thermal subsidence periods, and Middle Cretaceous overall flexural subsidence in front of the orogenic wedge prograding from the hinterland. Passive rifting led to the separation of the Central Carpathian realm from the North European Platform. A passive margin, rimmed by peripheral half-graben, was formed along the northern Tatric edge, facing the Vahic (South Penninic) oceanic domain. The passive versus active margin inversion occurred during the Senonian, when the Vahic ocean began to be consumed southwards below the Tatricum. It is argued that passive to active margin conversion is an integral part of the general shortening polarity of the Western Carpathians during the Mesozoic that lacks features of an independent Wilson cycle. An attempt is presented to explain all the crustal deformation by one principal driving force - the south-eastward slab pull generated by the subduction of the Meliatic (Triassic-Jurassic Tethys) oceanic lithosphere followed by the subcrustal subduction of the continental mantle lithosphere.  相似文献   

16.
Thermal models for Barrovian metamorphism driven by doubling the thickness of the radiogenic crust typically meet difficulty in accounting for the observed peak metamorphic temperature conditions. This difficulty suggests that there is an additional component in the thermal budget of many collisional orogens. Theoretical and geological considerations suggest that viscous heating is a cumulative process that may explain the heat deficit in collision orogens. The results of 2D numerical modelling of continental collision involving subduction of the lithospheric mantle demonstrate that geologically plausible stresses and strain rates may result in orogen‐scale viscous heat production of 0.1 to >1 μW m?3, which is comparable to or even exceeds bulk radiogenic heat production within the crust. Thermally induced buoyancy is responsible for crustal upwelling in large domes with metamorphic temperatures up to 200 °C higher than regional background temperatures. Heat is mostly generated within the uppermost mantle, because of large stresses in the highly viscous rocks deforming there. This thermal energy may be transferred to the overlying crust either in the form of enhanced heat flow, or through magmatism that brings heat into the crust advectively. The amplitude of orogenic heating varies with time, with both the amplitude and time‐span depending strongly on the coupling between heat production, viscosity and collision strain rate. It is argued that geologically relevant figures are applicable to metamorphic domes such as the Lepontine Dome in the Central Alps. We conclude that deformation‐generated viscous dissipation is an important heat source during collisional orogeny and that high metamorphic temperatures as in Barrovian type metamorphism are inherent to deforming crustal regions.  相似文献   

17.
The Uralide orogen, in Central Russia, is the focus of intense geoscientific investigations during recent years. The international research is motivated by some unusual lithospheric features compared with other collisional belts including the preservation of (a) a collisional architecture with an orogenic root and a crustal thickness of 55–58 km, and (b) large volumes of very low-grade and non-metamorphic oceanic crust and island arc rocks in the upper crust of a low–relief mountain belt. The latter cause anomalous gravity highs along the thickened crust and the isostatic equilibrium inside the Uralides lithosphere as well as the overthrust high-metamorphic rocks. The integrated URSEIS '95 seismic experiment provides fundamentally new data revealing the lithospheric architecture of an intact Paleozoic collisional orogen that allows the construction of density models. In the Urals' lithosphere different velocity structures resolved by wide-angle seismic experiments along both the URSEIS '95- and the Troitsk profile. They can be used to constrain lithospheric density models: a first model consists of a deep subducted continental lower crust which has been highly eclogitized at depths of 60–90 km to a density of 3550 kg/m3. The second model shows a slightly eclogitized lower crust underlying the Uralide orogen with a crustal thickness of 60 km. The eclogitized lower crust causes a too-small impedance contrast to the lithospheric mantle resulting in a lack of reflectors in the area of the largest crustal thickness. Both models fit the measured gravity field. Analyzing the isostatic state of the southern Urals' lithosphere, both density models are in isostatic equilibrium.  相似文献   

18.
大陆成矿作用是当代区域成矿学研究的重大前沿,增进对大陆碰撞造山带成矿作用的理解和认识是孕育和建立大陆成矿理论框架的核心和关键。长期以来,由于对系统完整地记录大陆碰撞过程的典型造山带的成矿作用缺乏深入系统的研究,对碰撞造山过程及壳/幔相互作用与成矿作用的耦合关系和成因联系缺乏深刻的理解,导致了对碰撞成矿阶段以及各阶段动力学过程认识不清,引发了较多争议。青藏高原造山带,成矿规模大、形成时代新、矿床类型多、保存条件好,为系统地研究大陆成矿作用、解决上述存在的问题提供了天然实验室。“印度-亚洲主碰撞带成矿作用”973项目组通过对青藏高原碰撞造山带成矿作用历时3年的系统研究,建立了青藏高原重要成矿事件的时空坐标,初步建立了成矿作用的地球动力学模型或构造控制模型,提出了一套完整的大陆碰撞带成矿理论新框架,包括三大成矿作用和12种矿床类型:同碰撞造山成矿作用(65-41 Ma,4种矿床类型),晚碰撞转换成矿作用 (40-26Ma,4种矿床类型),后碰撞伸展成矿作用(25-0 Ma,4种矿床类型)。其主控因素分别为:碰撞造山背景、壳源岩浆活动和大规模剪切变形;陆内转换背景、幔源岩浆活动和大规模走滑-推覆-剪切作用;后碰撞伸展环境、壳/幔岩浆作用和热液对流系统。  相似文献   

19.
李舢  王涛  肖文交  侯泉林 《岩石学报》2023,(5):1261-1275
造山带演化及增生到碰撞的转变是板块构造与大陆动力学研究中的前沿科学问题。中亚造山带被认为是古亚洲洋长期俯冲-增生演化形成的显生宙最大的增生造山带,以发育巨量的面状展布的俯冲-增生相关的弧岩浆岩为特征。并且,由于中亚增生型造山带在潘吉亚最后聚合过程中发生弧弧(陆)碰撞,因此缺乏大规模且跨构造单元的碰撞相关的构造和变质等物质标志。显然,能否识别出大洋闭合期间碰撞作用的岩浆标志成为确定增生造山带增生过程终止的关键之一。本文系统研究确定:中亚造山带东南缘二叠纪到三叠纪钙碱性-碱钙性岩浆在空间分布上显示出由北西向南东迁移演化的特征;在岩浆性质上具有从二叠纪新生地壳来源的弧岩浆向早-中三叠世碰撞挤压背景下古老陆壳组分逐渐增多的高Sr/Y岩浆以及晚三叠世后造山伸展相关的A型花岗岩演化的特征。这些特征提供了俯冲-增生向碰撞造山演变的关键岩浆岩证据。结合区域资料,厘定出增生造山带最后碰撞相关的标志性岩浆为沿缝合带呈零星线性展布的增厚下地壳源区的高Sr/Y花岗岩类,构建了中亚造山带南缘从双向俯冲-增生到增生楔-增生楔碰撞及后造山伸展的三阶段构造-岩浆演化模型。系统对比研究,揭示出增生-碰撞相关的岩浆记录沿横向展布在中亚造山带南缘甘肃北山到吉林中部一带,表明碰撞挤压相关的岩浆作用在中亚造山带南缘具有一定的普适性。中亚造山带南缘从增生到碰撞的岩浆演化记录的厘定,证实显生宙最大的巨型增生造山带演化末期经历了碰撞造山作用,对进一步深入探索增生造山演化末期碰撞相关的标志性岩浆具有重要意义。  相似文献   

20.
《Gondwana Research》2013,24(4):1402-1428
The formation of collisional orogens is a prominent feature in convergent plate margins. It is generally a complex process involving multistage tectonism of compression and extension due to continental subduction and collision. The Paleozoic convergence between the South China Block (SCB) and the North China Block (NCB) is associated with a series of tectonic processes such as oceanic subduction, terrane accretion and continental collision, resulting in the Qinling–Tongbai–Hong'an–Dabie–Sulu orogenic belt. While the arc–continent collision orogeny is significant during the Paleozoic in the Qinling–Tongbai–Hong'an orogens of central China, the continent–continent collision orogeny is prominent during the early Mesozoic in the Dabie–Sulu orogens of east-central China. This article presents an overview of regional geology, geochronology and geochemistry for the composite orogenic belt. The Qinling–Tongbai–Hong'an orogens exhibit the early Paleozoic HP–UHP metamorphism, the Carboniferous HP metamorphism and the Paleozoic arc-type magmatism, but the three tectonothermal events are absent in the Dabie–Sulu orogens. The Triassic UHP metamorphism is prominent in the Dabie–Sulu orogens, but it is absent in the Qinling–Tongbai orogens. The Hong'an orogen records both the HP and UHP metamorphism of Triassic age, and collided continental margins contain both the juvenile and ancient crustal rocks. So do in the Qinling and Tongbai orogens. In contrast, only ancient crustal rocks were involved in the UHP metamorphism in the Dabie–Sulu orogenic belt, without involvement of the juvenile arc crust. On the other hand, the deformed and low-grade metamorphosed accretionary wedge was developed on the passive continental margin during subduction in the late Permian to early Triassic along the northern margin of the Dabie–Sulu orogenic belt, and it was developed on the passive oceanic margin during subduction in the early Paleozoic along the northern margin of the Qinling orogen.Three episodes of arc–continent collision are suggested to occur during the Paleozoic continental convergence between the SCB and NCB. The first episode of arc–continent collision is caused by northward subduction of the North Qinling unit beneath the Erlangping unit, resulting in UHP metamorphism at ca. 480–490 Ma and the accretion of the North Qinling unit to the NCB. The second episode of arc–continent collision is caused by northward subduction of the Prototethyan oceanic crust beneath an Andes-type continental arc, leading to granulite-facies metamorphism at ca. 420–430 Ma and the accretion of the Shangdan arc terrane to the NCB and reworking of the North Qinling, Erlangping and Kuanping units. The third episode of arc–continent collision is caused by northward subduction of the Paleotethyan oceanic crust, resulting in the HP eclogite-facies metamorphism at ca. 310 Ma in the Hong'an orogen and low-P metamorphism in the Qinling–Tongbai orogens as well as crustal accretion to the NCB. The closure of backarc basins is also associated with the arc–continent collision processes, with the possible cause for granulite-facies metamorphism. The massive continental subduction of the SCB beneath the NCB took place in the Triassic with the final continent–continent collision and UHP metamorphism at ca. 225–240 Ma. Therefore, the Qinling–Tongbai–Hong'an–Dabie–Sulu orogenic belt records the development of plate tectonics from oceanic subduction and arc-type magmatism to arc–continent and continent–continent collision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号