首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Soil organic carbon (SOC) plays an important role in global carbon cycles.Large spatial variations in SOC contents result in uncertain estimates of the SOC pool and its changes.In the present study,the key variables explaining the SOC contents of croplands (CPs) and non-croplands (NCPs) in Chinese provinces were investigated.Data on SOC and other soil properties (obtained from the Second National Soil Survey conducted in the late 1970s to the early 1990s),climate parameters,as well as the proportion of the CP to the total land area (Pcp) were used.SOC content variations within a province were larger than those among provinces.Soil clay and total phosphorus content,ratio of annual precipitation to mean temperature,as well as Pcp were able to explain 75% of the SOC content variations in whole soil samples.Soil pH,mean temperature during the growing season from May to October,and mean annual wind velocity were able to explain 63% of the SOC content variations in NCP soils.Compared with NCP soils,CP soils had lower SOC contents,with smaller variations within and among provinces and lower C/N ratios.Stepwise regression showed that the soil clay content was a unique factor significantly correlated with the SOC content of CP soils.However,this factor only explained 24% of the variations.This result suggested that variables related to human activities had greater effects on SOC content variations in CP soils than soil properties and climate parameters.Based on SOC contents directly averaged from soil samples and estimated by regression equations,the total SOC pool in the topsoil (0-20 cm) of China was estimated at 60.02 Pg and 57.6 Pg.Thousands of years of intensive cultivation in China resulted in CP topsoil SOC loss of 4.34-4.98 Pg.  相似文献   

2.
Land cover type is critical for soil organic carbon(SOC) stocks in territorial ecosystems. However, impacts of land cover on SOC stocks in a karst landscape are not fully understood due to discontinuous soil distribution. In this study, considering soil distribution, SOC content and density were investigated along positive successional stages(cropland, plantation, grassland, scrubland, secondary forest, and primary forest) to determine the effects of land cover type on SOC stocks in a subtropical karst area. The proportion of continuous soil on the ground surface under different land cover types ranged between 0.0% and 79.8%. As land cover types changed across the positive successional stages, SOC content in both the 0–20 cm and 20–50 cm soil layers increased significantly. SOC density(SOCD) within 0–100 cm soil depth ranged from 1.45 to 8.72 kg m-2, and increased from secondary forest to primary forest, plantation, grassland, scrubland, and cropland, due to discontinuous soil distribution. Discontinuous soil distribution had a negative effect on SOC stocks, highlighting the necessity for accurate determination of soil distribution in karst areas. Generally, ecological restoration had positive impacts on SOC accumulation in karst areas, but this is a slow process. In the short term, the conversion of croplandto grassland was found to be the most efficient way for SOC sequestration.  相似文献   

3.
This study was conducted to explore the effects of topography and land use changes on particulate organic carbon(POC),particulate total nitrogen(PTN),organic carbon(OC) and total nitrogen(TN) associated with different size primary particle fractions in hilly regions of western Iran.Three popular land uses in the selected site including natural forest(NF),disturbed forest(DF) and cultivated land(CL) and three slope gradients(0-10 %,S1,10-30 %,S2,and 30-50%,S3) were employed as the basis of soil sampling.A total of 99 soil samples were taken from the 0-10 cm surface layer in the whole studied hilly region studied.The results showed that the POC in the forest land use in all slope gradients was considerably more than the deforested and cultivated lands and the highest value was observed at NF-S1 treatment with 9.13%.The values of PTN were significantly higher in the forest land use and in the down slopes(0.5%) than in the deforested and cultivated counterparts and steep slopes(0.09%) except for the CL land use.The C:N ratios in POC fraction were around 17-18 in the forest land and around 23 in the cultivated land.In forest land,the silt-associated OC was highest among the primary particles.The enrichment factor of SOC,EC,was the highest for POC.For the primary particles,EC of both primary fractions of silt and clay showed following trend for selected land uses and slope gradients:CL> DF> NF and S3 > S2> S1.Slope gradient of landscape significantly affected the OC and TN contents associated with the silt and clay particles,whereas higher OC and TN contents were observed in lower positions and the lowest value was measured in the steep slopes.Overall,the results showed that native forest land improves soil organic carbon storage and can reduce the carbon emission and soil erosion especially in the mountainous regions with high rainfall in west of Iran.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号