首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Incorporating private and working lands into protected area networks could mitigate the isolation state of protected areas(PAs) and improve the efficiency of conservation.But how to select patches of land for conservation is still a troublesome issue.In this study, the MaxEnt model and irreplaceability index were applied to guide marsh conservation in the Nenjiang River Basin, Northeast China.According to the high accuracy of the MaxEnt model predictions(i.e., the average AUC value = 0.933), the Wuyuer River and Zhalong marshes in the downstream reaches of Wuyuer River are the optimal habitat for the Red-crowned crane and migratory waterfowls.There are 22 marsh patches selected by the patch irreplaceability index for conservation, of which 12 patches had been included in the current network of protected areas.The other 10 patches of marsh(amounting to 1096 km~2) far from human disturbances with high NDVI(up to 0.8) and close distance to water(less than 100 m), which are excluded from the existing network of PAs, should be implemented conservation easement programs to improve the protection efficiency of conservation.Specifically, the marshes at Taha, Tangchi, and Lamadian should be given priority for conservation and restoration to reintroduce migratory waterfowls, as this would lessen the current isolation state of the Zhalong National Nature Reserve.  相似文献   

2.
Tidal marshes are an important habitat and nursery area for fish. In the past few decades, rapid economic development in the coastal areas of China has led to the interruption and destruction of an increasing number of tidal marshes. The growing interest in tidal marsh restoration has increased the need to understand the relationship between geomorphological features and fish assemblages in the design of marsh restoration projects. We studied temporal variations in, and the effects of creek geomorphological features on, the estuarine tidal creek fish community. Using modified channel nets, we sampled fish monthly from March 2007 to February 2008 from seven tidal creeks along an intertidal channel system in Chongming Dongtan National Nature Reserve. Fourteen creek geomorphological variables were measured or derived to characterize intertidal creek geomorphological features. The Gobiidae, with 10 species, was the most species- rich family. The most abundant fish species were Liza affinis, Chelon haematocheilus, and Lateolabrax maculatus. The fish community was dominated by juvenile marine transients, which comprised about 80% of the total catch. The highest abundance offish occurred in June and July, and the highest biomass occurred in December. Canonical redundancy analyses demonstrated that depth, steepness, cross-sectional area, and volume significantly affected the fish species assemblage. L. affinis favored small creeks with high elevations. Synechogobius ommaturus, Acanthogobius luridus, and Carassius auratus preferred deep, steep creeks with a large cross-sectional area and volume. These findings indicate that the geomorphological features of tidal creeks should be considered in the conservation and sustainable management of fish species and in the restoration of salt marshes.  相似文献   

3.
以珠穆朗玛峰国家自然保护区为研究区域,选取2009年23幅MODIS NDVI影像,采用傅里叶变换的HA-NTS算法去除云干扰,并重构NDVI时间序列图像.(1)根据研究区沼泽湿地与其他地物类型物候特征的差异,利用光谱角制图方法(SAM)获取了研究区2009年沼泽湿地的分布图.研究区沼泽湿地共有2 481.13km2,...  相似文献   

4.
Most world natural heritage sites are designated partly by reason of their prominent aesthetic values in accordance with Article Ⅶ of World Natural Heritage Convention.In this paper, the aesthetic values of Kanas National Nature Reserve, which has potential for such designation, was analyzed quantitatively using scenic beauty estimation(SBE).The landscapes of 19 representative scenic spots in the Kanas National Nature Reserve in summer and autumn were selected as the objects of evaluation.The contributions of different landscape factors to the aesthetic value of the Kanas National Nature Reserve were revealed using a multivariate quantitative model.The main factors affecting the aesthetic value were waterscapes, vegetation, mountains, folk culture and the tourist environment.The t-test and F-test results are extremely significant.According to the results, some suggestions were given for conserving the landscapes in the Kanas National Nature Reserve.  相似文献   

5.
Coastal wetlands play an important role in the global carbon cycle.Large quantities of sediment deposited in the Changjiang(Yangtze) estuary by the Changjiang River promote the propagation of coastal wetlands,the expansion of saltmarsh vegetation,and carbon sequestration.In this study,using the Chongming Dongtan Wetland in the Changjiang estuary as the study area,the spatial and temporal distribution of soil organic carbon(SOC) stocks and the influences of sedimentation and vegetation on the SOC stocks of the coastal wetland were examined in 2013.There was sediment accretion in the northern and middle areas of the wetland and in the Phragmites australis marsh in the southern area,and sediment erosion in the Scirpus mariqueter marsh and the bare mudflat in the southern area.More SOC accumulated in sediments of the vegetated marsh than in the bare mudflat.The total organic carbon(TOC) stocks increased in the above-ground biomass from spring to autumn and decreased in winter;in the below-ground biomass,they gradually increased from spring to winter.The TOC stocks were higher in the below-ground biomass than in the above-ground biomass in the P.australis and Spartina altemiflora marshes,but were lower in the below-ground biomass in S.mariqueter marsh.Stocks of SOC showed temporal variation and increased gradually in all transects from spring to winter.The SOC stocks tended to decrease from the high marsh down to the bare mudflat along the three transects in the order:P.australis marsh S.alterniflora marsh S.mariqueter marsh bare mudflat.The SOC stocks of the same vegetation type were higher in the northern and middle transects than in the southern transect.These results suggest that interactions between sedimentation and vegetation regulate the SOC stocks in the coastal wetland in the Changjiang estuary.  相似文献   

6.
泌阳凹陷和南阳凹陷均属于南襄盆地次级构造单元,两者被唐河低凸起分隔,有效勘探面积相近,但凹陷资源量、已探明地质储量、石油天然气产量差异很大,油气分布具不均衡性。以两个凹陷的地震、钻井、测录井、地球化学资料为基础,立足于已有的勘探地质认识,从大地构造、含油气盆地要素分析、石油地质学的角度深入分析了两凹陷的相似性和差异性。研究结果表明,两凹陷在大地构造背景、构造演化阶段、凹陷平面形态、地层系统等方面具相似性。两凹陷的差异性主要表现在基底性质、边界断裂特征、沉降特征、地温特征、烃源岩特征、沉积体系、储集层物性、生储盖配置、圈闭特征、油气成藏期次及成藏模式10个方面。其中,基底性质和凹陷地质结构差异导致的油气成藏要素和成藏作用不同是油气分布不均衡性的决定因素。油气地质特征类比表明,南阳凹陷勘探程度相对较低,只要借鉴泌阳凹陷的成功勘探经验,创新地质认识,配套勘探关键技术,开展多领域、多层次、多油藏类型的立体勘探,仍具有较大的勘探潜力。   相似文献   

7.
Recently, the degradation of permafrost and marsh environments in the Da and Xiao Hinggan Mountains has become a great concern as more human activities and pronounced climate warming were observed during the past 30 years and projected for the near future. The distr/bution patterns and development mechanisms of the permafrost and marshes have been examined both in theories and in field observations, in order to better understand the symbiosis of permafrost and marshes. The permafrost and marshes in the Da and Xiao Hinggan Mountains display discernible zonations in latitude and elevation. The marsh vegetation canopy, litter and peat soil have good thermal insulation properties for the underlying permafrost, resulting in a thermal offset of 3 ℃ to 4℃ and subsequently suppressing soil temperature. In addition, the much higher thermal conductivity of frozen and ice-rich peat in the active layer is conducive to the development or in favor of the protection of permafrost due to the semi-conductor properties of the soils overlying the permafrost. On the other hand, because permafrost is almost impervious, the osmosis of water in marsh soils can be effectively reduced, timely providing water supplies for helophytes growth or germination in spring. In the Da and Xiao Hinggan Mountains, the permafrost degradation has been accelerating due to the marked climate warming, ever increasing human activities, and the resultant eco-environmental changes. Since the permafrost and marsh environments are symbiotic and interdependent, they need to be managed or protected in a well-coordinated and integrated way.  相似文献   

8.
Radiation balance, soil temperature and the temperature and humidity of air were measured in marshes and reclaimed farmlands of the Sanjing Plain. Soil-heat flux was calculated with two different methods. Through the analysis of a lot of data, the daily variations and the law of vertical distribution of microclimate factors on marsh surface was obtained. It is found that after marshes are reclaimed, radiation balance increases, both soil temperature at different depths and air temperature of various height near ground layer rise, and air humidity decreases obviously. Therefore, one should take the establishment of artificial ecosystem of growing paddy and reed and breeding fish as the main development direction of marshes, at the same time, protect some marshes in order to prevent the environment from getting dry, and maintain regional ecological balance.  相似文献   

9.
Rising sea levels threaten the sustainability of coastal wetlands around the globe. The ability of coastal marshes to maintain their position in the intertidal zone depends on the accumulation of both organic and inorganic materials, and vegetation is important in these processes. To study the effects of vegetation type on surface elevation change, we measured surface accretion and elevation change from 2011 to 2016 using rod surface elevation table and feldspar marker horizon method(RSET-MH) in two Phragmites and two Suaeda marshes in the Liaohe River Delta. The Phragmites marshes exhibited higher rates of surface accretion and elevation change than the Suaeda marshes. The two Phragmites marsh sites had average surface elevation change rates at 8.78 mm/yr and 9.26 mm/yr and surface accretion rates at 17.56 mm/yr and 17.88 mm/yr, respectively. At the same time, the two Suaeda marsh sites had average surface elevation change rates at 5.77 mm/yr and 5.91 mm/yr and surface accretion rates at 13.42 mm/yr and 14.38 mm/yr, respectively. The elevation change rates in both the Phragmites marshes and the Suaeda marshes in the Liaohe River Delta could keep pace and even continue to gain elevation relative to averaged sea level rise in the Bohai Sea reported by the 2016 State Oceanic Administration, People's Republic of China projection(2.4–5.5 mm/yr) in current situations. Our data suggest that vegetation is important in the accretionary processes and vegetation type could regulate the wetland surface elevation. However, the vulnerability of coastal wetlands in the Liaohe River Delta need further assessment considering the accelerated sea level rise, the high rate of subsidence, and the declining sediment delivery, especially for the Suaeda marshes.  相似文献   

10.
野鸭湖湿地自然保护区是北京最大的湿地自然保护区,也是唯一的湿地鸟类自然保护区,因此,选择野鸭湖研究城市湿地景观格局演变特征具有典型意义。以野鸭湖自然保护区为研究对象,分析了1999年、2004年、2009年和2014年4个时期野鸭湖湿地系统景观格局演变过程,并根据景观指数分析其动态变化趋势。研究结果表明:①野鸭湖湿地面积在1999~2004年间逐渐减少,之后逐年恢复,至2014年湿地面积总数已恢复到1999年的水平,但水体的面积仍缩减一半,主要恢复的是草甸湿地和疏林湿地。②野鸭湖湿地景观格局的变化特征主要表现为:景观破碎度增加,景观形状更加复杂,景观多样性和异质性增加而优势度降低。③野鸭湖湿地斑块类型呈现如下特征:耕地连片分布,耕地开垦力度减缓;草甸湿地成片增长且优势度逐渐明显,形状复杂;水体分布聚集,2014年出现恢复现象;疏林湿地面积不断增长,呈现破碎化现象;建筑用地面积也略微增长,但分布分散;滩涂湿地面积最小,形状简单。  相似文献   

11.
To evaluate the influence of wetland reclamation on vertical distribution of carbon and nitrogen in coastal wetland soils, we measured the soil organic carbon(SOC), soil total nitrogen(STN) and selected soil properties at five sampling plots(reed marsh, paddy field, corn field, forest land and oil-polluted wetland) in the Liaohe River estuary in September 2013. The results showed that reclamation significantly changed the contents of SOC and STN in the Liaohe River estuary(P 0.001). The SOC concentrations were in the order: oil-polluted wetland corn field paddy field forest land reed marsh, with mean values of 52.17, 13.14, 11.46, 6.44 and 6.16 g/kg, respectively. STN followed a similar order as SOC, with mean values of 1351.14, 741.04, 632.32, 496.17 and 390.90 mg/kg, respectively. Interaction of reclamation types and soil depth had significant effects on SOC and STN, while soil depth had significant effects on SOC, but not on STN. The contents of SOC and STN were negatively correlated with pH and redox potential(Eh) in reed marsh and corn field, while the SOC and STN in paddy field had positive correlations with electrical conductivity(EC). Dissolved organic carbon(DOC), ammonium nitrogen(NH_4~+-N) and nitrate nitrogen(NO_3~–-N) were also significantly changed by human activities. NH_4~+-N and NO_3~–-N increased to different degrees, and forest land had the highest NO_3~–-N concentration and lowest DOC concentration, which could have been caused by differences in soil aeration and fertilization. Overall, the results indicate that reed harvest increased soil carbon and nitrogen release in the Liaohe River Estuary, while oil pollution significantly increased the SOC and STN; however, these cannot be used as indicators of soil fertility and quality because of the serious oil pollution.  相似文献   

12.
The spatial distribution of soil physical properties is essential for modeling and understanding hydrological processes. In this study, the different spatial information (the conventional soil types map-based spatial information (STMB) versus refined spatial information map (RSIM)) of soil physical properties, including field capacity, soil porosity and saturated hydraulic conductivity are used respectively as input data for Water Flow Model for Lake Catchment (WATLAC) to determine their effectiveness in simulating hydrological processes and to expound the effects on model performance in terms of estimating groundwater recharge, soil evaporation, runoff generation as well as partitioning of surface and subsurface water flow. The results show that: 1) the simulated stream flow hydrographs based on the STMB and RSIM soil data reproduce the observed hydrographs well. There is no significant increase in model accuracy as more precise soil physical properties information being used, but WATLAC model using the RSIM soil data could predict more runoff volume and reduce the relative runoff depth errors; 2) the groundwater recharges have a consistent trend for both cases, while the STMB soil data tend to produce higher groundwater recharges than the RSIM soil data. In addition, the spatial distribution of annual groundwater recharge is significantly affected by the spatial distribution of soil physical properties; 3) the soil evaporation simulated using the STMB and RSIM soil data are similar to each other, and the spatial distribution patterns are also insensitive to the spatial information of soil physical properties; and 4) although the different spatial information of soil physical properties does not cause apparent difference in overall stream flow, the partitioning of surface and subsurface water flow is distinct. The implications of this study are that the refined spatial information of soil physical properties does not necessarily contribute to a more accurate prediction of stream flow, and the selection of appropriate soil physical property data needs to consider the scale of watersheds and the level of accuracy required.  相似文献   

13.
基于含油污水管道内输送液体温度高、无压和检测区域面层为硬化混凝土的特点,对某厂区含油污水铸铁管道地下渗漏问题,利用探地雷达方法进行了探测.分析表明,污染物在地层中的扩散形态、污染物与孔隙水的导电性和综合介电常数是影响探测结果的主要因素,而这些因素又受到土层孔隙度、饱和度和污染物与孔隙水的相互作用影响,从而改变了土壤污染...  相似文献   

14.
A field experiment was conducted in Jungar Banner, Inner Mongolia, China to study the effects of plant types on the physical structure and chemical properties of open-cast mining soils reclaimed for 15 years, and to analyze the triggering factors of the soil formation. Results indicate that plant types affect soil-forming process especially in the upper layer (0–20 cm), and the spatial structure of reclaimed plant is the main reason for variability of the soil-forming process. In the upper soil layer at the site reclaimed with mixed plants, the concentrations of soil organic matter (SOM) and soil organic carbon (SOC) are the highest, and they were significantly higher at the sites reclaimed with Leymus chinensis, Caragana sinica, which is mainly due to a large amount of litter fall and root exudation in herbages and shrubs. However, the concentrations of SOM and SOC in the soils at the reclaimed sites are quite low comparing with those in local primary soil, which indicates the importance of using organic amendments during the ecological restoration in the study area.  相似文献   

15.
Zoige Plateau wetlands are located in the northeastern corner of the Qinghai-Tibet Plateau.The landscape pattern evolution processes in the Zoige Plateau and their driving factors were identified by analyzing the dynamic changes in landscape modification and conversion and their dynamic rates of alpine wetlands over the past four decades.The results showed that the landscape conversion between wetlands and non-wetlands mainly occurred during the period from 1966 to 1986.The marsh wetland area converted from lake and river wetlands was larger because of swamping compared to other wetland landscapes.Meanwhile,the larger area of marsh wetlands was also converted to lake wetlands more than other types of wetlands.The modification processes mainly occurred among natural wetland landscapes in the first three periods.Obvious conversions were observed between wetland and nonwetland landscapes(i.e.,forestland,grassland,and other landscapes) in the Zoige Plateau.These natural wetland landscapes such as river,lake and marsh wetlands showed a net loss over the past four decades,whereas artificial wetland landscapes(i.e.,paddy field and reservoir and pond wetlands) showed a net decrease.The annual dynamic rate of the whole wetland landscape was 0.72%,in which the annual dynamic rate of river wetlands was the highest,followed by lake wetlands,while marsh wetlands had the lowest dynamic rate.The integrated landscape dynamic rate showed a decreasing trend in the first three periods.The changes in wetland landscape patterns were comprehensively controlled by natural factors and human activities,especially human activities play an important role in changing wetland landscape patterns.  相似文献   

16.
The wetlands on the Zoige Plateau have experienced serious degradation, with most of the original marsh being converted to marsh meadow or meadow. Based on the 3 wetland degradation stages, we determined the effects of wetland degradation on the structure and relative abundance of nitrogen-cycling (nitrogen-fixing, ammonia-oxidizing, and denitrifying) microbial communities in 3 soil types (intact wetland: marsh soil; early degrading wetland: marsh meadow soil; and degraded wetland: meadow soil) using 454-pyrosequencing. The structure and relative abundance of nitrogen-cycling microbial communities differed in the 3 soil types. Proteobacteria was the predominant phylum in most soil samples but the most abundant soil nitrogen-fixing and denitrifying microbial bacteria differed at the class, order, family, and genus levels among the 3 soil types. At the genus level, the majority of nitrogen-fixing bacterium sequences related to Bradyrhizobium were from marsh and marsh meadow soils; whereas those related to Geobacter originated from meadow soil. The majority of ammonia-oxidizing bacterium sequences related to Nitrosospira were from marsh (except for the 40-60 cm layer), marsh meadow and meadow soils; whereas those related to Candidatus Solibacter originated from 40-60 cm layer of marsh soil. The majority of denitrifying bacterium sequences related to Candidatus Solibacter and Anaeromyxobacter were from marsh and meadow soils; whereas those related to Herbaspirillum originated from meadow soil. The distribution of operational taxonomic units (OTUs) and species were correlated with soil type based upon Venn and Principal Coordinates Analysis (PCoA). Changes in soil type, caused by different water regimes were the most important factors influencing compositional changes in the nitrogen-fixing, ammonia-oxidizing, and denitrifying microbial communities.  相似文献   

17.
As an important indicator of the structural and functional stability of wetland landscapes, hydrological connectivity plays an important role in maintaining the stability of wetland ecosystems. Large-scale human activities have led to significant changes in the hydrological connectivity pattern of wetlands in Naoli River Basin since 1950 s. Combined with the availability of wetland habitat and the spreading capacity of aquatic birds, hydrological connectivity indices of marsh wetlands were calculated in the studied area, and the temporal and spatial changes were analyzed from 1950 s to 2015. The results indicate that:(1) the hydrological connectivity index of the marsh wetlands shows a growth trend with increasing distance threshold. All patches of marsh wetlands linked together when the distance threshold reached 35--40 km;(2) the optimal distance of hydrological connectivity is about 10 km for marsh wetlands of whole Naoli River Basin;(3) the total hydrological connectivity of marsh wetlands decreased in the Naoli River Basin from 1950 s to 2015. Although the hydrological connectivity index increased after 2005, the fragmentation of the landscape has not been improved. The analysis of the wetland hydrological connectivity can provide a scientific basis for the ecological restoration and protection of the wetland in the Naoli River Basin.  相似文献   

18.
1 INTRODUCTION The Ussuri / Wusuli River watershed is located in the southeast part of Heilongjiang Province of China, which joins remote regions of Russia. The watershed consists of approximately 26 000 000 ha, which is about two thirds of the watershed ecosystem in Russia, one  third in China. The Ussuri River forms part of the border between Russia and China, the shared border stretches more than 1100 km. Khanka/Xingkai Lake lies within both China and Russia. Its total area …  相似文献   

19.
《山地科学学报》2020,17(6):1398-1409
Soil microbial communities and enzyme activities play key roles in soil ecosystems. Both are sensitive to changes in environmental factors,including seasonal temperature, precipitation variations and soil properties. To understand the interactive mechanisms of seasonal changes that affect soil microbial communities and enzyme activities in a subtropical masson pine(Pinus massoniana) forest, we investigated the soil microbial community structure and enzyme activities to identify the effect of seasonal changes on the soil microbial community for two years in Jinyun Mountain National Nature Reserve, Chongqing, China. The soil microbial community structure was investigated using phospholipid fatty acids(PLFAs). The results indicated that a total of 36 different PLFAs were identified, and 16:0 was found in the highest proportions in the four seasons, moreover, the total PLFAs abundance were highest in spring and lowest in winter. Bacteria and actinomycetes were the dominant types in the study area. Seasonal changes also had a significant(P 0.05) influence on the soil enzyme activity. The maximum and minimum values of the invertase and catalase activities were observed in autumn and winter, respectively. However, the maximum and minimum values of the urease and phosphatase acid enzymatic activities were found in spring and winter, respectively. Canonical correspondence analysis(CCA) analysis revealed that the seasonal shifts in soil community composition and enzyme activities were relatively more sensitive to soil moisture and temperature, but the microbial community structure and enzyme activity were not correlated with soil pH in the study region. This study highlights how the seasonal variations affect the microbial community and function(enzyme activity)to better understand and predict microbial responses to future climate regimes in subtropical area.  相似文献   

20.
文章根据广西多年来油气勘探开发的最新成果 ,较全面地介绍和论述了广西境内陆地及海区新生界第三纪盆地、中—上古生代前陆盆地油气勘探开发现状与资源潜力 ,同时依据现代油气勘探地质理论并结合西部大开发的历史机遇 ,提出了广西面向新世纪油气资源勘探发展的战略指导思想、发展方向及发展层次 ,展望了广西油气勘探的发展前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号