首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the absence of eyewitness reports or clear sedimentary structures, it can be difficult to interpret tsunami deposits or reconstruct tsunami inundation patterns. The emplacement dynamics of two historical tsunami deposits were investigated at seven transects in Okains Bay, New Zealand, using a combined geospatial, geomagnetic and sedimentological approach. The tsunami deposits are present as layers of sand and silt intercalated between soils and become finer and thinner with distance inland. The deposits are attributed to the 1960 and possibly the 1868 tsunamis, based on radiometric dating and correlation with historical records. Measurements of Magnetic Fabric (MF: Anisotropy of Magnetic Susceptibility) and particle size were used to reconstruct the evolution of flow dynamics laterally and vertically. A combination of statistical methods, including spatial autocorrelation testing, Spearman's rank order correlation, Principal Component Analysis (PCA) and K‐means cluster analysis, was applied to examine relationships between MF parameters and sediment texture, and infer depositional hydrodynamics. Flow patterns deduced from MF show the estuary channel acted as a conduit for inundation, with flow commonly aligned sub‐perpendicular to the estuary bed. MF and sediment data suggest deposition occurred from settling during laminar flow. Evidence of both uprush and backwash deposition, as well as wave reflection from infrastructure, was found. Statistical analysis of data showed significant relationships between grain size parameters and MF parameters associated with flow speed and magnetic fabric type. PCA and cluster analysis differentiated samples into two primary hydrodynamic groups: (1) samples deposited from laminar flow; and (2) samples deposited close to the limit of inundation, which includes samples deposited further inland, those affected by flow convergence, and those in the upper part of tsunami deposits. This approach has potential as a tool for reconstructing hydrodynamic conditions for palaeotsunamis and by combining spatial and statistical analyses, large‐scale investigations can be more easily performed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Tsunami Sediment Characteristics at the Thai Andaman Coast   总被引:1,自引:0,他引:1  
This paper describes and summarizes the 2004 Indian Ocean tsunami sediment characteristics at the Thai Andaman coast. Field investigations have been made approximately 3 years after the 2004 Indian Ocean tsunami event. Seven transects have been examined at five locations. Sediment samples have been collected for grain-size analyses by wet-sieve method. Tsunami sediments are compared to three deposits from coastal sub-environments. The mean grain-size and standard deviation of deposits show that shoreface deposits are fine to very fine sand, poorly to moderately well sorted; swash zone deposits are coarse to fine sand, poorly to well sorted; berm/dune deposits are medium to fine sand, poorly to well sorted; and tsunami deposits are coarse to very fine sand, poorly to moderately well sorted. A plot of deposit mean grain-size versus sorting indicates that tsunami deposits are composed of shoreface deposits, swash zone deposits and berm/dune deposits as well. The tsunami sediment is a gray sand layer deposited with an erosional base on a pre-existing soil (rooted soil). The thickness of the tsunami sediment layer is variable. The best location for observation of the recent tsunami sediment is at about 50–200 m inland from the coastline. In most cases, the sediment layer is normally graded. In some cases, the sediment contains rip-up clasts of muddy soils and/or organic matter. The vertical variation of tsunami sediment texture shows that the mean grain-size is fining upward and landward. Break points of slope in a plot of standard deviation versus depth mark a break in turbulence associated with a transition to a lower or higher Reynolds number runup. This can be used to evaluate tsunami sediment main layer and tsunami sediment sub layers. The skewness of tsunami sediment indicates a grain size distribution with prominent finer-grain or coarse-grain particles. The kurtosis of tsunami sediment indicates grain-size distributions which are flat to peak distribution (or multi-modal to uni-modal distribution) upward. Generally, the major origins of tsunami sediment are swash zone and berm/dune zone sands where coarse to medium sands are the significant material at these locations. The minor origin of tsunami sediment is the shoreface where the significant materials are fine to very fine sands. However, for a coastal area where the shoreface slope is mild, the major origin of tsunami sediment is the shoreface. The interpretation of runup number from tsunami sediment characteristics gets three runups for the 2004 Indian Ocean tsunami at the Thai Andaman coast. It corresponds to field observations from local eyewitnesses. The 1st runup transported and deposited more coarse particles than the following runups. Overall, the pattern of onshore tsunami sediment transportation indicates erosion at swash zone and berm/dune zone, followed by dynamic equilibrium at an area behind the berm/dune zone and after that deposition at inland zone until the limit of sediment inundation. The total deposition is a major pattern in onshore tsunami sediment transportation at the deposition zone which the sediment must find in the direction of transport.  相似文献   

3.
We describe the detailed sedimentary characteristics of a tsunami deposit associated with the 2011 Tohoku‐oki tsunami in Hasunuma, a site on the Kujukuri coastal plain, Japan. The thick tsunami deposit was limited to within 350 m from the coastline whereas the inundation area extended about 1 km from the coastline. The tsunami deposit was sampled by excavation at 29 locations along three transects and studied using peels, soft‐X imaging and grain‐size analysis. The deposit covers the pre‐existing soil and reached a maximum measured thickness of 35 cm. It consists mainly of well‐sorted medium to fine sand. On the basis of sedimentary structures and changes in grain size, we divided the tsunami deposit into several sedimentary units, which may correspond to multiple inundation flows. The numbers of units and their sedimentary features vary among the three transects, despite the similar topography. This variation implies a considerable influence of local effects such as elevation, vegetation, microtopography, and distance from footpaths, on the tsunami‐related sedimentation.  相似文献   

4.
Measurements of thickness and grain size along flow‐parallel transects across onshore deposits of the 2004 Indian Ocean tsunami revealed macroscopic horizontal variations and provided new insights into tsunami sedimentation. The tsunami caused severe erosion of beaches, river mouths, and the shallow seafloor along the coast of southwestern Thailand and supplied sufficient sediment to deposit a kilometer‐wide blanket of sand on the land surface. The tsunami deposits generally fine landward with some fluctuations caused by local entrainment and settlement of sediments. Sediments of medium and fine sand are restricted to a few hundreds of meters inland from their source, whereas finer grained sediments were suspended longer and deposited 1 km or more inland. Although the thickness of the tsunami deposits is strongly influenced by local topography, they generally thin landward. In areas of low‐relief topography, the rate of landward thinning is exponential and reflects the dominance of sediment supply to nearshore areas over that to areas farther inland.  相似文献   

5.
Sediment deposited by the Tohoku tsunami of March 11, 2011 in the Southern Kurils (Kunashir, Shikotan, Zeleniy, Yuri, Tanfiliev islands) was radically different from sedimentation during local strong storms and from tsunamis with larger runup at the same location. Sediments from the 2011 Tohoku tsunami were surveyed in the field, immediately and 6 months after the event, and analyzed in the laboratory for sediment granulometry, benthos Foraminifa assemblages, and diatom algae. Run-up elevation and inundation distance were calculated from the wrackline (accumulations of driftwood, woody debris, grass, and seaweed) marking the distal edge of tsunami inundation. Run-up of the tsunami was 5 m at maximum, and 3–4 m on average. Maximum distance of inundation was recorded in river mouths (up to 630 m), but was generally in the range of 50–80 m. Although similar to the local strong storms in runup height, the tsunami generally did not erode the coast, nor leave a deposit. However, deposits uncharacteristic of tsunami, described as brown aleuropelitic (silty and clayey) mud rich in organic matter, were found in closed bays facing the South Kuril Strait. These closed bays were covered with sea ice at the time of tsunami. As the tsunami waves broke the ice, the ice floes enhanced the bottom erosion on shoals and destruction of low-lying coastal peatland even at modest ranges of runup. In the muddy tsunami deposits, silt comprised up to 64 % and clay up to 41.5 %. The Foraminifera assemblages displayed features characteristic of benthic microfauna in the near-shore zone. Deep-sea diatoms recovered from tsunami deposits in two closely situated bays, namely Krabovaya and Otradnaya bays, had different requirements for environmental temperature, suggesting these different diatoms were brought to the bays by the tsunami wave entraining various water masses when skirting the island from the north and from the south.  相似文献   

6.
We examined the geochemical characteristics and temporal changes of deposits associated with the 2011 Tohoku‐oki tsunami. Stable carbon isotope ratios, biomarkers, and water‐leachable ions were measured in a sandy tsunami deposit and associated soils sampled at Hasunuma, Kujukuri coastal plain, Japan, in 2011 and 2014. At this site, the 2011 tsunami formed a 10–30 cm ‐thick layer of very fine to medium sand. The tsunami deposit was organic‐poor, and no samples contained any detectable biomarkers of either terrigenous or marine origin. In the underlying soil, we identified hydrocarbons and sterols derived from terrestrial plants, but detected no biomarkers of marine origin. In the samples collected in 2011, concentrations of tsunami‐derived water‐leachable ions were highest in the soil immediately beneath the tsunami deposit and then decreased gradually with depth. Because of its finer texture and higher organic content, the soil has a higher water‐holding capacity than the sandy tsunami deposit. This distribution suggests that ions derived from the tsunami quickly penetrated the sand layer and became concentrated in the underlying soil. In the samples collected in 2014, concentrations of water‐leachable ions were very low in both soil and sand. We attribute the decrease in ion concentrations to post‐tsunami rainfall, seepage, and seasonal changes in groundwater level. Although water‐leachable ions derived from seawater were concentrated in the soil beneath the tsunami deposit following the tsunami inundation, they were not retained for more than a few years. To elucidate the behavior of geochemical characteristics associated with tsunamis, further research on organic‐rich muddy deposits (muddy tsunami deposits and soils beneath sandy tsunami deposits) as well as sandy tsunami deposits is required.  相似文献   

7.
The accumulation of data sets of past tsunamis is the most basic but reliable way to prepare for future tsunamis because the frequency of tsunami occurrence and their magnitude can be estimated by historical records of tsunamis. Investigation of tsunami deposits preserved in geological layers is an effective measure to understand ancient tsunamis that occurred before historical records began. However, the areas containing tsunami deposits can be narrower than the area of tsunami inundation, thus resulting in underestimation of the magnitude of past tsunamis. A field survey was conducted after the 2010 Chile tsunami and 2011 Japan tsunami to investigate the chemical properties of the tsunami-inundated soil to examine the applicability of tsunami inundation surveys considering water-soluble salts in soil. The soil and tsunami deposits collected in the tsunami-inundated areas are rich in water-soluble ions (Na+, Mg2+, Cl?, Br? and SO 4 2? ) compared with the samples collected in the non-inundated areas. The analytical result that the ratios of Na+, Mg2+, Br? and SO 4 2? to Cl? are nearly the same in the tsunami deposits and in the tsunami-inundated soil suggests that the deposition of these ions resulting from the tsunami inundation does not depend on whether or not tsunami deposits exist. Discriminant analysis of the tsunami-inundated areas using the ion contents shows the high applicability of these ions to the detection of tsunami inundation during periods when the amount of rainfall is limited. To examine the applicability of this method to palaeotsunamis, the continuous monitoring of water-soluble ions in tsunami-inundated soil is needed as a future study.  相似文献   

8.
The well-documented 1883 eruption of Krakatau volcano (Indonesia) offers an opportunity to couple the eruption’s history with the tsunami record. The aim of this paper is not to re-analyse the scenario for the 1883 eruption but to demonstrate that the study of tsunami deposits provides information for reconstructing past eruptions. Indeed, though the characteristics of volcanogenic tsunami deposits are similar to those of other tsunami deposits, they may include juvenile material (e.g. fresh pumice) or be interbedded with distal pyroclastic deposits (ash fall, surges), due to their simultaneity with the eruption. Five kinds of sedimentary and volcanic facies related to the 1883 events were identified along the coasts of Java and Sumatra: (1) bioclastic tsunami sands and (2) pumiceous tsunami sands, deposited respectively before and during the Plinian phase (26–27 August); (3) rounded pumice lapilli reworked by tsunami; (4) pumiceous ash fall deposits and (5) pyroclastic surge deposits (only in Sumatra). The stratigraphic record on the coasts of Java and Sumatra, which agrees particularly well with observations of the 1883 events, is tentatively linked to the proximal stratigraphy of the eruption.  相似文献   

9.
Erosion and Sedimentation from the 17 July, 1998 Papua New Guinea Tsunami   总被引:1,自引:0,他引:1  
— This paper describes erosion and sedimentation associated with the 17 July 1998 Papua New Guinea tsunami. Observed within two months of the tsunami, distinct deposits of a layer averaging 8-cm thick of gray sand rested on a brown muddy soil. In most cases the sand is normally graded, with more coarse sand near the base and fine sand at the top. In some cases the deposit contains rip-up clasts of muddy soil and in some locations it has a mud cap. Detailed measurements of coastal topography, tsunami flow height and direction indicators, and deposit thickness were made in the field, and samples of the deposit were collected for grain-size analysis in the laboratory. Four shore-normal transects were examined in detail to assess the shore-normal and along shore distribution of the tsunami deposit. Near the shoreline, the tsunami eroded approximately 10–25 cm of sand from the beach and berm. The sandy layer deposited by the tsunami began 50–150 m inland from the shoreline and extended across the coastal plain to within about 40 m of the limit of inundation; a total distance of up to 750 m from the beach. As much as 2/3 of the sand in the deposit originated from offshore. Across most of the coastal plain the deposit thickness and mean grain size varied little. In the along-shore direction the deposit thickness varied with the tsunami wave height; both largest near the entrance to Sissano Lagoon.  相似文献   

10.
Historic‐ and prehistoric‐tsunami sand deposits are used to independently establish runup records for tsunami hazard mitigation and modeled runup verification in Crescent City, California, located in the southern Cascadia Subduction Zone. Inundation from historic (1964) farfield tsunami (~5–6 m runup height) left sand sheet deposits (100–200 m width) in wetlands located behind a low beach ridge [3–4 m elevation of the National Geodetic Vertical Datum of 1988 (NAVD88)]. The most landward flooding lines (4·5–5 m elevation) in high‐gradient alluvial wetlands exceed the 1964 sand sheet records of inundation by 1–2 m in elevation. The most landward flooding in low‐gradient alluvial wetlands exceed the corresponding sand sheet record of inundation distance by 1000 m. Nevertheless, the sand sheet record is an important proxy for high‐velocity inundation. Sand sheet deposition from the 1964 historic tsunami closely corresponds to the landward extent of large debris transport and structural damage in the Crescent City waterfront. The sand sheet deposits provide a proxy for maximum hazard or ‘kill zone’ in the study area. Six paleotsunami sand sheets (0·3–3 ka) are recorded in the back‐ridge marshes in Crescent City, yielding a ~450 year mean recurrence interval for nearfield Cascadia tsunami. Two paleotsunami sand deposit records, likely correlated to Cascadia ruptures between 1·0 and 1·5 ka, are traced to 1·2 km distance and 9–10 m elevation, as adjusted for paleo‐sea level. The paleotsunami sand deposits demonstrate at least twice the runup height, and four times the inundation distance of the farfield 1964 tsunami sand sheet in the same marsh system. The preserved paleotsunami deposits in Crescent City are compared to the most landward flooding, as modeled by other investigators from a predicted Cascadia (~ Mw 9) rupture. The short geologic record (~1·5 ka) yields slightly lower runup records than those predicted for the modeled Mw 9 rupture scenario in the same marsh, but it generally verifies predicted maximum tsunami runup for use in the planning of emergency response and rapid evacuation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
This paper investigates the nature and processes of sedimentation of allogenic cave deposits in the high relief, everwet karsts of montane New Guinea. Under the high intensity rainfall regime, episodic mass movements in small karst catchments provide a wide range of sediment textures from clayey gravels to fine clays. These allogenic sediments are deposited into pools of water within the caves, giving sedimentary structures analogous to turbidites. Diamictons within the cave relate to episodic mudflows in the catchment. These deposits move as fluidized masses in a manner similar to some esker deposits. Cross-stratified sediments are formed by dumping of pulses of sediment laden water into deep pools. Extremely fine-grained clays and muds accrete parallel to underlying surfaces following flood pulses. These deposits represent the last phase of catchment instability, when a small amount of slopewash occurs. Catchment processes are dominated by solution and episodic mass movements. When the thick root mat which masks the ground is disrupted, some slopewash occurs but it is not a major component in catchment processes.  相似文献   

12.
Tsunami Deposits   总被引:1,自引:0,他引:1  
—Geological investigations of coastal sediments indicate that prehistoric tsunamis can be identified. Their characterisation has altered our knowledge of the past frequency and magnitude of tsunamis for different areas of the world. Yet there have been relatively few geological studies of modern tsunamis with virtually no direct observations of the processes associated with tsunami sediment transport and deposition. This paper discusses these issues and draws on the results of recent research to summarise our current knowledge on the nature of tsunami deposits.  相似文献   

13.
Daisuke  Sugawara  Koji  Minoura  Naoki  Nemoto  Shinji  Tsukawaki  Kazuhisa  Goto  Fumihiko  Imamura 《Island Arc》2009,18(3):513-525
Micropaleontological analysis of nearshore to offshore sediments recovered from the southwestern coast of Thailand was performed to clarify the submarine processes of sediment transport and deposition during the 2004 Indian Ocean tsunami. The distribution pattern of benthic foraminifers showed seaward migration after the tsunami event. Agglutinated foraminifers, which are characteristic of an intertidal brackish environment, were identified in the post-tsunami samples from foreshore to offshore zones. These suggest that sediments originally distributed in foreshore to nearshore zones were transported offshore due to the tsunami backwash. On the other hand, the distribution pattern of planktonic and benthic species living in offshore zones showed slight evidence of landward migration by the tsunami. This suggests that landward redistribution of sediments by the tsunami run-up did not occur in the offshore seafloor of the study area. Our results and a review of previous studies provide an interpretation of submarine sedimentation by tsunamis. It is possible that tsunami backwashes induce sediment flows that transport a large amount of coastal materials seaward. Thus, traces of paleotsunami backwashes can be identified in offshore sedimentary environments as the accumulation of allochthonous materials. This can be recognized as changes in benthic foraminiferal assemblages.  相似文献   

14.
This paper presents the results from an extensive field data collection effort following the December 26, 2004 earthquake and tsunami in Banda Aceh, Sumatra. The data were collected under the auspices of TSUNARISQUE, a joint French-Indonesian program dedicated to tsunami research and hazard mitigation, which has been active since before the 2004 event. In total, data from three months of field investigations are presented, which detail important aspects of the tsunami inundation dynamics in Banda Aceh. These include measurements of runup, tsunami wave heights, flow depths, flow directions, event chronology and building damage patterns. The result is a series of detailed inundation maps of the northern and western coasts of Sumatra including Banda Aceh and Lhok Nga. Among the more important findings, we obtained consistent accounts that approximately ten separate waves affected the region after the earthquake; this indicates a high-frequency component of the tsunami wave energy in the extreme near-field. The largest tsunami wave heights were on the order of 35 m with a maximum runup height of 51 m. This value is the highest runup value measured in human history for a seismically generated tsunami. In addition, our field investigations show a significant discontinuity in the tsunami wave heights and flow depths along a line approximately 3 km inland, which the authors interpret to be the location of the collapse of the main tsunami bore caused by sudden energy dissipation. The propagating bore looked like a breaking wave from the landward side although it has distinct characteristics. Patterns of building damage are related to the location of the propagating bore with overall less damage to buildings beyond the line where the bore collapsed. This data set was built to be of use to the tsunami community for the purposes of calibrating and improving existing tsunami inundation models, especially in the analysis of extreme near-field events.  相似文献   

15.
Onshore tsunami deposits resulting from the 1993 Southwest Hokkaido and 1983 Japan Sea earthquakes were described to evaluate the feasibility of tsunami deposits for inferring paleoseismic events along submarine faults. Tsunami deposits were divided into three types, based on their composition and aerial distribution: (A) deposits consisting only of floating materials, (B) locally distributed siliclastic deposits, and (C) widespread siliclastic deposits. The most widely distributed tsunami deposits consist of the first two types. Type C deposits are mostly limited to areas where the higher tsunami runup was observed. The scale of tsunami represented by vertical tsunami runup is an important factor controlling the volume of tsunami deposits. The thickest deposits, about 10 cm, occur behind coastal dunes. To produce thick siliclastic tsunami deposits, a suitable source area, such as sand bar or dune, must be available in addition to sufficient vertical tsunami runup. Estimation of the amounts of erosion and deposition indicates that tsunami deposits were derived from both onshore and shoreface regions. The composition and grain size of the tsunami deposits strongly reflect the nature of the sedimentary materials of their source area. Sedimentary structures of the tsunami deposits suggest both low and high flow régimes. Consequently, it seems very difficult to identify tsunami deposits based only on grain size distribution or sedimentary structure of a single site in ancient successions.  相似文献   

16.
This paper reports on the erosion, transport, and deposition processes associated with an overbank deposit formed by the flooding of the Abu River on July 28, 2013, in Yamaguchi City, Japan. At the study site, river flows overtopped the levee revetment upstream of a meander bend cutting it off and flowing back into the main channel downstream. In this sequential process, it deposited large amounts of sediments, ranging from mud to cobbles, on the floodplain. The surface of paddy fields adjacent to a railway line, located at the center of the affected floodplain, was severely eroded by the flood flows. Overbank deposits composed of both upstream finer sediments and eroded coarser terrestrial sediments are laid down in the affected area. Large amounts of pebbles and cobbles originating from the eroded terrestrial area formed a gravelly pile on top of the sand and gravel sediments derived from the river. This finding indicates that sands and gravels were deposited prior to the formation of the gravelly pile, probably before and during peak flood flows. An inverse grading structure is evident in the lower to middle part of these comparatively thick deposits, most likely due to differences in transport pattern between entrained terrestrial gravels and upstream finer sediments.  相似文献   

17.
Where should we take cores for palaeotsunami research? It is generally considered that local depressions with low energy environments such as wetlands are one of the best places. However, it is also recognized that the presence or absence of palaeotsunami deposits (and their relative thickness) is highly dependent upon subsoil microtopography. In the beach ridge system of Ishinomaki Plain, Japan, several palaeotsunami deposits linked to past Japan Trench earthquakes have been reported. However, the number of palaeotsunami deposits reported at individual sites varies considerably. This study used ground penetrating radar (GPR) combined with geological evidence to better understand the relationship between palaeotopography and palaeotsunami deposit characteristics. The subsurface topography of the ~3000–4000 bp beach ridge was reconstructed using GPR data coupled with core surveys of the underlying sediments. We noted that the number (and thickness) of the palaeotsunami deposits inferred from the cores was controlled by the palaeotopography. Namely, a larger number of events and thicker palaeotsunami deposits were observed in depressions in the subsurface microtopography. We noted a total of three palaeotsunami deposits dated to between 1700 and 3000 cal bp , but they were only observed together in 11% of the core sites. This result is important for tsunami risk assessments that use the sedimentary evidence of past events because we may well be underestimating the number of tsunamis that have occurred. We suggest that GPR is an efficient and invaluable tool to help researchers identify the most appropriate places to carry out geological fieldwork in order to provide a more comprehensive understanding of past tsunami activity. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
The Daeri Member, a Cretaceous volcanic–sedimentary succession, can be divided into lower, middle, and upper parts based on vertical changes in its lithologic characters. The lower Daeri Member is composed of siliciclastic deposits formed in a semi‐arid floodplain environment, which is overlain by the middle Daeri Member consisting mainly of andesite lava flow. After the emplacement of the andesite, activities of intrabasinal normal faults created accommodation on hanging wall blocks together with the development of intrabasinal topographic relief. The upper Daeri Member occurs only in hanging wall blocks and is composed of rhyolitic volcaniclastic sediments formed during an explosive volcanic eruption. Following the eruption, owing to semi‐arid climatic conditions and the destruction of vegetation, the eruptive materials were easily remobilized and deposited by episodic sediment gravity flows, resulting in deposition of the resedimented volcaniclastic deposits with sheet‐like geometry. Away from the intrabasinal normal faults, the resedimented volcaniclastic deposits show a decrease in grain size together with changes in inferred depositional processes from debris flows to hyperconcentrated flows and supercritical sheetfloods. This suggests that the resedimented volcaniclastic deposits were stacked on alluvial fan environments induced by intrabasinal topographic relief associated with normal fault activities. In addition, episodic movement of the faults gave rise to periodic fluctuation of the accommodation and an increase in gradient of the alluvial fan surface, resulting in the development of coarsening‐upward trends in the resedimented volcaniclastic deposits. The development of the alluvial fan and the coarsening‐upward trends indicate that dynamic tectonic subsidence and concomitant changes in the intrabasinal physiographic relief influenced the depositional processes and sizes of the transported volcaniclastic sediments of the upper Daeri Member. Thus, it is necessary to carefully observe tectonic signatures in volcaniclastic successions, particularly the syneruptive lithofacies, in order to reconstruct the tectonic and volcanic histories of receiving basins.  相似文献   

19.
Multiple‐layered tsunami deposits have been frequently reported from coastal stratigraphic sequences, but the formation processes of these layers remain uncertain. A terrestrial sandy deposit formed by the 2004 Indian Ocean Tsunami was investigated at Ban Nam Kem, southern Thailand. Four internal layers induced by two tsunami waves were identified in the tsunami deposit. Sedimentary structures indicated that two units were formed by run‐up currents caused by the tsunami and the other two units were deposited by the backwash flows. Graded bedding was common in the layers, but inverse grading was observed at limited intervals on the surveyed transects. The characteristics of the multiple‐layered tsunami deposit vary remarkably over a very short distance (<1 m) in response to the local topography. Remarkable asymmetries in thickness and grain‐size distribution are recognized between the run‐up and backwash flow deposits. On the basis of the interpretation of sedimentary structures, the formation process of the multiple‐layered tsunami deposit observed in this study can be explained in a schematic model as the modification of the ideal tsunami sequence by local erosion and the asymmetric hydraulic properties of tsunami waves, such as the maximum shear velocity and the heterogeneity of the flow velocity field.  相似文献   

20.
Earthquake and its resultant tsunami, as a kind of disaster events in geological history, may be recorded as event deposits of seismite and tsunamite. Typical characteristics of seismite and tsunamite, including seismo-fracture bed, synsedimentary microfracture, micro-corrugated lamination, molar tooth structure, hummocky bedding, occurs in Mesoproterozoic Dalongkou Formation of Kunyang Group in central Yunnan Province. Three types of sedimentary units have been recognized: seismite (unit-A, including limestone with molar tooth structure, seismic shattering rock, seismic corrugated rock, autoclastic breccia and intraclastic parabreccia), tsunamite (unit-B, intraclastic limestone with hummocky or parallel beddings) and background deposits (unit-C). Various stackings of these units construct three distinct sedimentary sequences: A-B-C, A-C and B-C. A-B-C represents an event sedimentary sequence of earthquake-tsunami-background deposits, A-C represents the sequence of earthquake and background deposits (no tsunami occurring), and B-C represents the sequence of tsunami and background deposits (far from the center of earthquake). As the central Yunnan Province was located in a tectonic setting of rift basin in Mesoproterozoic Era, the earthquake event deposits of the Dalongkou Formation are sedimentary response to tectonic activity of the rift basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号