首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I employ an ensemble of hydrodynamical simulations and the xspec mekal emission model to reproduce observable spectral and flux-weighted temperatures for 24 clusters. Each cluster is imaged at 16 points in its history, which allows the investigation of evolutionary effects on the mass–temperature relation. In the zero-redshift scaling relations, I find no evidence for a relationship between cluster temperature and formation epoch for those clusters that acquired 75 per cent of their final mass since a redshift of 0.6. This result holds for both observable and intrinsic intracluster medium temperatures, and implies that halo formation epochs are not an important variable in analysis of observable cluster temperature functions.  相似文献   

2.
3.
4.
In the 2dF Galaxy Redshift Survey, we study the properties of voids and of fainter galaxies within voids that are defined by brighter galaxies. Our results are compared with simulated galaxy catalogues from the Millennium simulation coupled with a semi-analytical galaxy formation recipe. We derive the void size distribution and discuss its dependence on the faint magnitude limit of the galaxies defining the voids. While voids among faint galaxies are typically smaller than those among bright galaxies, the ratio of the void sizes to the mean galaxy separation reaches larger values. This is well reproduced in the mock galaxy samples studied. We provide analytic fitting functions for the void size distribution. Furthermore, we study the galaxy population inside voids defined by galaxies with   B J− 5 log  h < −20  and diameter larger than  10  h −1 Mpc  . We find a clear bimodality of galaxies inside voids and in the average field but with different characteristics. The abundance of blue cloud galaxies inside voids is enhanced. There is an indication of a slight blueshift of the blue cloud. Furthermore, galaxies in void centres have slightly higher specific star formation rates as measured by the η parameter. We determine the radial distribution of the ratio of early- and late-type galaxies through the voids. We find and discuss some differences between observations and the Millennium catalogues.  相似文献   

5.
I discuss the effect of non-radial motions on the small-scale peculiar pairwise velocity dispersions (PVD) of galaxies in a cold dark matter (CDM) model and calculate the PVD for the SCDM model by means of the refined cosmic virial theorem (CVT), taking account of non-radial motions by means of the Del Popolo & Gambera model. I compare the results of the present model with the data from Davis & Peebles, the IRAS value at 1  h −1 Mpc of Fisher et al. and Marzke et al. I show that while the SCDM model disagrees with the observed values, as pointed out by several authors, taking account of non-radial motions produces smaller values for the PVD. At r ≤1  h −1 Mpc the result is in agreement with Bartlett & Blanchard. In the light of this last paper, the result may be also read as a strong dependence of the CVT prediction on the model chosen to describe the mass distribution around galaxies, suggesting that the CVT cannot be taken as a direct evidence for a low-density Universe. Similarly to what is shown by Del Popolo & Gambera and Del Popolo et al., the agreement of our model to the observational data is because of a scale-dependent bias induced by the presence of non-radial motions. As the assumptions on which CVT is based have been questioned by several authors, I also calculated the PVD using the redshift distortion in the redshift-space correlation function, ξ z( r p, π), and compared it with the PVD measured from the Las Campanas Redshift Survey by Jing et al. The result confirms that non-radial motions influence the PVD making them agree better with the observed data.  相似文献   

6.
Recent observations show a large concentration of galaxies at high redshift. At first sight, strong clustering of galaxies at high redshifts seems to be in contradiction with the models of structure formation. In this paper we show that such structures are a manifestation of the strong clustering of rare peaks in the density field. We compute the frequency of occurrence of such large concentrations of galaxies in some models of structure formation.  相似文献   

7.
The number density of rich galaxy clusters still provides the most robust way of normalizing the power spectrum of dark matter perturbations on scales relevant to large-scale structure. We revisit this constraint in the light of several recent developments: (1) the availability of well-defined samples of local clusters with relatively accurate X-ray temperatures; (2) new theoretical mass functions for dark matter haloes, which provide a good fit to large numerical simulations; (3) more accurate mass–temperature relations from larger catalogues of hydrodynamical simulations; (4) the requirement to consider closed as well as open and flat cosmologies to obtain full multiparameter likelihood constraints for CMB and SNe studies. We present a new sample of clusters drawn from the literature and use this sample to obtain improved results on σ 8, the normalization of the matter power spectrum on scales of 8  h −1 Mpc, as a function of the matter density and cosmological constant in a universe with general curvature. We discuss our differences with previous work, and the remaining major sources of uncertainty. Final results on the normalization, approximately independent of power spectrum shape, can be expressed as constraints on σ at an appropriate cluster normalization scale R Cl. We provide fitting formulas for R Cl and σ ( R Cl) for general cosmologies, as well as for σ 8 as a function of cosmology and shape parameter Γ. For flat models we find approximately σ 8≃(0.495−0.037+0.034M−0.60 for Γ=0.23, where the error bar is dominated by uncertainty in the mass–temperature relation.  相似文献   

8.
9.
We calculate the statistical clustering of Lyman-break galaxies predicted in a selection of currently fashionable structure formation scenarios. These models are all based on the cold dark matter model, but vary in the amount of dark matter, the initial perturbation spectrum, the background cosmology and the presence or absence of a cosmological constant term. If Lyman-break galaxies form as a result of hierarchical merging, the amplitude of clustering depends quite sensitively on the minimum halo mass that can host such a galaxy. Interpretation of the recent observations by Giavalisco et al. would therefore be considerably clarified by a direct determination of the relevant halo properties. For a typical halo mass around 1011  h −1 M⊙ the observations do not discriminate strongly between cosmological models, but if the appropriate mass is larger, say 1012  h −1 M⊙ (which seems likely on theoretical grounds), then the data strongly favour models with a low matter density.  相似文献   

10.
11.
We present measurements of the higher order clustering of red and blue galaxies as a function of scale and luminosity made from the two-degree field galaxy redshift survey (2dFGRS). We use a counts-in-cells analysis to estimate the volume-averaged correlation functions,     , as a function of scale up to the order of   p = 5  , and also the reduced void probability function. Hierarchical amplitudes are constructed using the estimates of the correlation functions:     . We find that (i) red galaxies display stronger clustering than blue galaxies at all orders measured; (ii) red galaxies show values of   S p   that are strongly dependent on luminosity whereas blue galaxies show no segregation in   S p   within the errors; this is remarkable given the segregation in the variance; (iii) the linear relative bias shows the opposite trend to the hierarchical amplitudes, with little segregation for the red sequence and some segregation for the blue; (iv) faint red galaxies deviate significantly from the 'universal' negative binomial reduced void probabilities followed by all other galaxy populations. Our results show that the characteristic colour of a galaxy population reveals a unique signature in its spatial distribution. Such signatures will hopefully further elucidate the physics responsible for shaping the cosmological evolution of galaxies.  相似文献   

12.
13.
Motivated by recent observational studies of the environment of   z ∼ 6  QSOs, we have used the Millennium Run (MR) simulations to construct a very large  (∼4°× 4°)  mock redshift survey of star-forming galaxies at   z ∼ 6  . We use this simulated survey to study the relation between density enhancements in the distribution of i 775-dropouts and Lyα emitters, and their relation to the most massive haloes and protocluster regions at   z ∼ 6  . Our simulation predicts significant variations in surface density across the sky with some voids and filaments extending over scales of 1°, much larger than probed by current surveys. Approximately one-third of all   z ∼ 6  haloes hosting i -dropouts brighter than   z = 26.5  mag  (≈ M *UV, z =6)  become part of   z = 0  galaxy clusters. i -dropouts associated with protocluster regions are found in regions where the surface density is enhanced on scales ranging from a few to several tens of arcminutes on the sky. We analyse two structures of i -dropouts and Lyα emitters observed with the Subaru Telescope and show that these structures must be the seeds of massive clusters in formation. In striking contrast, six   z ∼ 6  QSO fields observed with Hubble Space Telescope show no significant enhancements in their i 775-dropout number counts. With the present data, we cannot rule out the QSOs being hosted by the most massive haloes. However, neither can we confirm this widely used assumption. We conclude by giving detailed recommendations for the interpretation and planning of observations by current and future ground- and space-based instruments that will shed new light on questions related to the large-scale structure at   z ∼ 6  .  相似文献   

14.
We show how to decorrelate the (pre-whitened) power spectrum measured from a galaxy survey into a set of high-resolution uncorrelated band-powers. The treatment includes non-linearity, but not redshift distortions. Amongst the infinitely many possible decorrelation matrices, the square root of the Fisher matrix, or a scaled version thereof, offers a particularly good choice, in the sense that the band-power windows are narrow, approximately symmetric, and well-behaved in the presence of noise. We use this method to compute band-power windows for, and the information content of, the Sloan Digital Sky Survey, the Las Campanas Redshift Survey, and the IRAS 1.2-Jy Survey.  相似文献   

15.
16.
We study the power spectrum of galaxies in redshift space, with third-order perturbation theory to include corrections that are absent in linear theory. We assume a local bias for the galaxies: i.e., the galaxy density is sampled from some local function of the underlying mass distribution. We find that the effect of the non-linear bias in real space is to introduce two new features: first, there is a contribution to the power which is constant with wavenumber, whose nature we reveal as essentially a shot-noise term. In principle this contribution can mask the primordial power spectrum, and could limit the accuracy with which the latter might be measured on very large scales. Secondly, the effect of second- and third-order bias is to modify the effective bias (defined as the square root of the ratio of galaxy power spectrum to matter power spectrum). The effective bias is almost scale-independent over a wide range of scales. These general conclusions also hold in redshift space. In addition, we have investigated the distortion of the power spectrum by peculiar velocities, which may be used to constrain the density of the Universe. We look at the quadrupole-to-monopole ratio, and find that higher order terms can mimic linear theory bias, but the bias implied is neither the linear bias, nor the effective bias referred to above. We test the theory with biased N -body simulations, and find excellent agreement in both real and redshift space, providing the local biasing is applied on a scale whose fractional rms density fluctuations are < 0.5.  相似文献   

17.
18.
With the help of a statistical parameter derived from optical spectra, we show that the current star formation rate of a galaxy, falling into a cluster along a supercluster filament, is likely to undergo a sudden enhancement before the galaxy reaches the virial radius of the cluster. From a sample of 52 supercluster-scale filaments of galaxies joining a pair of rich clusters of galaxies within the two-degree Field Redshift Survey region, we find a significant enhancement of star formation, within a narrow range between ∼2 and  3  h −170 Mpc  of the centre of the cluster into which the galaxy is falling. This burst of star formation is almost exclusively seen in the fainter dwarf galaxies  ( M B ≥−20)  . The relative position of the peak does not depend on whether the galaxy is a member of a group or not, but non-group galaxies have on average a higher rate of star formation immediately before falling into a cluster. From the various trends, we conclude that the predominant process responsible for this rapid burst is the close interaction with other galaxies falling into the cluster along the same filament, if the interaction occurs before the gas reservoir of the galaxy gets stripped off due to the interaction with the intracluster medium.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号