首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
反距离加权(inverse distance weighting,IDW)是一种简单实用的插值方法。以全球电离层格网(global ionospheric map,GIM)产品为样本,考虑电离层总电子含量(total electron content,TEC)经纬度方向异性,引入经纬度方向异性调节因子,设计了包含等权在内的6种电离层距离计算方案,分析表明,电离层TEC与经度方向相关性高于纬度方向,不同电离层距离计算方案均能有效提高IDW插值精度。采用最优方案IDW插值分析长期插值精度,结果表明,电离层活动剧烈区域(南北纬度20°)连续12 a“两分两至”日前后全球电离层格网(global ionospheric map,GIM)产品插值,最优方案比普通IDW插值精度提升约25%;2014年太阳活动高年“两分两至”日GIM产品插值,地方时14 h后3~5 h电离层活动剧烈时,最优方案插值精度提升明显,插值均方根误差(root mean square,RMS)最大不超过4.0 TECU。  相似文献   

2.
为了分析与评估国际GNSS监测评估系统(iGMAS)全球电离层TEC格网产品精度,该文基于iGMAS及IGS各电离层分析中心发布的全球电离层TEC格网产品,进行了精度比较分析,结果表明:iGMAS与IGS、CODE、JPL、ESOC、UPC等IGS电离层工作组发布的全球电离层TEC格网产品,在全球、不同纬度带和欧洲等不同区域均表现出较高的一致性和强相关性,互差为0~2.0 TECU;JPL分析中心GIM的内符合精度约为2.5 TECU,iGMAS、IGS、CODE、ESOC和UPC等分析中心GIM的内符合精度均小于1.5 TECU;在2~8 TECU的精度范围内,iGMAS全球电离层TEC格网产品的精度总体与IGS、CODE、JPL、ESOC、UPC等IGS电离层工作组的精度相当。  相似文献   

3.
网格划分是电离层层析的重要一环,也是影响层析精度的重要因素之一。然而,现有研究更多地关注如何通过反演算法及模型来提高精度,较少关注格网划分这一手段。本文拟从格网划分这一角度来对电离层层析方法进行优化。先利用若干试验研究了格网分辨率与层像精度的关系,然后在此结论基础上提出了一种通过降低非感兴趣区域格网分辨率来提高感兴趣区域层像精度的方法。为验证本文方法的可行性,分别开展了两个不同的层析试验。两个试验同时表明:相对于传统的格网划分方法,本文方法在均方根误差、平均绝对误差、68%及95%百分位、标准差等多个精度指标上均具有优势。根据本文试验,利用本文方法均方根误差及平均绝对误差可望分别减少15%至40%。  相似文献   

4.
为提高区域电离层模型和导航定位服务的精度,利用河北省连续运行参考站系统(CORS) 6个基准站的GPS卫星观测数据进行区域电离层建模和接收机差分码偏差(DCB)估计,并引入中国科学院(CAS)发布的电离层产品内插得到的垂直总电子含量(VTEC)进行区域电离层模型精度验证。实验结果表明,估计的单日GPS卫星DCB与产品值精度相当,偏差控制在0.5 ns以内;河北省CORS站GPS系统接收机DCB稳定性较好,5 d的标准偏差均小于0.1 ns;利用河北省CORS建立的区域电离层TEC在地磁平静期与磁暴期均与CAS产品值具有较高的一致性,TEC偏差控制在2 TECU以内。河北省区域电离层模型能有效监测电离层TEC在不同地磁状态下的时空变化,提高区域导航定位服务水平。  相似文献   

5.
卫星测高、DORIS(Doppler Orbitography and Radio-positioning Integrated by Satellite)和无线电掩星等星基观测技术具有不受地表形态限制的全球观测范围,能够作为地基全球导航卫星系统(Global Navigation Satellite System,GNSS)电离层反演在海洋区域的补充观测。然而星基观测电离层高度范围仅限于低轨卫星轨道面以下,无法覆盖整个电离层高度范围,因此不能直接用于与地基GNSS反演的电离层总电子含量(total electron content, TEC)格网融合。针对DORIS观测反演的相对斜向总电子含量(slant total electron content,STEC),以全球电离层TEC格网(global ionosphere maps total electron content, GIM TEC)为基准,采用整体偏移方法将两者归算至统一观测尺度上;而卫星测高和GNSS掩星电离层产品则选取国际GNSS服务(International GNSS Service, IGS)组织提供的全球电离层TEC格网中均方根(root mean square, RMS)误差小于2 TECU的区域作为基准,采用2014年1月份低轨卫星观测值反演的TEC和GIM TEC数据进行对比,统计Jason-2和COSMIC(Constellation Observing System for Meteorology, Ionosphere and Climate)卫星反演的TEC与GIM TEC之间基于比例因子的函数关系,并将不同的观测手段归算到统一的观测尺度上,对比归算前后的TEC产品差异。并根据反演产品附近的全球定位系统(Global Positioning System,GPS)电离层穿刺点数量进行分类,验证星基电离层反演精度的有效性。对比结果显示,卫星测高、DORIS和掩星3种星基技术归算后的TEC产品与GIM TEC的匹配度在地基观测密集区域均能达到较好的符合度,而在地基观测不足区域符合度存在明显差异。考虑星基观测精度不受地域限制的特性,可认为该海洋区域的差异是由于星基观测在海洋区域观测精度比地基GNSS观测精度更高,星基观测反演的电离层TEC产品可作为海洋地区地基电离层TEC观测的有效补充。  相似文献   

6.
在卫星导航定位中,电离层延迟误差是主要误差源之一,其影响可以到达数米乃至数百米,有必要进行高精度的电离层模型研究,尤其是区域的高精度电离层模型建立.本文基于北斗地基增强系统114基准站三系统 (GPS/BDS/GLONASS) 双频的观测数据进行电离层提取计算,并结合多项式函数模型进行建模,得出中国区域内的电离层模型,并采用直接跟CODG的电离层产品比较和间接通过单频精密单点定位方式来评估模型精度.结果表明,基于北斗地基增强系统建立的中国区域电离层模型精度高于CODG发布的电离层格网模型且更符合中国区域电离层的真实空间分布.   相似文献   

7.
针对全球电离层延迟建模中传统串行处理方法效率低等问题,研究了基于全球分布的IGS跟踪站和iGMAS跟踪站观测数据实现全球电离层建模并行解算的基本方法、流程及策略。在Bernese软件基础上研制了一套iGMAS全球电离层延迟建模软件。为了验证并行解算方法的正确性和计算效率,利用全球200个左右IGS跟踪站和6个iGMAS跟踪站2014-08-20-2014-09-06共7周的观测数据,解算了快速电离层TEC格网。与IGS,CODE以及ESA最终电离层格网比较,结果表明:基于该方法解算的快速电离层TEC格网,与CODE,ESA以及IGS最终电离层TEC格网的互差,统计不同纬度带内偏差的均方根误差,全球范围内偏差的均方根误差均在1.5~2.5 TECu之间,南北半球高纬度地区在0.5~1.5 TECu之间,所有地区均优于5 TECu,整体精度与IGS,CODE以及ESA最终电离层TEC格网精度产品相当。  相似文献   

8.
根据中国地形分布难以建立格网模型的特点,为了解决我国区域电离层精确改正的问题,提出了广域电离层改正三角分区的方法。选择中国地震电离层监测实验网中纬度地区的5个监测站,建立覆盖我国中纬度整个网络服务区域的三角分区电离层模型,并利用8个基准站的数据对该方法的修正精度进行评估,结果表明,对于三角分区内部区域,该方法可以修正到90%左右;对于三角分区外部几百公里以内的区域该方法也能达到80%以上的修正精度,同时利用原始GNSS数据对美国、加拿大等4个IGS跟踪站进行补充实验也验证了该方法的可行性,在保证模型精度的同时较格网法更加简单、有效,对广域电离层延迟误差的修正具有重要的参考价值。  相似文献   

9.
为全面分析和评估Galileo电离层全球建模和卫星差分码偏差的精度,该文选取全球364个GNSS观测站,利用15阶球谐函数构造高精度的电离层格网模型,并以CODE发布的电离层产品为基准,将其与该文建立的电离层网格模型按照不同纬度进行验证和分析。此外,该文将计算的差分码偏差与现有偏差产品进行对比分析。实验结果表明,Galileo建立的电离层模型在平静日状态下与CODE的平均偏差在2 TECU以内、均方根误差在3 TECU以内;在活跃日状态下的结果与CODE的平均偏差在3 TECU以内、RMSE在4 TECU以内。解算的卫星差分码偏差与现有偏差产品进行对比分析的结果表明,平静日的偏差在0.1 ns以内,活跃日的偏差在0.2 ns以内,两种状态下的STD均在0.1 ns以内。所以,采用Galileo进行电离层建模可以精确表现电离层。  相似文献   

10.
单频用户主要采用全球导航卫星系统(global navigation satellite system,GNSS)广播电离层模型来修正电离层延迟,GPS、Galileo和BDS-2均播发广播电离层参数。BDS-3试验卫星也播发了应用于全球电离层延迟修正的BDGIM(BeiDou global ionospheric delay correction model)模型参数。以国际GNSS服务(International GNSS Service,IGS) GIM (global ionosphere maps)产品和全球140余个GNSS观测站GPS双频观测量为基准,从全球范围、不同纬度、不同区域等系统分析了GPS、Galileo和BDS-3的全球广播电离层模型改正精度,并与IGS预报电离层产品(IGS P1和IGS P2)进行比较。分析认为,IGS P1和IGS P2产品的改正精度总体最优,BDGIM参数优于Gal NeQuick和GPS K8。对于BDS-3新发布的BDGIM参数,分析认为,在全球范围的改正精度(均方根)约为3.58 TECU,改正率约77.2%,在全球不同区域的改正精度相当。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号