首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
无人机巡检是目前电力部门主推的一种巡检方式,招弧角是一种重要的电网设备、但其呈现细长的几何形状特征,其测量需要优于1 cm空间分辨率的影像.为了从无人机获取的高分辨率影像上提取招弧角,该文提出了基于随机森林、集成学习、全连接条件随机场的无人机影像分类和招弧角提取方法.首先,提取了影像的12个光谱和纹理特征.接着,建立训练样本库,训练了多个独立的随机森林分类器、并形成随机森林集成模型进行影像分类.最后,利用全连接条件随机场优化分类结果.该文采用5000张无人机影像进行了实验.实验表明,该文提出方法的整体分类精度达到85.5%,招弧角识别的正确率为98.3%、完整率为74.3%,表明该方法具有潜在的工程应用价值.  相似文献   

2.
融合可变形卷积与条件随机场的遥感影像语义分割方法   总被引:1,自引:1,他引:1  
左宗成  张文  张东映 《测绘学报》2019,48(6):718-726
当前,深度卷积神经网络在遥感影像语义分割领域取得了长足的发展.标准的卷积神经网络由于卷积核的几何形状是固定的,导致对几何变换的模拟能力受到限制.本文引入一种可变形卷积来增强卷积网络对空间变换的适应能力.由于神经网络架构中使用了池化层操作,这会导致在输出层未能充分地对局部对象进行准确的分割.为了克服这种特性,本文将神经网络输出层的粗糙预测分割结果通过全连接的条件随机场来进行处理,以此来提高对影像细节的分割能力.本文方法易于采用标准的反向传播算法进行端到端的方式训练.ISPRS数据集上的测试试验结果表明本文方法可以有效地克服遥感影像中分割对象的复杂结构对分割结果的影响,并在该数据集上获得了当前最好的语义分割结果.  相似文献   

3.
在深度学习理论模型的基础上,提出了基于卷积神经网络的云检测方法。以GF-2号卫星影像为数据源,选取广西壮族自治区贵港市为实验区,提取了不同下垫面的云,验证了该方法的有效性。  相似文献   

4.
水体的自动提取对于洪水监测、水资源管理等方面有着重要意义。本文提出了SegNet_CRF语义分割方法,可从遥感影像上自动提取水体。首先,在SegNet编码器和解码器之间植入空洞卷积特征提取块,融合不同尺度的特征,然后在分类后处理中引入条件随机场,对提取结果进行精细化处理,最后与FCN、经典SegNet网络水体提取结果对比,结果表明,SegNet_CRF网络结构在Recall、Precision以及F1-score指标上都有所提高,水体提取结果更加准确完整,抑制噪声能力更强。SegNet_CRF网络可有效地实现水体提取任务。  相似文献   

5.
由于国产高分辨率卫星遥感影像波段少、光谱范围窄,导致传统云检测方法精度低。本文提出了基于卷积神经网络的高分辨率遥感影像云检测方法。首先采用主成分分析非监督预训练网络结构,获取待测遥感影像云特征;然后采用超像素分割方法进行影像分割;最后将检测结果影像块拼接,完成整幅影像云检测。试验效果评价表明,基于卷积神经网络的高分辨率遥感影像云检测方法不受光谱范围限制,云检测精度高,误判较少,适合国产高分辨遥感影像云检测。  相似文献   

6.
7.
王宇  杨艺  王宝山  王田  卜旭辉  王传云 《遥感学报》2019,23(6):1194-1208
高分辨率遥感图像建筑物分割的实质是构建一个输入图像到分割结果之间的高维强非线性映射模型。然而,建筑物可能遍布整幅遥感图像,则在语义分割过程中,当前像素点可能与非邻域的像素点存在直接关系。为了更加精确地逼近建筑物分割的真实映射模型,克服道路、建筑物错层和阴影的影响,提高分割精度,本文以深度残差神经网络为基础,构建Encoder-Decoder的深度学习架构,自动提取建筑物的特征,学习建立高维强非线性分割模型;同时,通过条件随机场的成对势函数调节当前像素点与其他像素点之间的关联关系,从而构成全连接条件随机场对Encoder-Decoder的分割结果进行调节,提升分割精度。在全连接条件随机场的计算过程中,采用循环神经网络的运行机制来完成均值场的计算,这将条件随机场与深度神经网络有机融合,实现了Encoder-Decoder和全连接条件随机场参数的同步训练。实验结果表明,本文采用的深度神经网络条件随机场方法能有效克服道路、建筑物错层和阴影的影响,提升高分辨率遥感图像中建筑物的分割精度;同时,在一定范围内对多分辨率遥感图像具有较好的泛化能力。  相似文献   

8.
善于捕捉空间信息的条件随机场模型虽然已被应用于高光谱遥感图像分类,但条件随机场的性能受到了标注训练样本数量的制约。为解决上述问题,本文提出了一种半监督条件随机场模型用于高光谱遥感图像分类。在该模型中,首先,利用空间-光谱拉普拉斯支持向量机定义关联势函数,以利用未标注样本中包含的信息获取样本类别概率;然后,在交互势函数中嵌入未标注的空间邻域样本,以充分利用空间信息实现对样本类别概率的修正;最后,采用分布式学习策略和平均场完成半监督条件随机场的训练和推断。本文在两个公开的高光谱数据集(Indian Pines数据集,Pavia University数据集)上进行了实验。实验结果表明Kappa系数提升3.94%。  相似文献   

9.
无人机、卫星等获取的高分辨率遥感影像中不可避免地存在云层遮挡问题,这对遥感影像生产和应用造成一定程度的干扰.本文针对RGB彩色遥感影像中存在的云层遮挡问题,提出了一种基于RGB彩色遥感影像的快速云检测方法.首先根据RGB三通道的光谱信息生成粗云图,引入景观格局指数,然后排除地面非云层高亮图斑误差,利用原始影像作为引导,...  相似文献   

10.
云和云阴影检测是Landsat影像产品生产的重要环节.近年来,深度学习极大提升了Landsat影像云检测的精度,但是深度卷积神经网络模型的训练依赖庞大规模的标注图像,需要人工标注出大量图像上每个像素是否为云或云阴影.人工标注成本高、耗时长,不利于训练出具有实用价值的模型.受弱监督学习启发,文章提出一种新的云和云阴影检测...  相似文献   

11.
深度学习的半监督遥感图像检索   总被引:1,自引:0,他引:1  
张洪群  刘雪莹  杨森  李宇 《遥感学报》2017,21(3):406-414
遥感图像数据的海量性、多样性和复杂性等特点对遥感图像检索的速度和精度提出了更高的要求,其中特征提取是影响遥感图像检索效果的关键。本文方法首先对遥感图像进行预处理,然后基于稀疏自动编码的方法在大量未标注的遥感图像上进行特征学习得到特征字典,基于卷积神经网络的思想,使用训练出来的特征字典对遥感图像进行卷积和池化得到每幅图像的特征图;接下来使用特征图训练Softmax分类器;最后对待检索图像分类,在同一类别中计算特征间的距离,进而实现遥感图像的检索。实验结果表明,该方法能够有效提高遥感图像检索的速度和准确度。  相似文献   

12.
基于深度学习的高分辨率遥感影像光伏用地提取   总被引:1,自引:0,他引:1  
近年来我国光伏产业发展迅猛,随之也产生了诸多用地问题,通过遥感技术提取光伏用地,监测光伏用地分布与用地状况,对于光伏产业健康发展具有重要意义。本文提出一套基于深度学习方法的高分辨率遥感影像光伏用地自动提取方法,该方法利用GF-1等卫星影像和Google Earth影像构建光伏用地样本,基于ResNeSt-50作为骨干网络的DeepLab V3+模型实现深度学习语义分割算法,并结合计算机图形学方法对深度学习结果进行后处理,实现了面向高分辨率遥感影像较通用的且高精度的光伏用地自动提取。该方法的深度学习模型验证精度mIoU值达0.899 2,提取结果具有良好的边缘精度且具有广泛的适用性,支持GF-1、ZY-3、GF-6、GF-2和Google Earth等影像。  相似文献   

13.
基于改进U-Net网络的遥感图像云检测   总被引:1,自引:0,他引:1  
为了解决U-Net模型应用于云检测时对碎云和薄云存在漏检的问题,本文提出了一种改进的U-Net网络模型,并应用于FY-4A数据进行云检测。首先,利用国家气象卫星中心提供的云检测产品生成二分类云标签;其次,将U-Net模型的编码器与残差模块相结合,使得网络参数共享,并避免深层网络的退化问题;最后,在解码器中融入密集连接模块,将浅层特征与深层特征进行连接,便于获取新的特征,并提高特征使用率。试验结果表明,模型在测试集上的IOU值和Dice系数分别为91.5%和95.2%,可以很好地检测出薄云及大量碎云,效果明显优于U-Net模型。  相似文献   

14.
肖春姣  李宇  张洪群  陈俊 《遥感学报》2020,24(3):254-264
为了充分利用遥感图像中丰富的细节信息和上下文信息,提高图像语义分割精度,提出一种深度融合网结合条件随机场模型的遥感图像语义分割方法。方法在全卷积神经网络框架中增加反卷积融合结构,搭建深度融合DFN (Deep Fusion Networks)网络,通过深层网络自动获取多尺度特征,避免人工设计和选择特征,提高模型的泛化能力;同时借助反卷积融合结构,利用多尺度信息,将浅层细节信息和深层语义信息相融合,提高模型的处理精度。由全连接条件随机场引入空间上下文信息,更好地定位边界,得到最终的语义分割结果。在遥感图像数据集上的实验结果显示:(1)随着不同尺度细节信息的融入,结果的边缘轮廓越精确、接近标签图像;(2)增加了空间上下文信息后,语义分割结果边缘更细化、准确,精度更高。实验表明,该方法可以有效提高遥感图像语义分割的精度,改善结果的过平滑现象。  相似文献   

15.
针对传统遥感影像质量评价中云层覆盖量无法定量评价的问题,文章提出采用利用边缘信息的阈值分割结合数学形态学方法来提取遥感影像云层覆盖范围。利用边缘信息的阈值分割方法能够有效利用影像自身信息来改善分割结果,再结合形态学方法,进而能消除道路、房屋等大部分噪声信息,最终实现遥感影像上不同特征云层覆盖范围的自动提取。基于浙江全省高分辨率遥感影像的实验结果表明:该方法能够快速有效地识别出遥感影像上云层覆盖范围,研究结果对于遥感影像云层覆盖的自动评价具有参考价值。  相似文献   

16.
提出了一种基于深度学习技术的遥感分类方法,它能有效解决中分辨率影像在分类过程中出现的像元混分问题。研究选用2016年5月12日武汉市Landsat 7 ETM+遥感影像,基于GoogleNet模型中的Inception V3网络结构,借助迁移学习方法,构建出遥感分类模型,实现了对武汉市主城区4类典型地物(不透水层、植被、水体和其他用地)的自动分类提取,并将分类结果与传统最大似然分类(ML)结果进行了对比分析。研究表明:基于深度学习方法的遥感影像总体分类精度高达88.33%,Kappa系数为0.834 2,明显优于传统ML方法总体分类精度83%和Kappa系数0.755 0,而且有效抑制了地物在分类过程中出现的像元混分现象。  相似文献   

17.
深度学习在遥感影像分类与识别中的研究进展综述   总被引:5,自引:0,他引:5  
王斌  范冬林 《测绘通报》2019,(2):99-102,136
深度学习一直是机器学习和人工智能研究的热门主题,特别是将深度学习这一深层网络学习算法和遥感影像分类与识别联合起来,使得传统训练算法的局部最小性得以解决。本文首先简要介绍了遥感影像分类与识别算法的发展和经典算法的局限性,其次介绍了深度学习的几种主流算法并分析它们在遥感影像分类与识别处理方面的应用现状,最后对未来深度学习应用于遥感识别与分类趋势进行了展望。  相似文献   

18.
黄亮  於雪琴  姚丙秀  杨泽楠 《测绘科学》2019,44(11):189-194
针对像素级变化检测方法对高空间分辨率遥感影像进行变化检测时存在检测结果过于细碎、错检和漏检过多等问题,该文提出一种结合简单线性迭代聚类(SLIC)和主成分分析(PCA)的对象级遥感影像变化检测方法。该方法首先采用SLIC算法分别对两期遥感影像进行分割得到超像素并标记颜色;然后采用PCA法对分割标记图进行降维并采用差值运算方法对两期分割标记图进行处理得到差异图;最后采用OTSU法对差异图进行二值分割得到最终的变化检测结果。为了验证实验结果,选取两组多时相遥感影像作为实验数据。实验结果表明,该方法得到的变化检测精度分别达到95.96%和91.9%,是一种可行的变化检测方法。  相似文献   

19.
公路路面质量的好坏对行车安全性、舒适性、经济性有重要的影响,因此路面状况的监测对于公路交通的健康发展具有重要意义。遥感技术作为一种新兴的数据采集手段,具有图像覆盖范围大、时效性强、信息客观现实、可重复使用、便于计算机分析等优势,为解决大范围的路面监测问题提供了强有力的支持。本文综述了现有基于遥感技术的道路路面状况监测方法,对其中存在的问题进行了分析和探讨。遥感技术在路面状况监测中具有广泛的应用前景,部分技术已经成熟并在公路养护作业中广泛使用,例如路面监测管理系统、探地雷达等;但是仍有部分技术还存在着鲁棒性差、精度较低等问题,还需要进一步的研究探索,如路面光谱分析、基于机载和星载的路面状况遥感监测应用的适用性等。本文最后给出了一种基于多端元混合像元分解模型的沥青路面老化状况监测与评估方法的研究实例。实验结果证明该方法可有效区分沥青公路路面混合像元中不同老化状况的沥青路面,为大范围路面老化状况监测提供了一种技术途径。  相似文献   

20.
改进Fisher判别分类的遥感影像变化检测   总被引:1,自引:0,他引:1  
陈科  张保明  谢明霞 《测绘科学》2010,35(4):160-162,96
Fisher判别分类的好坏关键在于训练样本集选取的精度和在降维过程中样本特征信息的损失程度,基于此问题,本文根据不同时相同一地区的遥感影像的差值影像中各像素本身的灰度值及其邻域平均灰度值特征获得其一维和二维直方图,针对差值影像无噪和带噪两种情况,根据直方图信息选取Fisher判别分析所需的训练样本,同时为了尽可能降低判别分析过程中有用信息的损失,将所得到的原训练样本集进行非线性变换,使其映射到高维空间中,利用映射后的训练样本求得Fisher判别规则。实验结果表明:与基于原训练样本的Fisher判别分类和基于寻找更多的样本特征的Fisher判别分类方法生成结果相比,在差值影像无噪和带噪情况下,本文提出的方法具有更好的变化检测精度和抗噪性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号