首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
华北平原区地温梯度与基底构造形态的关系   总被引:8,自引:0,他引:8       下载免费PDF全文
本文根据部分实测温度资料和有限单元法的数值模拟计算结果,研究了华北平原区地温梯度和地表热流值与基底构造形态的关系,分析了盖层相对厚度、基岩侧界面倾角以及不同岩石热导率比值对地温梯度和地表热流分布图式的影响,并讨论了地壳浅部热流的折射和再分配问题。在此基础上,提出了华北平原区地温梯度和热流值基底构造形态的相关直线校正法,即根据不同构造部位上钻孔的实测地温梯度和盖层相对厚度的相关直线推算区域平均地温梯度和具代表性区域热流值的方法。  相似文献   

2.
Heat flow values were calculated from direct measurements of temperature and thermal conductivity at thirteen sites in the Arkansas-Missouri Ozark Plateau region. These thirteen values are augmented by 101 estimates of heat flow, based on thermal conductivity measurements and temperature gradients extrapolated from bottom-hole temperatures. The regional heat flow profile ranges from 9 mW m−2 to over 80 mW m−2, but at least two distinct thermal regimes have been identified. Seven new heat flow determinations are combined with three previously published values for the St. Francois Mountains (SFM), a Precambrian exposure of granitic and rhyolitic basement rocks, average 47 mW m−2. Radioactive heat production of 76 samples of the exposed rocks in the SFM averages 2.4 μW m−2 and a typical continental basement contribution of 14 mW m−2 is implied. Conversely, the sedimentary rock sequence of the plateau is characterized by an anomalously low heat flow, averaging approximately 27 mW m−2. Groundwater transmissivity values that are based on data from 153 wells in deep regional aquifers demonstrate an inverse relationship to the observed heat flow patterns. The areas of high transmissivity that correspond to areas of low total heat flux suggest that the non-conservative vertical heat flow within the Ozark sedimentary sequence can be attributed to the effects of groundwater flow.  相似文献   

3.
The Southern Alps mountain chain, New Zealand, has formed as a consequence of late Cenozoic collision of the continental parts of the Pacific and Australia plates. Fission track analysis has yielded estimates of the amount, age of initiation, and rate of late Cenozoic rock uplift for 82 surface samples taken from transects across the Southern Alps. The mean surface, summit and valley elevations in the vicinity of each of the rock sample sites have also been measured. Regression of the geomorphic variables on the uplift variables has been used to establish quantitative relationships between uplift and geomorphology. There are strong and consistent linear associations between uplift and the elevations of the mean surface, summits and valleys. The preferred regression models have uniform slope but varying elevation response between transects. Substitution of space for time has allowed the evolution of landforms to be studied. To the east of the Main Divide, elevation and relief are proportional to, and closely related to, the age of initiation of rock uplift (‘uplift age’) and the amount of rock uplift (r2 > 0·8). Mean surface uplift was delayed for ~2 Ma after the start of rock uplift, a result of the stripping of a soft cover rock succession that, prior to rock uplift, overlaid the harder greywacke basement. Inter-transect variations in regression response and x-intercept are inferred, therefore, to reflect the variable preuplift thickness of cover rocks. However, the regular regression slope for the transects reflects the consistent nature of the interaction between uplift and the erodibility of greywacke basement. Uplift of the mean surface proceeded at 0·4 km/km and 0·4 km/Ma of rock uplift, while the rock uplift rate was 0·8 km/Ma. Summit elevations have increased at a rate of 0·6 km/Ma and valley elevations have increased at 0·2 km/Ma. Regression lines relating mean surface, summit and valley elevations to rock uplift and uplift age diverge from common intercepts; it is concluded, therefore, that the mountains east of the Main Divide have continued to increase in elevation and relief and change in form over time since the start of mean surface uplift. Mountain elevation has little relationship with late Cenozoic mean rock uplift rates of 0·8–1·0 km/Ma or inferred contemporary rock uplift rates (r2 ~ 0·3). In contrast, to the west of the Main Divide, elevation is shown to be closely related to rock uplift rate (r2 > 0·3). In contrast, to the west of the Main Divide, elevation is shown to be closely related to rock uplift rate (r2 > 0·8). Transects with higher rock uplift rates support higher topography. Landforms are therefore in a stable equilibrium with rock uplift rate, and the landscape contains no residual evidence of the total amount of rock uplift, or the age of uplift. Lithological variation appears to have no relationship with elevation.  相似文献   

4.
准噶尔盆地热流及地温场特征   总被引:26,自引:5,他引:21  
利用准噶尔盆地 1 96口井的温度资料及 90块岩石样品热导率的测定 ,计算了 35个大地热流数据 ,编制了盆地不同深度现今地温等值线图 .研究结果表明 ,准噶尔盆地现今为低地温、低大地热流的冷盆 ,盆地的现今地温梯度平均为 2 1 2℃ /km ,大地热流密度平均为42 3mW/m2 .热流的分布表现为隆起高、坳陷低的特征 .影响地温场的主要因素包括盆地的深部结构、盆地演化、盆地基底构造形态、地下水活动和沉积层的放射性生热等 .  相似文献   

5.
Uplift and the accompanying reduction in overburden result in anomalously high velocity in the uplifted rock unit relative to its current depth. The present work utilizes the non‐uniqueness of the parameters of instantaneous velocity versus depth functions as an effective tool for uplift studies. The linear function with its two parameters, V0 and k, is a very simple function and is used as the illustrative vehicle. In the parameter space, i.e. in a plot where one axis represents V0 and the other axis represents k, non‐uniqueness can be represented by contours of equal goodness‐of‐fit values between the observed data and the fitted function. The contour delimiting a region of equivalent solutions in the parameter space is called a ‘solution trough’. Uplift corresponds to a rotation of the solution trough in the parameter space. It is shown that, in terms of relative depth changes, there are five possible configurations (five cases) of uplift in a given area (the mobile location) relative to another area (the reference location). The cases depend on whether the uplifted location had attained a (pre‐uplift) maximum depth of burial that was greater than, similar to, or smaller than the maximum depth of burial at the reference location. Interpretation of the relationships between the solution troughs corresponding to the different locations makes it possible to establish which of the five cases applies to the uplifted location and to estimate the amount of uplift that the unit had undergone at that location. The difficulty in determining the reduction in velocity due to decompaction resulting from uplift is a main source of uncertainty in the estimate of the amount of uplift. This is a common problem with all velocity‐based methods of uplift estimation. To help around this difficulty, the present work proposes a first‐order approximation method for estimating the effect of decompaction on velocity in an uplifted area.  相似文献   

6.
The cooling of a magmatic intrusion is simulated by a simple model of a non-homogeneous earth, with thermal properties depending on temperature, in which heat transfer is assumed to take place by conduction only. The mathematical problem consists in solving a non-linear partial differential equation with continuity conditions on temperature and heat flux imposed at the contacts between different rocks. This has been done numerically by a finite difference method. The model is then adopted as “reality” against which a number of commonly used approximations are tested. It is found that the effect of latent heat liberation can be reasonably taken into account by attributing an effective initial temperature to the magma (errors within 20°C for t > 105 years, when the temperature of the magma is still as high as 600°C); the effective specific heat approximation does not work as well. The dependence of thermal conductivity and specific heat on temperature may be eliminated by maintaining the errors within 30°C for t < 5 × 105 years. The assumption that magma and country rocks have the same thermal properties allows an estimate of the temperature field in the host rocks with errors of 50°C at most. The assumption that all rocks have the same constant conductivity yields results that are far from “reality” (errors of 100–200°C even at shallow depth).  相似文献   

7.
Temperature data from deep petroleum exploration wells and thermal conductivity estimates based on net rock analysis data have been used to make terrestrial heat flow estimates along two profiles across the sedimentary strata of the Mackenzie Delta, northern Yukon, and offshore Beaufort Sea regions.Both profiles exhibit low heat flow values that range from 34 mWm–2 to 58 mWm–2, and little change occurs over large distances in the continental part of the area. Low heat flow values (<40 mWm–2) occur in the Beaufort-Mackenzie Basin and Rapid Depression, both of which are areas of thick successions of Cretacecus and Tertiary clastic sedimentary strata. High heat flow values of almost 80 mWm–2 occur to the south in the Taiga Nahoni Foldbelt and values as high as 60 mWm–2 are indicated along the Aklavik Arch Complex, northeast of Aklavik.The regional variations of effective thermal conductivity are insufficient to account for the heat flow variations along the profiles, and so these may indicate deep radiogenic or other heat sources.  相似文献   

8.
A regional terrane map of the New Jersey Coastal Plain basement was constructed using seismic, drilling, gravity and magnetic data. The Brompton-Cameron and Central Maine terranes were coalesced as one volcanic island arc terrane before obducting onto Laurentian, Grenville age, continental crust in the Taconian orogeny [Rankin, D.W., 1994. Continental margin of the eastern United States: past and present. In: Speed, R.C., (Ed.), Phanerozoic Evolution of North American Continent-Ocean Transitions. DNAG Continent-Ocean Transect Volume. Geological Society of America, Boulder, Colorado, pp. 129–218]. Volcanic island-arc rocks of the Avalon terrane are in contact with Central Maine terrane rocks in southern Connecticut where the latter are overthrust onto the Brompton-Cameron terrane, which is thrust over Laurentian basement. Similarities of these allochthonous island arc terranes (Brompton-Cameron, Central Maine, Avalon) in lithology, fauna and age suggest that they are faulted segments of the margin of one major late Precambrian to early Paleozoic, high latitude peri-Gondwana island arc designated as “Avalonia”, which collided with Laurentia in the early to middle Paleozoic. The Brompton Cameron, Central Maine, and Avalon terranes are projected as the basement under the eastern New Jersey Coastal Plain based on drill core samples of metamorphic rocks of active margin/magmatic arc origin. A seismic reflection profile across the New York Bight traces the gentle dipping (approximately 20 degrees) Cameron's Line Taconian suture southeast beneath allochthonous Avalon and other terranes to a 4 sec TWTT depth (approximately 9 km) where the Avalonian rocks are over Laurentian crust. Gentle up-plunge (approximately 5 degrees) projections to the southwest bring the Laurentian Grenville age basement and the drift-stage early Paleozoic cover rocks to windows in Burlington Co. at approximately 1 km depth and Cape May Co. at approximately 2 km depths. The antiformal Shellburne Falls and Chester domes and Chain Lakes-Pelham dome-Bronson Hill structural trends, and the synformal Connecticut Valley-Gaspe structural trend can be traced southwest into the New Jersey Coastal Plain basement. A Mesozoic rift basin, the “Sandy Hook basin”, and associated eastern boundary fault is identified, based upon gravity modeling, in the vicinity of Sandy Hook, New Jersey. The thickness of the rift-basin sedimentary rocks contained within the “Sandy Hook basin” is approximately 4.7 km, with the basin extending offshore to the east of the New Jersey coast. Gravity modeling indicates a deep rift basin and the magnetic data indicates a shallow magnetic basement caused by magnetic diabase sills and/or basalt flows contained within the rift-basin sedimentary rocks. The igneous sills and/or flows may be the eastward continuation of the Watchung and Palisades bodies.  相似文献   

9.
Recent seismic and tectonic activity in Rabaul Caldera, Papua New Guinea, suggests that magma is accumulating at a shallow depth beneath this partially submerged structure and that a new volcano may be developing. Changes in onshore elevation since 1971 (as much as 2 m on south Matupit Island) indicate that rapid and large-scale uplifts have occurred on the seafloor near the center of the caldera. The frequency of seismic events within the caldera has also increased during this period. Earthquake locations define an elliptical ring surrounding the center of this uplift within the caldera.A marine geophysical survey in 1982 by the U.S. Geological Survey's R/V “S.P. Lee” in Rabaul Caldera shows the development of a bulge in the seafloor near the center of the caldera. High-resolution seismic reflection profiles show that this bulge consists of two domal uplifts bounded and separated by two major north-south-trending fault zones. Deformed sediments overlie these zones; a prominent slump flanks the area of the bulge.Five major acoustic units were identified in the seismic reflection profiles: an acoustic basement and four sedimentary units consisting of irregularly layered, cross-layered, contorted, and well-layered sequences. The acoustic basement is probably composed of crystalline volcanic rocks, and the layered acoustic units are probably sediments, primarily ash deposited in different environments. The cross-layered, irregularly layered, and contorted units appear to have been deposited in a dynamic environment subjected to strong currents, seismicity, and/or mass wasting, while the well-layered units were deposited in a low-energy environment. Locally, well-layered sequences interfinger with the other sedimentary units, indicating a transitional environment that alternated between high-energy and low-energy depositional processes.A submarine channel cuts most of the acoustic units and appears to be the conduit for sediment transport out of the caldera; it occupies an older buried channel north of the caldera that is presently being exhumed. In the south, active erosion of well-layered sediments is taking place. What are believed to be several young volcanic cones also disrupt the depositional layers.We conclude that the bulge in the seafloor and the associated fault zones are a result of emplacement of magma at a shallow depth. Contorted sediment and slumps adjacent to the bulge are probably the result of uplift and seismic activity. The pattern of seismicity appears to reflect increased magma pressure at depth beneath the caldera floor. This activity may eventually lead to an eruption.  相似文献   

10.
Gravity and magnetic data for the volcanic island of Ischia, Naples, Italy, have been analyzed and interpreted in light of recent geological and volcanological data to define a model of the island's shallow and deep structures. From the interpretation of the gravity data it appears that the shallow structures consist of pyroclastic material (p=2.0 g/cm3). Within these pyroclastics there are domes and lava flows of higher density and eruptive centres filled with lower density material. The basement is a “horst” with the shallowest depth at about 1.0 km, south of the centre of the island, if we assign a density contrast of 0.5 g/cm3 relative to the above pyroclastics.Interpretation of magnetic data measured at 725 stations showed that the basement derived from the gravity interpretation is magnetized. Moreover, this basement is less magnetized on the western side of Ischia which may be caused by the anomalous thermal state of the area, as indicated by surface fumaroles, hot springs etc. and temperature measurements in deep drillings.  相似文献   

11.
Systematic analysis of major and minor elements in groundwaters from springs and wells on the slopes of Mt. Etna in 1995–1998 provides a detailed geochemical mapping of the aquifer of the volcano and of the interactions between magmatic gas, water bodies and their host rocks. Strong spatial correlations between the largest anomalies in pCO2 (pH and alkalinity) K, Rb, Mg, Ca and Sr suggest a dominating control by magmatic gas (CO2) and consequent basalt leaching by acidified waters of the shallow (meteoric) Etnean aquifer. Most groundwaters displaying this magmatic-type interaction discharge within active faulted zones on the S–SW and E lower flanks of the volcanic pile, but also in a newly recognised area on the northern flank, possibly tracking a main N–S volcano-tectonic structure. In the same time, the spatial distribution of T°C, TDS, Na, Li, Cl and B allows us to identify the existence of a deeper thermal brine with high salinity, high content of B, Cl and gases (CO2, H2S, CH4) and low K/Na ratio, which is likely hosted in the sedimentary basement. This hot brine reaches the surface only at the periphery of the volcano near the Village of Paternò, where it gives rise to mud volcanoes called “Salinelle di Paternò”. However, the contribution of similar brines to shallower groundwaters is also detected in other sectors to the W (Bronte, Maletto), SW (Adrano) and SE (Acireale), suggesting its possible widespread occurrence beneath Etna. This thermal brine is also closely associated with hydrocarbon fields all around the volcano and its rise, generally masked by the high outflow of the shallow aquifer, may be driven by the ascent of mixed sedimentary–magmatic gases through the main faults cutting the sedimentary basement.  相似文献   

12.
The usefulness of large‐scale, low‐relief, high‐level landscapes as markers of uplift events has become a subject of disagreement among geomorphologists. We argue that the formation of low‐relief surfaces over areas of large extent and cutting across bedrock of different age and resistance must have been guided by distinct base levels. In the absence of other options the most likely base level is sea level. We have analysed West Greenland landscapes in a recent study by combining the cooling history from apatite fission‐track analysis (AFTA) data with the denudation history from landscape analysis and the stratigraphic record. An important difference between our approach and that of classical geomorphology is that we now have the ability to document when thick sections of rocks have been deposited and then removed. The present‐day high‐level plateau in West Greenland is the remnant of a planation surface that was formed by denudation that lasted c. 20 million years during which up to 1 km of cover was removed after maximum burial at the Eocene–Oligocene transition. Here we present additional AFTA data to show that the planation surface is the end‐product of Cenozoic denudation even in basement areas and argue that Phanerozoic sediments – most likely of Cretaceous–Palaeogene age – must have been present prior to denudation. The planation surface was offset by reactivated faults and uplifted to present‐day altitudes of up to 2 km. The uplift occurred in two late Neogene phases that caused incision of valleys below the planation surface and their subsequent uplift. We therefore find that the elevated and deeply dissected plateau is evidence of episodic post‐rift uplift that took place millions of years after cessation of sea‐floor spreading west of Greenland. We suggest that other margins with similar morphology may also be characterized by episodic post‐rift uplift unrelated to the processes of rifting and continental separation, rather than being permanently uplifted since the time of rifting, as is commonly assumed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Thermal gradients have been calculated and heat flow estimates made for 34 petroleum exploration wells along four regional profiles crossing the Mesozoic-Cenozoic Beaufort-Mackenzie Basin of northern Canada. The geothermal gradients vary from 22 mKm–1 to 44 mKm–1. Four sets of possible thermal conductivity values were used to calculate a range of heat flow values for each well. Generally low heat flow is observed in wells within the deeper portions of the basin and higher heat flow values occur in wells along the Aklavik Arch Complex which forms the southeastern margin of the basin.The contribution to heat flow by heat generation below the Mesozoic-Cenozoic basin fill sediments has been considered. The heat flow contribution from sub-Mesozoic sedimentary strata and underlying basement is highest along the basin-bounding Aklavik Arch Complex. The decrease in heat flow from below the basin fill sediments toward the basin depocenter may be related to basinward crustal thinning and corresponding reductions in intra-crustal radiogenic heat production.  相似文献   

14.
Temperatures have been measured in nine boreholes (ranging from 400 to 900 m in depth) in the Jharia Gondwana sedimentary basin of the Indian shield. About two hundred thermal conductivity determinations have been made on core samples from these holes. Temperature profiles, Bullard plots and heat flow profiles of these holes indicate different types of disturbances in the shallow geothermal regime, attributable principally to groundwater movement. Heat flow in the region of the “anticlinal high” is about 0.4 HFU higher than the heat flow in the main synclinal region of the basin. The possible sources for this variation are regional groundwater movement and upwelling of thermal waters through a deep-seated fault/fracture system. The heat flow of 1.9 HFU characterizing the main synclinal region, taken as the regional value for the basin as a whole, has been related to the heat generation of the Precambrian basement rocks. A plot of heat flow vs. heat generation falls in line with three plots for the Precambrian complexes of the Indian shield, indicating the absence of a thermal anomaly due to deeper crustal conditions underneath this basin.  相似文献   

15.
There is a significant increase in terrestrial heat flow with depth in the Hinton-Edson area of the deep part of the western Canadian sedimentary basin in Alberta. This is especially true near the Rocky Mountain foothills which is an area of high relief, high hydraulic head and regional water recharge. Gravity-imposed downward movement of meteoric water through the thick sedimentary strata with velocities as low as 10–10 m/s to 0.5 × 10–9 m/s may cause an increase of heat flow with depth. Such disturbance of heat flow with depth on a regional scale in the sedimentary strata means that it is not possible to determine the background conductive steady-state heat flow associated with crustal or upper mantle heat sources in such an area from measurement of conductive heat flow in the part of the sedimentary column where water movement occurs. This is because the convective portion cannot be determined, particularly when measurements are made in only part of the regional hydrodynamic system of the basin.  相似文献   

16.
利用中国大陆东南缘四条北西向人工地震测深剖面的初至Pg波走时,使用有限差分层析成像方法反演剖面基底速度结构,并通过初始模型选取、射线数分布、走时拟合等手段分析结果的可靠度.研究结果表明,剖面表层速度比华北克拉通的地表速度高,闽东火山断拗带地表速度普遍高于西侧的闽西南坳陷带.相邻构造带的分界线两侧均有明显的速度横向变化,剖面东段的闽东火山断拗带内的东南沿海一带,速度变化较大,地层的褶皱变形要强于西段.基底埋深自西向东呈逐渐变浅的趋势,剖面东段的闽东火山断拗带基底起伏剧烈,基底深度与闽西南坳陷带相比较浅,与闽西北隆起带相比较深.西段的闽西北隆起带基底变化较为平缓,基底深度相对较浅;闽西南坳陷带基底深度明显加深,在龙岩新泉盆地内最深接近4 km.基底形态的起伏变化揭示出东南缘基底是坳陷与隆起并存的构造特征,与研究区近代的地质构造特征相吻合.邵武—河源、政和—大埔和长乐—诏安断裂带都切割基底,其中,政和—大埔断裂4 km深度下方有比较明显的低速异常带,结合本文以及现有的研究结果,进一步确认政和—大埔断裂是不同断块构造单元的分界.  相似文献   

17.
Terrestrialheatflowdensityistheamountofheatperunitareatransferringfromtheearthinteriortosurface,whichisanexteriorcharacteristicofthethermalandgeodynamicprocessesoccurringindeepmantle[1].Heatflow,asthemostdirectmannerofthermalprocessindeepearthandembodyingabundantinformationofgeology,geophysicsandgeodynamics,isasyntheticallythermalindexandplaysaveryimportantroleinstudyingnotonlytheactivityofcrust,thermalstructureofcrustanduppermantle,aswellasrheologicalstructureoflithosphere,butalsotheevaluation…  相似文献   

18.
The Latera field (Vulsini volcanic complex, Latium, Italy) is one of the geothermal areas of the peri-Tyrrhenian belt along which a regional, high thermal anomaly has been detected. So far nine deep wells have been drilled within the Latera caldera and four of them have been productive. The geothermal reservoir is located within the fractured carbonatic rocks of the Tuscan nappe; the overlying volcanic units, sealed by hydrothermal minerals (mainly calcite and anhydrite), act as an impervious cover.The fluid produced by the wells comes from a deep aquifer (about 1000–1500 m depth) which at present is not connected with the shallow aquifer in the volcanoclastic units. Fluid temperatures range between 200 and 230°C; in-hole temperatures as high as 343°C at 2775 m depth have been measured in dry wells.The study of the newly formed mineral assemblages from both volcanic and sedimentary units as sampled from the geothermal wells can be used to reconstruct the thermal evolution of the geothermal field. The intrusion of a syenitic melt, up to a depth of about 2000 m, dated 0.86 Ma, represents the major thermal event for the units in the area and is assumed to represent the first step in the geothermal evolution of the Latera system.The above mentioned newly formed mineral assemblages can be divided into three groups: (a) “contact-metasomatic”: calcite, anhydrite, diopsidic pyroxene, grossularitic garnet, phlogopite, wollastonite or monticellite; (b) “high-temperature hydrothermal”: calcite, anhydrite, K-feldspar, vesuvianite, melanitic garnet, tourmaline, amphibole, epidote, sulphides; (c) “low-temperature hydrothermal”: calcite, anhydrite, K-feldspar, clay minerals, sulphides. Group (a) minerals are now relics. Part of (b) and all of (c) group are still in equilibrium with the existing conditions in different parts of the geothermal system.Thermodynamic calculations on the observed mineral assemblages permitted estimates of the P, T conditions and gas fugacities.  相似文献   

19.
We review some analytical techniques that use underground thermal data as tracers of groundwater flow. These techniques allow the evaluation of the Darcy velocity in shallow aquifers of mid-low permeability and the evaluation of heat gain/loss by conduction in deeper aquifers. Examples of application are then given for the Acqui Terme hydrothermal system, located in the Tertiary Piedmont Basin (northwestern Italy). The analysis of borehole temperatures allowed the inference of the hydraulic features of the sedimentary cover of the hydrothermal system. The results show the presence of a relatively weak flow, with upward and horizontal components, only in conglomerates occurring at the base of the marly impermeable cover. The analysis of the heat transported in the deep parts of the hydrothermal system was approached by splitting the water path into different sections, each with given shape, slope and hydraulic properties. The recharge area is situated in the upland, south of the discharge area. Meteoric water initially descends and then flows horizontally within the fractured metamorphic basement of the basin, heating by conduction. Finally, from a reservoir positioned at intermediate depths, hot water reaches rapidly the surface through a sub-vertical fault. This scheme of deep water flow is constrained by the regional surface heat flow and the local geothermal gradient, and it is consistent with data of rock–water equilibrium temperature.  相似文献   

20.
中国陆域磁性基底深度及其特征   总被引:5,自引:2,他引:3       下载免费PDF全文
前寒武纪变质基底的起伏变化特征和沉积盖层的厚度变化对研究地质构造、能源和资源勘探具有重要意义.而前寒武纪变质基底与沉积盖层之间通常存在一定的磁性差异,这就为利用航磁资料研究磁性基底深度提供了地球物理条件.本文集合了中国国土资源航空物探遥感中心30多年来编制的中国陆域30多个盆地和地区的磁性基底深度图以及补算的部分地区磁性基底深度,经过统一坐标系、统一比例尺之后编制了1/100万比例尺的中国陆域磁性基底深度图(成图比例尺为1/250万).研究结果表明,以E105°线为界,我国西部地区沉积坳陷区盖层厚度大,集中分布在塔里木盆地、准噶尔盆地、柴达木盆地和西藏地区;东部地区沉积坳陷区盖层厚度整体上相对较薄,主要分布在松辽盆地、二连盆地、鄂尔多斯盆地、华北南部盆地、四川盆地、南黄海—苏北盆地等,但最厚处在四川盆地的西南部和鄂尔多斯盆地西缘.这些研究成果展现了我国前寒武纪变质基底和具有一定规模的岩浆岩侵入岩体的深度变化特征,同时反映了沉积盖层的厚度和赋存现状,可直观了解各种类型的沉积盆地和沉积坳陷区的深度和范围,为寻找基底之上油气藏提供了直接依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号