首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Population explosion and its many associated effects (e.g. urbanization, water pollution, deforestation) have already caused enormous stress on the world’s fresh water resources and, in turn, environment, health, and economy. According to latest World Health Organization estimates, about 900 million people still lack access to safe drinking water, about 2.5 billion people lack access to proper sanitation, millions of people die every year from water-related disasters and diseases, and economic losses in the order of billions of dollars occur due to water-related disasters. With the global climate change anticipated to have threatening consequences on our water resources and environment both at the global level and at local/regional levels (e.g. increases in the number and magnitude of floods and droughts, increases in sea levels), a general assessment is that the future state of our water resources will be a lot worse than it is now. The facts that over 300 rivers around the world are being shared by two or more nation states and that there are already numerous conflicts in the planning, development, and management of water resources in these basins further complicate matters for future water resources planning. In view of these, any sincere effort towards proper management of our future water resources and resolving potential future water-related conflicts will need to overcome many challenges. These challenges are both biophysical science-related and human science-related. The biophysical science challenges include: identification of the actual causes of climate change, development of global climate models (GCMs) that can adequately incorporate these causes to generate dependable future climate projections at larger scales, formulation of appropriate techniques to downscale the GCM outputs to local conditions for hydrologic predictions, and reliable estimation of the associated uncertainties in all these. The human science challenges have social, political, economic, and environmental facets that often act in an interconnected manner; proper ‘communication’ of (or lack thereof) our climate-water ‘scientific’ research activities to fellow scientists and engineers, policy makers, economists, industrialists, farmers, and the public at large crucially contributes to these challenges. The present study is intended to review the current state of our water resources and the climate change problem and to detail the challenges in dealing with the potential impacts of climate change on our water resources.  相似文献   

2.
The Climate impact studies in hydrology often rely on climate change information at fine spatial resolution. However, general circulation models (GCMs), which are among the most advanced tools for estimating future climate change scenarios, operate on a coarse scale. Therefore the output from a GCM has to be downscaled to obtain the information relevant to hydrologic studies. In this paper, a support vector machine (SVM) approach is proposed for statistical downscaling of precipitation at monthly time scale. The effectiveness of this approach is illustrated through its application to meteorological sub-divisions (MSDs) in India. First, climate variables affecting spatio-temporal variation of precipitation at each MSD in India are identified. Following this, the data pertaining to the identified climate variables (predictors) at each MSD are classified using cluster analysis to form two groups, representing wet and dry seasons. For each MSD, SVM- based downscaling model (DM) is developed for season(s) with significant rainfall using principal components extracted from the predictors as input and the contemporaneous precipitation observed at the MSD as an output. The proposed DM is shown to be superior to conventional downscaling using multi-layer back-propagation artificial neural networks. Subsequently, the SVM-based DM is applied to future climate predictions from the second generation Coupled Global Climate Model (CGCM2) to obtain future projections of precipitation for the MSDs. The results are then analyzed to assess the impact of climate change on precipitation over India. It is shown that SVMs provide a promising alternative to conventional artificial neural networks for statistical downscaling, and are suitable for conducting climate impact studies.  相似文献   

3.
Abstract

Climate change will likely have severe effects on water shortages, flood disasters and the deterioration of aquatic systems. In this study, the hydrological response to climate change was assessed in the Wei River basin (WRB), China. The statistical downscaling method (SDSM) was used to downscale regional climate change scenarios on the basis of the outputs of three general circulation models (GCMs) and two emissions scenarios. Driven by these scenarios, the Soil and Water Assessment Tool (SWAT) was set up, calibrated and validated to assess the impact of climate change on hydrological processes of the WRB. The results showed that the average annual runoff in the periods 2046–2065 and 2081–2100 would increase by 12.4% and 45%, respectively, relative to the baseline period 1961–2008. Low flows would be much lower, while high flows would be much higher, which means there would be more extreme events of droughts and floods. The results exhibited consistency in the spatial distribution of runoff change under most scenarios, with decreased runoff in the upstream regions, and increases in the mid- and lower reaches of the WRB.
Editor Z.W. Kundzewicz; Associate editor D. Yang  相似文献   

4.
Future climate projections of Global Climate Models (GCMs) under different emission scenarios are usually used for developing climate change mitigation and adaptation strategies. However, the existing GCMs have only limited ability to simulate the complex and local climate features, such as precipitation. Furthermore, the outputs provided by GCMs are too coarse to be useful in hydrologic impact assessment models, as these models require information at much finer scales. Therefore, downscaling of GCM outputs is usually employed to provide fine-resolution information required for impact models. Among the downscaling techniques based on statistical principles, multiple regression and weather generator are considered to be more popular, as they are computationally less demanding than the other downscaling techniques. In the present study, the performances of a multiple regression model (called SDSM) and a weather generator (called LARS-WG) are evaluated in terms of their ability to simulate the frequency of extreme precipitation events of current climate and downscaling of future extreme events. Areal average daily precipitation data of the Clutha watershed located in South Island, New Zealand, are used as baseline data in the analysis. Precipitation frequency analysis is performed by fitting the Generalized Extreme Value (GEV) distribution to the observed, the SDSM simulated/downscaled, and the LARS-WG simulated/downscaled annual maximum (AM) series. The computations are performed for five return periods: 10-, 20-, 40-, 50- and 100-year. The present results illustrate that both models have similar and good ability to simulate the extreme precipitation events and, thus, can be adopted with confidence for climate change impact studies of this nature.  相似文献   

5.
Many impact studies require climate change information at a finer resolution than that provided by general circulation models (GCMs). Therefore the outputs from GCMs have to be downscaled to obtain the finer resolution climate change scenarios. In this study, an automated statistical downscaling (ASD) regression-based approach is proposed for predicting the daily precipitation of 138 main meteorological stations in the Yangtze River basin for 2010–2099 by statistical downscaling of the outputs of general circulation model (HadCM3) under A2 and B2 scenarios. After that, the spatial–temporal changes of the amount and the extremes of predicted precipitation in the Yangtze River basin are investigated by Mann–Kendall trend test and spatial interpolation. The results showed that: (1) the amount and the change pattern of precipitation could be reasonably simulated by ASD; (2) the predicted annual precipitation will decrease in all sub-catchments during 2020s, while increase in all sub-catchments of the Yangtze River Basin during 2050s and during 2080s, respectively, under A2 scenario. However, they have mix-trend in each sub-catchment of Yangtze River basin during 2020s, but increase in all sub-catchments during 2050s and 2080s, except for Hanjiang River region during 2080s, as far as B2 scenario is concerned; and (3) the significant increasing trend of the precipitation intensity and maximum precipitation are mainly occurred in the northwest upper part and the middle part of the Yangtze River basin for the whole year and summer under both climate change scenarios and the middle of 2040–2060 can be regarded as the starting point for pattern change of precipitation maxima.  相似文献   

6.
One of the most significant anticipated consequences of global climate change is the increased frequency of hydrologic extremes. Predictions of climate change impacts on the regime of hydrologic extremes have traditionally been conducted using a top‐down approach. The top‐down approach involves a high degree of uncertainty associated with global circulation model (GCM) outputs and the choice of downscaling technique. This study attempts to explore an inverse approach to the modelling of hydrologic risk and vulnerability to changing climatic conditions. With a focus targeted at end‐users, the proposed approach first identifies critical hydrologic exposures that may lead to local failures of existing water resources systems. A hydrologic model is used to transform inversely the main hydrologic exposures, such as floods and droughts, into corresponding meteorological conditions. The frequency of critical meteorological situations is investigated under present and future climatic scenarios by means of a generic weather generator. The weather generator, linked with GCMs at the last step of the proposed methodology, allows the creation of an ensemble of different scenarios, as well as an easy updating, when new and improved GCM outputs become available. The technique has been applied in Ontario, Canada. The results show significant changes in the frequency of hydro‐climatic extremes under future climate scenarios in the study area. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Climate models are increasingly being used to force dynamical wind wave models in order to assess the potential climate change-driven variations in wave climate. In this study, an ensemble of wave model simulations have been used to assess the ability of climate model winds to reproduce the present-day (1981–2000) mean wave climate and its seasonal variability for the southeast coast of Australia. Surface wind forcing was obtained from three dynamically downscaled Coupled Model Intercomparison Project (CMIP-3) global climate model (GCM) simulations (CSIRO Mk3.5, GFDLcm2.0 and GFDLcm2.1). The downscaling was performed using CSIRO’s cubic conformal atmospheric model (CCAM) over the Australian region at approximately 60-km resolution. The wind climates derived from the CCAM downscaled GCMs were assessed against observations (QuikSCAT and NCEP Re-analysis 2 (NRA-2) reanalyses) over the 1981–2000 period and were found to exhibit both bias in mean wind conditions (climate bias) as well as bias in the variance of wind conditions (variability bias). Comparison of the modelled wave climate with over 20 years of wave data from six wave buoys in the study area indicates that direct forcing of the wave models with uncorrected CCAM winds result in suboptimal wave hindcast. CCAM winds were subsequently adjusted for climate and variability bias using a bivariate quantile adjustment which corrects both directional wind components to align in distribution to the NRA-2 winds. Forcing of the wave models with bias-adjusted winds leads to a significant improvement of the hindcast mean annual wave climate and its seasonal variability. However, bias adjustment of the CCAM winds does not improve the ability of the model to reproduce the storm wave climate. This is likely due to a combination of storm systems tracking too quickly through the wave generation zone and the performance of the NRA-2 winds used as a benchmark in this study.  相似文献   

8.
The change of hydrological regimes may cause impacts on human and natural system. Therefore, investigation of hydrologic alteration induced by climate change is essential for preparing timely proper adaptation to the changes. This study employed 24 climate projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5) under Representative Concentration Pathway (RCP) 4.5 scenario. The climate projections were downscaled at a station‐spacing for seven Korean catchments by a statistical downscaling method that preserves a long‐term trend in climate projections. Using an ensemble of future hydrologic projections simulated by three conceptual rainfall‐runoff models (GR4J, IHACRES, and Sacramento models), we calculated Hydrologic Alteration Factors (HAFs) to investigate degrees of variations in Indicators of Hydrologic Alteration (IHAs) derived from the hydrologic projections. The results showed that the seven catchments had similar trend in terms of the HAFs for the 24 IHAs. Given that more frequent severe floods and droughts were projected over Korean catchments, sound water supply strategies are definitely required to adapt to the alteration of streamflow. A wide range of HAFs between rainfall‐runoff models for each catchment was detected by large variations in the magnitude of HAFs with the hydrologic models and the difference could be the hydrologic prediction uncertainty. There were no‐consistent tendency in the order of HAFs between the hydrologic models. In addition, we found that the alterations of hydrologic regimes by climate change are smaller as the size of catchment is larger. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Increasing precipitation extremes are one of the possible consequences of a warmer climate. These may exceed the capacity of urban drainage systems, and thus impact the urban environment. Because short‐duration precipitation events are primarily responsible for flooding in urban systems, it is important to assess the response of extreme precipitation at hourly (or sub‐hourly) scales to a warming climate. This study aims to evaluate the projected changes in extreme rainfall events across the region of Sicily (Italy) and, for two urban areas, to assess possible changes in Depth‐Duration‐Frequency (DDF) curves. We used Regional Climate Model outputs from Coordinated Regional Climate Downscaling Experiment for Europe area ensemble simulations at a ~12 km spatial resolution, for the current period and 2 future horizons under the Representative Concentration Pathways 8.5 scenario. Extreme events at the daily scale were first investigated by comparing the quantiles estimated from rain gauge observations and Regional Climate Model outputs. Second, we implemented a temporal downscaling approach to estimate rainfall for sub‐daily durations from the modelled daily precipitation, and, lastly, we analysed future projections at daily and sub‐daily scales. A frequency distribution was fitted to annual maxima time series for the sub‐daily durations to derive the DDF curves for 2 future time horizons and the 2 urban areas. The overall results showed a raising of the growth curves for the future horizons, indicating an increase in the intensity of extreme precipitation, especially for the shortest durations. The DDF curves highlight a general increase of extreme quantiles for the 2 urban areas, thus underlining the risk of failure of the existing urban drainage systems under more severe events.  相似文献   

10.
Great emphasis is being placed on the use of rainfall intensity data at short time intervals to accurately model the dynamics of modern cropping systems, runoff, erosion and pollutant transport. However, rainfall data are often readily available at more aggregated level of time scale and measurements of rainfall intensity at higher resolution are available only at limited stations. A distribution approach is a good compromise between fine-scale (e.g. sub-daily) models and coarse-scale (e.g. daily) rainfall data, because the use of rainfall intensity distribution could substantially improve hydrological models. In the distribution approach, the cumulative distribution function of rainfall intensity is employed to represent the effect of the within-day temporal variability of rainfall and a disaggregation model (i.e. a model disaggregates time series into sets of higher solution) is used to estimate distribution parameters from the daily average effective precipitation. Scaling problems in hydrologic applications often occur at both space and time dimensions and temporal scaling effects on hydrologic responses may exhibit great spatial variability. Transferring disaggregation model parameter values from one station to an arbitrary position is prone to error, thus a satisfactory alternative is to employ spatial interpolation between stations. This study investigates the spatial interpolation of the probability-based disaggregation model. Rainfall intensity observations are represented as a two-parameter lognormal distribution and methods are developed to estimate distribution parameters from either high-resolution rainfall data or coarse-scale precipitation information such as effective intensity rates. Model parameters are spatially interpolated by kriging to obtain the rainfall intensity distribution when only daily totals are available. The method was applied to 56 pluviometer stations in Western Australia. Two goodness-of-fit statistics were used to evaluate the skill—daily and quantile coefficient of efficiency between simulations and observations. Simulations based on cross-validation show that kriging performed better than other two spatial interpolation approaches (B-splines and thin-plate splines).  相似文献   

11.
《水文科学杂志》2013,58(6):1121-1136
Abstract

One of the most significant anticipated consequences of global climate change is the change in frequency of hydrological extremes. Predictions of climate change impacts on the regime of hydrological extremes have traditionally been conducted by a top-down approach that involves a high degree of uncertainty associated with the temporal and spatial characteristics of general circulation model (GCM) outputs and the choice of downscaling technique. This study uses the inverse approach to model hydrological risk and vulnerability to changing climate conditions in the Seyhan River basin, Turkey. With close collaboration with the end users, the approach first identifies critical hydrological exposures that may lead to local failures in the Seyhan River basin. The Hydro-BEAM hydrological model is used to inversely transform the main hydrological exposures, such as floods and droughts, into corresponding meteorological conditions. The frequency of critical meteorological conditions is investigated under present and future climate scenarios by means of a weather generator based on the improved K-nearest neighbour algorithm. The weather generator, linked with the output of GCMs in the last step of the proposed methodology, allows for the creation of an ensemble of scenarios and easy updating when improved GCM outputs become available. Two main conclusions were drawn from the application of the inverse approach to the Seyhan River basin. First, floods of 100-, 200- and 300-year return periods under present conditions will have 102-, 293- and 1370-year return periods under the future conditions; that is, critical flood events will occur much less frequently under the changing climate conditions. Second, the drought return period will change from 5.3 years under present conditions to 2.0 years under the future conditions; that is, critical drought events will occur much more frequently under the changing climate conditions.  相似文献   

12.
Meteorologic-driven processes exert large and diverse impacts on lakes’ internal heating, cooling, and mixing. Thus, continued global warming and climate change will affect lakes’ thermal properties, dynamics, and ecosystem. The impact of climate change on Lake Tahoe (in the states of California and Nevada in the United States) is investigated here, as a case study of climate change effects on the physical processes occurring within a lake. In the Tahoe basin, air temperature data show upward trends and streamflow trends indicate earlier snowmelt. Precipitation in the basin is shifting from snow to rain, and the frequency of intense rainfall events is increasing. In-lake water temperature records of the past 38 years (1970–2007) show that Lake Tahoe is warming at an average rate of 0.013°C/year. The future trends of weather variables, such as air temperature, precipitation, longwave radiation, downward shortwave radiation, and wind speed are estimated from predictions of three General Circulation Models (GCMs) for the period 2001–2100. Future trends of weather variables of each GCM are found to be different to those of the other GCMs. A series of simulation years into the future (2000–2040) is established using streamflows and associated loadings, and meteorologic data sets for the period 1994–2004. Future simulation years and trends of weather variables are selected so that: (1) future simulated warming trend would be consistent with the observed warming trend (0.013°C/year); and (2) future mixing pattern frequency would closely match with the historical mixing pattern frequency. Results of 40-year simulations show that the lake continues to become warmer and more stable, and mixing is reduced. Continued warming in the Tahoe has important implications for efforts towards managing biodiversity and maintaining clarity of the lake.  相似文献   

13.
Eutrophic depletion of dissolved oxygen (DO) and its consequences for ecosystem dynamics have been a central theme of research, assessment and management policies for several decades in the Chesapeake Bay. Ongoing forecast efforts predict the extent of the summer hypoxic/anoxic area due to nutrient loads from the watershed. However, these models neither predict DO levels nor address the intricate interactions among various ecological processes. The prediction of spatially explicit DO levels in the Chesapeake Bay can eventually lead to a reliable depiction of the comprehensive ecological structure and functioning, and can also allow the quantification of the role of nutrient reduction strategies in water quality management. In this paper, we describe a three dimensional empirical model to predict DO levels in the Chesapeake Bay as a function of water temperature, salinity and dissolved nutrient concentrations (TDN and TDP). The residual analysis shows that predicted DO values compare well with observations. Nash–Sutcliffe efficiency (NSE) and root mean square error-observations standard deviation ratio (RSR) are used to evaluate the performance of the empirical model; the scores demonstrate the usability of model predictions (NSE, surface layer = 0.82–0.86; middle layer = 0.65–0.82; bottom layer = 0.70–0.82; RSR surface layer = 0.37–0.44; middle layer = 0.43–0.58 and bottom layer = 0.43–0.54). The predicted DO values and other physical outputs from downscaling of regional weather and climate predictions, or forecasts from hydrodynamic models, can be used to forecast various ecological components. Such forecasts would be useful for both recreational and commercial users of the Chesapeake Bay.  相似文献   

14.
Climatic changes have altered surface water regimes worldwide, and climate projections suggest that such alterations will continue. To inform management decisions, climate projections must be paired with hydrologic models to develop quantitative estimates of watershed scale water regime changes. Such modeling approaches often involve downscaling climate model outputs, which are generally presented at coarse spatial scales. In this study, Coupled Model Intercomparison Project Phase 5 climate model projections were analyzed to determine models representing severe and conservative climate scenarios for the study watershed. Based on temperature and precipitation projections, output from GFDL‐ESM2G (representative concentration pathway 2.6) and MIROC‐ESM (representative concentration pathway 8.5) were selected to represent conservative (ΔC) and severe (ΔS) change scenarios, respectively. Climate data were used as forcing for the soil and water assessment tool to analyze the potential effects of climate change on hydrologic processes in a mixed‐use watershed in central Missouri, USA. Results showed annual streamflow decreases ranging from ?5.9% to ?26.8% and evapotranspiration (ET) increases ranging from +7.2% to +19.4%. During the mid‐21st century, sizeable decreases to summer streamflow were observed under both scenarios, along with large increases of fall, spring, and summer ET under ΔS. During the late 21st century period, large decreases of summer streamflow under both scenarios, and large increases to spring (ΔS), fall (ΔS) and summer (ΔC) ET were observed. This study demonstrated the sensitivity of a Midwestern watershed to future climatic changes utilizing projections from Coupled Model Intercomparison Project Phase 5 models and presented an approach that used multiple climate model outputs to characterize potential watershed scale climate impacts.  相似文献   

15.
This paper presents the development of a probabilistic multi‐model ensemble of statistically downscaled future projections of precipitation of a watershed in New Zealand. Climate change research based on the point estimates of a single model is considered less reliable for decision making, and multiple realizations of a single model or outputs from multiple models are often preferred for such purposes. Similarly, a probabilistic approach is preferable over deterministic point estimates. In the area of statistical downscaling, no single technique is considered a universal solution. This is due to the fact that each of these techniques has some weaknesses, owing to its basic working principles. Moreover, watershed scale precipitation downscaling is quite challenging and is more prone to uncertainty issues than downscaling of other climatological variables. So, multi‐model statistical downscaling studies based on a probabilistic approach are required. In the current paper, results from the three well‐reputed statistical downscaling methods are used to develop a Bayesian weighted multi‐model ensemble. The three members of the downscaling ensemble of this study belong to the following three broad categories of statistical downscaling methods: (1) multiple linear regression, (2) multiple non‐linear regression, and (3) stochastic weather generator. The results obtained in this study show that the new strategy adopted here is promising because of many advantages it offers, e.g. it combines the outputs of multiple statistical downscaling methods, provides probabilistic downscaled climate change projections and enables the quantification of uncertainty in these projections. This will encourage any future attempts for combining the results of multiple statistical downscaling methods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Bivariate distributions have been recently employed in hydrologic frequency analysis to analyze the joint probabilistic characteristics of multivariate storm events. This study aims to derive practical solutions of application for the bivariate distribution to estimate design rainfalls corresponding to the desired return periods. Using the Gumbel mixed model, this study constructed rainfall–frequency curves at sample stations in Korea which provide joint relationships between amount, duration, and frequency of storm events. Based on comparisons and analyses of the rainfall–frequency curves derived from univariate and bivariate storm frequency analyses, this study found that conditional frequency analysis provides more appropriate estimates of design rainfalls as it more accurately represents the natural relationship between storm properties than the conventional univariate storm frequency analysis.  相似文献   

17.
We applied a simple statistical downscaling procedure for transforming daily global climate model (GCM) rainfall to the scale of an agricultural experimental station in Katumani, Kenya. The transformation made was two-fold. First, we corrected the rainfall frequency bias of the climate model by truncating its daily rainfall cumulative distribution into the station’s distribution based on a prescribed observed wet-day threshold. Then, we corrected the climate model rainfall intensity bias by mapping its truncated rainfall distribution into the station’s truncated distribution. Further improvements were made to the bias corrected GCM rainfall by linking it with a stochastic disaggregation scheme to correct the time structure problem inherent with daily GCM rainfall. Results of the simple and hybridized GCM downscaled precipitation variables (total, probability of occurrence, intensity and dry spell length) were linked with a crop model for a more objective evaluation of their performance using a non-linear measure based on mutual information based on entropy. This study is useful for the identification of both suitable downscaling technique as well as the effective precipitation variables for forecasting crop yields using GCM’s outputs which can be useful for addressing food security problems beforehand in critical basins around the world.  相似文献   

18.
Droughts and floods are two opposite but related hydrological events. They both lie at the extremes of rainfall intensity when the period of that intensity is measured over long intervals. This paper presents a new concept based on stochastic calculus to assess the risk of both droughts and floods. An extended definition of rainfall intensity is applied to point rainfall to simultaneously deal with high intensity storms and dry spells. The mean-reverting Ornstein–Uhlenbeck process, which is a stochastic differential equation model, simulates the behavior of point rainfall evolving not over time, but instead with cumulative rainfall depth. Coefficients of the polynomial functions that approximate the model parameters are identified from observed raingauge data using the least squares method. The probability that neither drought nor flood occurs until the cumulative rainfall depth reaches a given value requires solving a Dirichlet problem for the backward Kolmogorov equation associated with the stochastic differential equation. A numerical model is developed to compute that probability, using the finite element method with an effective upwind discretization scheme. Applicability of the model is demonstrated at three raingauge sites located in Ghana, where rainfed subsistence farming is the dominant practice in a variety of tropical climates.  相似文献   

19.
A statistical framework based on nonlinear dynamics theory and recurrence quantification analysis of dynamical systems is proposed to quantitatively identify the temporal characteristics of extreme (maximum) daily precipitation series. The methodology focuses on both observed and general circulation model (GCM) generated climates for present (1961–2000) and future (2061–2100) periods which correspond to 1xCO2 and 2xCO2 simulations. The daily precipitation has been modelled as a stochastic process coupled with atmospheric circulation. An automated and objective classification of daily circulation patterns (CPs) based on optimized fuzzy rules was used to classify both observed CPs and ECHAM4 GCM‐generated CPs for 1xCO2 and 2xCO2 climate simulations (scenarios). The coupled model ‘CP‐precipitation’ was suitable for precipitation downscaling. The overall methodology was applied to the medium‐sized mountainous Mesochora catchment in Central‐Western Greece. Results reveal substantial differences between the observed maximum daily precipitation statistical patterns and those produced by the two climate scenarios. A variable nonlinear deterministic behaviour characterizes all climate scenarios examined. Transitions’ patterns differ in terms of duration and intensity. The 2xCO2 scenario contains the strongest transitions highlighting an unusual shift between floods and droughts. The implications of the results to the predictability of the phenomenon are also discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
In this study, the applicability of the statistical downscaling model (SDSM) in downscaling precipitation in the Yangtze River basin, China was investigated. The investigation includes the calibration of the SDSM model by using large-scale atmospheric variables encompassing NCEP/NCAR reanalysis data, the validation of the model using independent period of the NCEP/NCAR reanalysis data and the general circulation model (GCM) outputs of scenarios A2 and B2 of the HadCM3 model, and the prediction of the future regional precipitation scenarios. Selected as climate variables for downscaling were measured daily precipitation data (1961–2000) from 136 weather stations in the Yangtze River basin. The results showed that: (1) there existed good relationship between the observed and simulated precipitation during the calibration period of 1961–1990 as well as the validation period of 1991–2000. And the results of simulated monthly and seasonal precipitation were better than that of daily. The average R 2 values between the simulated and observed monthly and seasonal precipitation for the validation period were 0.78 and 0.91 respectively for the whole basin, which showed that the SDSM had a good applicability on simulating precipitation in the Yangtze River basin. (2) Under both scenarios A2 and B2, during the prediction period of 2010–2099, the change of annual mean precipitation in the Yangtze River basin would present a trend of deficit precipitation in 2020s; insignificant changes in the 2050s; and a surplus of precipitation in the 2080s as compared to the mean values of the base period. The annual mean precipitation would increase by about 15.29% under scenario A2 and increase by about 5.33% under scenario B2 in the 2080s. The winter and autumn might be the more distinct seasons with more predicted changes of precipitation than in other seasons. And (3) there would be distinctive spatial distribution differences for the change of annual mean precipitation in the river basin, but the most of Yangtze River basin would be dominated by the increasing trend.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号