首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Since water supply failure is one of the primary impacts of drought, drought risk should be quantified in the context of a lack of available water. To assess the drought risk, water supply system performance indices such as reliability, resiliency, and vulnerability are usually introduced as they correspond to primary drought characteristics, i.e., frequency, duration, and magnitude. In this study, we developed a drought risk index (DRI) through weighted averaging the performance indices derived using bivariate drought frequency analysis. We suggested two types of DRI: observed DRI (DRI_O) and designed DRI (DRI_D). DRI_O was calculated using an observed (or synthesized) time series of water shortages. DRI_D was estimated from the bivariate drought frequency curves, which are the probabilistic magnitudes of water shortages corresponding to a particular duration. The historical maximum drought event that represents the maximum DRI_O has generally been used as the target security level. However, we could establish a practically applicable target security level considering that the future water supply failure risk is represented by DRI_D. We defined regional drought safety criteria in this study by comparing DRI_O and DRI_D. Application of the criteria to the Nakdong river basin in South Korea showed that W1 (Byeongseongcheon) and W4 (Hyeongsangang) had the lowest and highest drought risk, respectively, and the drought safety criteria showed an average range of 5–20 years.  相似文献   

2.
3.
Asymmetric copula in multivariate flood frequency analysis   总被引:2,自引:0,他引:2  
The univariate flood frequency analysis is widely used in hydrological studies. Often only flood peak or flood volume is statistically analyzed. For a more complete analysis the three main characteristics of a flood event i.e. peak, volume and duration are required. To fully understand these variables and their relationships, a multivariate statistical approach is necessary. The main aim of this paper is to define the trivariate probability density and cumulative distribution functions. When the joint distribution is known, it is possible to define the bivariate distribution of volume and duration conditioned on the peak discharge. Consequently volume–duration pairs, statistically linked to peak values, become available. The authors build trivariate joint distribution of flood event variables using the fully nested or asymmetric Archimedean copula functions. They describe properties of this copula class and perform extensive simulations to highlight differences with the well-known symmetric Archimedean copulas. They apply asymmetric distributions to observed flood data and compare the results those obtained using distributions built with symmetric copula and the standard Gumbel Logistic model.  相似文献   

4.
The present study attempts to investigate potential impacts of climate change on floods frequency in Bazoft Basin which is located in central part of Iran. A combination of four general circulation models is used through a weighting approach to assess uncertainty in the climate projections. LARS-WG model is applied to downscale large scale atmospheric data to local stations. The resulting data is in turn used as input of the hydrological model Water and Energy Transfer between Soil, plants and atmosphere (WetSpa) to simulate runoff for present (1971–2000), near future (2020–2049) and far future (2071–2100) conditions. Results demonstrate good performance of both WetSpa and LARS-WG models. In addition in this paper instantaneous peak flow (IPF) is estimated using some empirical equations including Fuller, Sangal and Fill–Steiner methods. Comparison of estimated and observed IPF shows that Fill–Steiner is better than other methods. Then different probability distribution functions are fit to IPF series. Results of flood frequency analysis indicate that Pearson III is the best distribution fitted to IPF data. It is also indicated that flood magnitude will decrease in future for all return periods.  相似文献   

5.
Risk analysis of urban flood and drought can provide useful guidance for urban rainwater management. Based on an analysis of urban climate characteristics in 2,264 Chinese cities from 1958 to 2017, this study evaluated urban flood and drought risks. The results demonstrated that the annual average values of precipitation, aridity index, frequency and intensity of extreme precipitation and extreme drought events differed significantly in these cities. The values of the above six climatic indicators in the cities ranged from 9.29–2639.30 mm, 0.47–54.73, 1.08–8.79 time, 7.82–107.25 mm, 0.76–2.99 time, and 10.30–131.19 days, respectively. The geographical patterns of urban precipitation, aridity index, intensity and frequency of extreme precipitation and drought events in China fit well to the Hu‐Huanyong Line that was created in 1940s to identify the pattern of population distribution. Extreme precipitation in most cities has upward trends, except for those around the Hu‐Huanyong Line. The extreme drought events had upward trends in the cities east of the Hu‐Huanyong Line, but there were downward trends in the cities west of the line. The risk assessment indicated that 3.80% cities were facing serious flood and 6.01% cities were facing serious drought risks, which are located in the coast of southern China and northwestern China, respectively, and other 90.19% cities were facing different types of drought and flood risks in terms of their intensity and frequency.  相似文献   

6.
In this study, we used the statistical downscaling model (SDSM) to estimate mean and extreme precipitation indices under present and future climate conditions for Shikoku, Japan. Specifically, we considered the following mean and extreme precipitation indices: mean daily precipitation, R10 (number of days with precipitation >10 mm/day), R5d (annual maximum precipitation accumulated over 5 days), maximum dry-spell length (MaDSL), and maximum wet-spell length (MaWSL). Initially, we calibrated the SDSM model using the National Center for environmental prediction (NCEP) reanalysis dataset and daily time series of precipitation for ten locations in Shikoku which were acquired from the surface weather observation point dataset. Subsequently, we used the validated SDSM, using data from NCEP and outputs form general circulation models (GCM), to predict future precipitation indices. Specifically, the HadCM3 GCM was run under the special report on emissions scenarios (SRES) A2 and B2 scenarios, and the CGCM3 GCM was run under the SRES A2 and A1B scenarios. The results showed that: (1) the SDSM can reasonably be used to simulate mean and extreme precipitation indices in the Shikoku region; (2) the values of annual R10 were predicated to decrease in the future in northern Shikoku under all climate scenarios; conversely, the values of annual R10 were predicted to increase in the future in the range of 0–15 % in southern and western Shikoku. The values of annual MaDSL were predicted to increase in northern Shikoku, and the values of annual MaWSL were predicted to decrease in northeastern Shikoku; (3) the spatial variation of precipitation indices indicated the potential for an increased occurrence of drought across northeastern Shikoku and an increased occurrence of flood events in the southwestern part of Shikoku, especially under the A2 and A1B scenarios; (4) characteristics of future precipitation may differ between the northern and southern sides of the Shikoku Mountains. Regional variations in extreme precipitation indices were not notably evident in the B2 scenario compared to the other scenarios.  相似文献   

7.
8.
Sheng Yue 《水文研究》2000,14(14):2575-2588
Complex hydrological events such as floods always appear to be multivariate events that are characterized by a few correlated variables. A complete understanding of these events needs to investigate joint probabilistic behaviours of these correlated variables. The lognormal distribution is one of frequently selected candidates for flood‐frequency analysis. The multivariate lognormal distribution will serve as an important tool for analysing a multivariate flood episode. This article presents a procedure for using the bivariate lognormal distribution to describe the joint distributions of correlated flood peaks and volumes, and correlated flood volumes and durations. Joint distributions, conditional distributions, and the associated return periods of these random variables can be readily derived from their marginal distributions. The approach is verified using observed streamflow data from the Nord river basin, located in the Province of Quebec, Canada. The theoretical distributions show a good fit to observed ones. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
Sheng Yue 《水文研究》2001,15(6):1033-1045
A gamma distribution is one of the most frequently selected distribution types for hydrological frequency analysis. The bivariate gamma distribution with gamma marginals may be useful for analysing multivariate hydrological events. This study investigates the applicability of a bivariate gamma model with five parameters for describing the joint probability behavior of multivariate flood events. The parameters are proposed to be estimated from the marginal distributions by the method of moments. The joint distribution, the conditional distribution, and the associated return periods are derived from marginals. The usefulness of the model is demonstrated by representing the joint probabilistic behaviour between correlated flood peak and flood volume and between correlated flood volume and flood duration in the Madawask River basin in the province of Quebec, Canada. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
Five downscaling techniques, namely the statistical downscaling model, the automated statistical downscaling method, the change factor (CF) method, the advanced CF method, the Weather generator (LarsWG5) method, are applied to the upstream basin of the Huaihe River. Changes in regional climate scenarios and hydrology variables are compared in future periods to investigate the uncertainty associated with the downscaling techniques. Paired-sample T test is applied to evaluation the significant of the difference of the means between the observed data and the downscaled data in the future. The Xinanjiang rainfall–runoff model is employed to simulate the rainfall–runoff relation. The results demonstrate that the downscaling techniques utilized herein predict an increased tendency in the future. The increases range of maximum temperature (Tmax) is between 3.7 and 4.7 °C until the time period of 2070–2099 (2080s). While, the increases range of minimum temperature (Tmin) is between 2.8 and 4.9 °C until 2080s. The research presented herein determined that there is an increase predicted for the peaks over threshold (discussed in the paper) and a decrease predicted for the peaks below the threshold (discussed in the paper) in the future, which illustrates that the temperature would rise gradually in the future. Precipitation changes are not as obvious as temperatures changes and tend to be influence by the season. Most downscaling techniques predict increases, and others indict decreases. The annual mean precipitation range changes between 3.2 and 53.3 %, and moreover, these changes vary from season to season.  相似文献   

11.
For snow avalanches, passive defense structures are generally designed by considering high return period events. However, defining a return period turns out to be tricky as soon as different variables are simultaneously considered. This problem can be overcome by maximizing the expected economic benefit of the defense structure, but purely stochastic approaches are not possible for paths with a complex geometry in the runout zone. Therefore, in this paper, we include a multivariate numerical avalanche propagation model within a Bayesian decisional framework. The influence of a vertical dam on an avalanche flow is quantified in terms of local energy dissipation with a simple semi-empirical relation. Costs corresponding to dam construction and the damage to a building situated in the runout zone are roughly evaluated for each dam height–hazard value pair, with damage intensity depending on avalanche velocity. Special attention is given to the poor local information to be taken into account for the decision. Using a case study from the French avalanche database, the Bayesian optimal dam height is shown to be more pessimistic than the classical optimal height because of the increasing effect of parameter uncertainty. It also appears that the lack of local information is especially critical for a building exposed to the most extreme events only. The residual hazard after dam construction is analyzed and the sensitivity to the different modelling assumptions is evaluated. Finally, possible further developments of the approach are discussed.  相似文献   

12.
13.
Many impact studies require climate change information at a finer resolution than that provided by general circulation models (GCMs). Therefore the outputs from GCMs have to be downscaled to obtain the finer resolution climate change scenarios. In this study, an automated statistical downscaling (ASD) regression-based approach is proposed for predicting the daily precipitation of 138 main meteorological stations in the Yangtze River basin for 2010–2099 by statistical downscaling of the outputs of general circulation model (HadCM3) under A2 and B2 scenarios. After that, the spatial–temporal changes of the amount and the extremes of predicted precipitation in the Yangtze River basin are investigated by Mann–Kendall trend test and spatial interpolation. The results showed that: (1) the amount and the change pattern of precipitation could be reasonably simulated by ASD; (2) the predicted annual precipitation will decrease in all sub-catchments during 2020s, while increase in all sub-catchments of the Yangtze River Basin during 2050s and during 2080s, respectively, under A2 scenario. However, they have mix-trend in each sub-catchment of Yangtze River basin during 2020s, but increase in all sub-catchments during 2050s and 2080s, except for Hanjiang River region during 2080s, as far as B2 scenario is concerned; and (3) the significant increasing trend of the precipitation intensity and maximum precipitation are mainly occurred in the northwest upper part and the middle part of the Yangtze River basin for the whole year and summer under both climate change scenarios and the middle of 2040–2060 can be regarded as the starting point for pattern change of precipitation maxima.  相似文献   

14.
ABSTRACT

There is an implicit assumption in most work that the parameters calibrated based on observations remain valid for future climatic conditions. However, this might not be true due to parameter instability. This paper investigates the uncertainty and transferability of parameters in a hydrological model under climate change. Parameter transferability is investigated with three parameter sets identified for different climatic conditions, which are: wet, intermediate and dry. A parameter set based on the baseline period (1961–1990) is also investigated for comparison. For uncertainty analysis, a k-simulation set approach is proposed instead of employing the traditional optimization method which uses a single best-fit parameter set. The results show that the parameter set from the wet sub-period performs the best when transferred into wet climate condition, while the parameter set from the baseline period is the most appropriate when transferred into dry climate condition. The largest uncertainty of simulated daily high flows for 2011–2040 is from the parameter set trained in the dry sub-period, while that of simulated daily medium and low flows lies in the parameter set from the intermediate calibration sub-period. For annual changes in the future period, the uncertainty with the parameter set from the intermediate sub-period is the largest, followed by the wet sub-period and dry sub-period. Compared with high and medium flows/runoffs, the uncertainty of low flows/runoffs is much smaller for both simulated daily flows and annual runoffs. For seasonal runoffs, the largest uncertainty is from the intermediate sub-period, while the smallest is from the dry sub-period. Apart from that, the largest uncertainty can be observed for spring runoffs and the lowest one for autumn runoffs. Compared with the traditional optimization method, the k-simulation set approach shows many more advantages, particularly being able to provide uncertainty information to decision support for watershed management under climate change.

EDITOR Z.W. Kundzewicz ASSOCIATE EDITOR not assigned  相似文献   

15.
16.
This paper uses numerical simulation of flood inundation based on a coupled one‐dimensional–two‐dimensional treatment to explore the impacts upon flood extent of both long‐term climate changes, predicted to the 2050s and 2080s, and short‐term river channel changes in response to sediment delivery, for a temperate upland gravel‐bed river. Results show that 16 months of measured in‐channel sedimentation in an upland gravel‐bed river cause about half of the increase in inundation extent that was simulated to arise from climate change. Consideration of the joint impacts of climate change and sedimentation emphasized the non‐linear nature of system response, and the possibly severe and synergistic effects that come from combined direct effects of climate change and sediment delivery. Such effects are likely to be exacerbated further as a result of the impacts of climate change upon coarse sediment delivery. In generic terms, these processes are commonly overlooked in flood risk mapping exercises and are likely to be important in any river system where there are high rates of sediment delivery and long‐term transfer of sediment to floodplain storage (i.e. alluviation involving active channel aggradation and migration). Similarly, attempts to reduce channel migration through river bank stabilization are likely to exacerbate this process as without bank erosion, channel capacity cannot be maintained. Finally, many flood risk mapping studies rely upon calibration based upon combining contemporary bed surveys with historical flood outlines, and this will lead to underestimation of the magnitude and frequency of floodplain inundation in an aggrading system for a flood of a given magnitude. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Climate change will most likely cause an increase in extreme precipitation and consequently an increase in soil erosion in many locations worldwide. In most cases, climate model output is used to assess the impact of climate change on soil erosion; however, there is little knowledge of the implications of bias correction methods and climate model ensembles on projected soil erosion rates. Using a soil erosion model, we evaluated the implications of three bias correction methods (delta change, quantile mapping and scaled distribution mapping) and climate model selection on regional soil erosion projections in two contrasting Mediterranean catchments. Depending on the bias correction method, soil erosion is projected to decrease or increase. Scaled distribution mapping best projects the changes in extreme precipitation. While an increase in extreme precipitation does not always result in increased soil loss, it is an important soil erosion indicator. We suggest first establishing the deviation of the bias-corrected climate signal with respect to the raw climate signal, in particular for extreme precipitation. Furthermore, individual climate models may project opposite changes with respect to the ensemble average; hence climate model ensembles are essential in soil erosion impact assessments to account for climate model uncertainty. We conclude that the impact of climate change on soil erosion can only accurately be assessed with a bias correction method that best reproduces the projected climate change signal, in combination with a representative ensemble of climate models. © 2018 John Wiley & Sons, Ltd.  相似文献   

18.
Abstract

The regional hydroclimatological effect of global climate change has been estimated and compared using a semi-empirical downscaling method with two versions (T21 and T42) of the general circulation model (GCM) developed at the Max Planck Institute for Meteorology, Germany. The comparisons were performed with daily mean temperature and daily precipitation amounts for the continental climate of the state of Nebraska, USA. Both the T21 and the T42 versions resulted in an increase of daily mean temperature under a 2 x C02 climatess. The magnitude of warming was substantially greater for T21 than for T42, except for February and June and at some stations in July where the T42 model suggested greater warming. Both GCMs resulted in a slight decrease in precipitation frequency and an increase in the amount of precipitation on wet days. Here, the T42 model again led to smaller changes. Different locations within Nebraska exhibited somewhat different temperature and precipitation responses with both GCM versions.  相似文献   

19.
Assessment of the impact of changes in climate and land use and land cover (LULC) on ecosystem services (ES) is important for planning regional-scale strategies for sustainability and restoration of ES. The Upper Narmada River Basin (UNRB) in peninsular India has undergone rapid LULC change due to recent agricultural expansion. The impact of future climate and LULC change on ES in the UNRB is quantified and mapped using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST 3.3.0) tool. Our results show that water yield is projected to increase under climate change (about 43% for representative concentration pathway 4.5 for 2031–2040), whereas it is projected to decrease under the LULC change scenario. Sediment export is projected to increase (by 54.53%) under LULC change for 2031–2040. Under the combined effect of climate and LULC change, both water yield and sediment export are expected to increase. Climate change has a greater impact on projected water yield than LULC change, whereas LULC has greater impact on sediment export. Spatial analysis suggests a similar trend of variation in relative difference (RD) of ES in adjacent sub-basins. The quantified changes in ES provisioning will benefit future land management, particularly for operation of the Rani Avanti Bai Sagar Reservoir downstream of the UNRB.  相似文献   

20.
In flood frequency analysis, a suitable probability distribution function is required in order to establish the flood magnitude-return period relationship. Goodness of fit (GOF) techniques are often employed to select a suitable distribution function in this context. But they have been often criticized for their inability to discriminate between statistical distributions for the same application. This paper investigates the potential utility of subsampling, a resampling technique with the aid of a GOF test to select the best distribution for frequency analysis. The performance of the methodology is assessed by applying the methodology to observed and simulated annual maximum (AM) discharge data series. Several AM series of different record lengths are used as case studies to determine the performance. Numerical analyses are carried out to assess the performance in terms of sample size, subsample size and statistical properties inherent in the AM data series. The proposed methodology is also compared with the standard Anderson–Darling (AD) test. It is found that the methodology is suitable for a longer data series. A better performance is obtained when the subsample size is taken around half of the underlying data sample. The methodology has also outperformed the standard AD test in terms of effectively discriminating between distributions. Overall, all results point that the subsampling technique can be a promising tool in discriminating between distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号