首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of hydrated salts is an expected consequence of aqueous alteration of Main Belt objects, particularly for large, volatile‐rich protoplanets like Ceres. Sulfates, present on water‐bearing planetary bodies (e.g., Earth, Mars, and carbonaceous chondrite parent bodies) across the inner solar system, may contribute to Ceres’ UV and IR spectral signature along with phyllosilicates and carbonates. We investigate the presence and stability of hydrated sulfates under Ceres’ cryogenic, low‐pressure environment and the consequent spectral effects, using UV–Vis–IR reflectance spectroscopy. H2O loss begins instantaneously with vacuum exposure, measured by the attenuation of spectral water absorption bands, and a phase transition from crystalline to amorphous is observed for MgSO4·6H2O by X‐ray powder diffraction. Long‐term (>40 h), continuous exposure of MgSO4·nH2O (n = 0, 6, 7) to low pressure (10?3–10?6 Torr) causes material decomposition and strong UV absorption below 0.5 μm. Our measurements suggest that MgSO4·6H2O grains (45–83 μm) dehydrate to 2% of the original 1.9 μm water band area over ~0.3 Ma at 200 K on Ceres and after ~42 Ma for 147 K. These rates, inferred from an Avrami dehydration model, preclude MgSO4·6H2O as a component of Ceres’ surface, although anhydrous and minimally hydrated sulfates may be present. A comparison between Ceres emissivity spectra and laboratory reflectance measurements over the infrared range (5–17 μm) suggests sulfates cannot be excluded from Ceres’ mineralogy.  相似文献   

2.
We investigated the petrologic, geochemical, and spectral parameters that relate to the type and degree of aqueous alteration in nine CM chondrites and one CI (Ivuna) carbonaceous chondrite. Our underlying hypothesis is that the position and shape of the 3 μm band is diagnostic of phyllosilicate mineralogy. We measured reflectance spectra of the chondrites under dry conditions (elevated temperatures) and vacuum (10?8 to 10?7 torr) to minimize adsorbed water and mimic the space environment, for subsequent comparison with reflectance spectra of asteroids. We have identified three spectral CM groups in addition to Ivuna. “Group 1,” the least altered group as determined from various alteration indices, is characterized by 3 μm band centers at longer wavelengths, and is consistent with cronstedtite (Fe‐serpentine). “Group 3,” the most altered group, is characterized by 3 μm band centers at shorter wavelengths and is consistent with antigorite (serpentine). “Group 2” is an intermediate group between group 1 and 3. Ivuna exhibits a unique spectrum that is distinct from the CM meteorites and is consistent with lizardite and chrysotile (serpentine). The petrologic and geochemical parameters, which were determined using electron microprobe analyses and microscopic observations, are found to be consistent with the three spectral groups. These results indicate that the distinct parent body aqueous alteration environments experienced by these carbonaceous chondrites can be distinguished using reflectance spectroscopy. High‐quality ground‐based telescopic observations of Main Belt asteroids can be expected to reveal not just whether an asteroid is hydrated, but also details of the alteration state.  相似文献   

3.
Abstract Thermal metamorphism study of the C, G, B, and F asteroids has been revisited using their UV, visible, NIR, and 3 μm reflectance spectra. High-quality reflectance spectra of seven selected C, G, B, and F asteroids have been compared with spectra for 29 carbonaceous chondrites, including thermally-metamorphosed CI/CM meteorites. There are three sets of spectral counterparts, among which 511 Davida and B-7904 are the most similar to each other in terms of both spectral shape and brightness. By comparing the 0.7 μm and 3 μm absorption strengths of 21 C, G, B, and F asteroids and heated Murchison samples, these asteroids have been grouped into three heating-temperature ranges. These correspond to (1) <400 °C: phyllosilicate-rich; (2) 400–600 °C: phyllosilicates transformed to anhydrous silicates; and (3) >600 °C: fully anhydrous. A good correlation between the UV and 3 μm absorption strengths has been confirmed for the C, G, B, and F asteroids and the CI, CM, and CR meteorites. A plot of the UV absorption strength vs. the IRAS diameter for 142 C, G, B, and F asteroids shows that the maximum UV absorption strength decreases as the diameter increases for the asteroids >60 km, with a notable exception, Ceres. These relationships suggest that some of the larger asteroids may be the heated inner portions of once larger bodies and that common CI/CM meteorites may have come from the lost outer portions, which escaped extensive late-stage heating events.  相似文献   

4.
Narrowband reflectance spectra (0.53-1.0 μm) of Iapetus' leading and trailing sides were obtained in 2000 to test the presence of an absorption feature located near 0.67 μm seen in reflectance spectra of Iapetus' dark material and Hyperion's surface material. No feature was observed. The difference in reflectance across the UV/VIS/NIR spectral region, and the dependence of the presence or absence of this absorption feature on angular separation from the apex of Iapetus in its orbit, phase angle, and heliocentric distance (affecting temperature), were examined. A trend of increased reddening, and the presence of the absorption feature, correlate with an angular separation from the apex of ? approximately 10°. Spectral information is lost when the contribution of the bright water ice signal to the reflectance spectrum increases sufficiently. In order to optimize compositional studies of Iapetus, we encourage future ground-based and space-based spectral observations to maximize the concentration of dark material in the instrumental field of view.  相似文献   

5.
E.A. Cloutis  P. Hudon  T. Hiroi 《Icarus》2011,216(1):309-346
We have examined the spectral reflectance properties and available modal mineralogies of 39 CM carbonaceous chondrites to determine their range of spectral variability and to diagnose their spectral features. We have also reviewed the published literature on CM mineralogy and subclassification, surveyed the published spectral literature and added new measurements of CM chondrites and relevant end members and mineral mixtures, and measured 11 parameters and searched pair-wise for correlations between all quantities. CM spectra are characterized by overall slopes that can range from modestly blue-sloped to red-sloped, with brighter spectra being generally more red-sloped. Spectral slopes, as measured by the 2.4:0.56 μm and 2.4 μm:visible region peak reflectance ratios, range from 0.90 to 2.32, and 0.81 to 2.24, respectively, with values <1 indicating blue-sloped spectra. Matrix-enriched CM spectra can be even more blue-sloped than bulk samples, with ratios as low as 0.85. There is no apparent correlation between spectral slope and grain size for CM chondrite spectra - both fine-grained powders and chips can exhibit blue-sloped spectra. Maximum reflectance across the 0.3-2.5 μm interval ranges from 2.9% to 20.0%, and from 2.8% to 14.0% at 0.56 μm. Matrix-enriched CM spectra can be darker than bulk samples, with maximum reflectance as low as 2.1%. CM spectra exhibit nearly ubiquitous absorption bands near 0.7, 0.9, and 1.1 μm, with depths up to 12%, and, less commonly, absorption bands in other wavelength regions (e.g., 0.4-0.5, 0.65, 2.2 μm). The depths of the 0.7, 0.9, and 1.1 μm absorption features vary largely in tandem, suggesting a single cause, specifically serpentine-group phyllosilicates. The generally high Fe content, high phyllosilicate abundance relative to mafic silicates, and dual Fe valence state in CM phyllosilicates, all suggest that the phyllosilicates will exhibit strong absorption bands in the 0.7 μm region (due to Fe3+-Fe2+ charge transfers), and the 0.9-1.2 μm region (due to Fe2+ crystal field transitions), and generally dominate over mafic silicates. CM petrologic subtypes exhibit a positive correlation between degree of aqueous alteration and depth of the 0.7 μm absorption band. This is consistent with the decrease in fine-grained opaques that accompanies aqueous alteration. There is no consistent relationship between degree of aqueous alteration and evidence for a 0.65 μm region saponite-group phyllosilicate absorption band. Spectra of different subsamples of a single CM can show large variations in absolute reflectance and overall slope. This is probably due to petrologic variations that likely exist within a single CM chondrite, as duplicate spectra for a single subsample show much less spectral variability. When the full suite of available CM spectra is considered, few clear spectral-compositional trends emerge. This indicates that multiple compositional and physical factors affect absolute reflectance, absorption band depths, and absorption band wavelength positions. Asteroids with reflectance spectra that exhibit absorption features consistent with CM spectra (i.e., absorption bands near 0.7 and 0.9 μm) include members from multiple taxonomic groups. This suggests that on CM parent bodies, aqueous alteration resulted in the consistent production of serpentine-group phyllosilicates, however resulting absolute reflectances and spectral shapes seen in CM reflectance spectra are highly variable, accounting for the presence of phyllosilicate features in reflectance spectra of asteroids across diverse taxonomic groups.  相似文献   

6.
The highly hydrated, petrologic type 1 CM and CI carbonaceous chondrites likely derived from primitive, water‐rich asteroids, two of which are the targets for JAXA's Hayabusa2 and NASA's OSIRIS‐REx missions. We have collected visible and near‐infrared (VNIR) and mid infrared (MIR) reflectance spectra from well‐characterized CM1/2, CM1, and CI1 chondrites and identified trends related to their mineralogy and degree of secondary processing. The spectral slope between 0.65 and 1.05 μm decreases with increasing total phyllosilicate abundance and increasing magnetite abundance, both of which are associated with more extensive aqueous alteration. Furthermore, features at ~3 μm shift from centers near 2.80 μm in the intermediately altered CM1/2 chondrites to near 2.73 μm in the highly altered CM1 chondrites. The Christiansen features (CF) and the transparency features shift to shorter wavelengths as the phyllosilicate composition of the meteorites becomes more Mg‐rich, which occurs as aqueous alteration proceeds. Spectra also show a feature near 6 μm, which is related to the presence of phyllosilicates, but is not a reliable parameter for estimating the degree of aqueous alteration. The observed trends can be used to estimate the surface mineralogy and the degree of aqueous alteration in remote observations of asteroids. For example, (1) Ceres has a sharp feature near 2.72 μm, which is similar in both position and shape to the same feature in the spectra of the highly altered CM1 MIL 05137, suggesting abundant Mg‐rich phyllosilicates on the surface. Notably, both OSIRIS‐REx and Hayabusa2 have onboard instruments which cover the VNIR and MIR wavelength ranges, so the results presented here will help in corroborating initial results from Bennu and Ryugu.  相似文献   

7.
Mg‐phyllosilicate‐bearing, dark surface materials on the dwarf planet Ceres have NH4‐bearing materials, indicated by a distinctive 3.06 μm absorption feature. To constrain the identity of the Ceres NH4‐carrier phase(s), we ammoniated ground particulates of candidate materials to compare their spectral properties to infrared data acquired by Dawn's Visible and Infrared (VIR) imaging spectrometer. We treated Mg‐, Fe‐, and Al‐smectite clay minerals; Mg‐serpentines; Mg‐chlorite; and a suite of carbonaceous meteorites with NH4‐acetate to exchange ammonium. Serpentines and chlorites showed no evidence for ammoniation, as expected due to their lack of exchangeable interlayer sites. Most smectites showed evidence for ammoniation by incorporation of NH4+ into their interlayers, resulting in the appearance of absorptions from 3.02 to 3.08 μm. Meteorite samples tested had weak absorptions between 3.0 and 3.1 μm but showed little clear evidence for enhancement upon ammoniation, likely due to the high proportion of serpentine and other minerals relative to expandable smectite phases or to NH4+ complexing with organics or other constituents. The wavelength position of the smectite NH4 absorption showed no variation between IR spectra acquired under dry‐air purge at 25 °C and under vacuum at 25 °C to ?180 °C. Collectively, data from the smectite samples show that the precise center wavelength of the characteristic ~3.05 μm v3 absorption in NH4 is variable and is likely related to the degree of hydrogen bonding of NH4‐H2O complexes. Comparison with Dawn VIR spectra indicates that the hypothesis of Mg‐saponite as the ammonium carrier phase is the simplest explanation for observed data, and that Ceres dark materials may be like Cold Bokkeveld or Tagish Lake but with proportionally more Mg‐smectite.  相似文献   

8.
High resolution spectroscopic observations of asteroid 2 Pallas from 1.7-3.5 μm are reported. These data are combined with previous measurements from 0.4-1.7 μm to interpret Pallas' surface mineralogy. Evidence is found for low-Fe2+ hydrated silicates, opaque components, and low-Fe2+ anhydrous silicates. This assemblage is very similar to carbonaceous chondrite matrix material such as is found in type CI and CM meteorites, but it has been subjected to substantial aqueous alteration and there is a major extraneous anhydrous silicate component. This composition is compared to that of asteroid 1 Ceres. Although there are substantial differences in their broad band spectral reflectances, it appears that both asteroids are genetically related to known carbonaceous chondrites.  相似文献   

9.
Variations and spatial distributions of bright and dark material on dwarf planet Ceres play a key role in understanding the processes that have led to its present surface composition. We define limits for “bright” and “dark” material in order to distinguish them consistently, based on the reflectance of the average surface using Dawn Framing Camera data. A systematic classification of four types of bright material is presented based on their spectral properties, composition, spatial distribution, and association with specific geomorphological features. We found obvious correlations of reflectance with spectral shape (slopes) and age; however, this is not unique throughout the bright spots. Although impact features show generally more extreme reflectance variations, several areas can only be understood in terms of inhomogeneous distribution of composition as inferred from Dawn Visible and Infrared Spectrometer data. Additional material with anomalous composition and spectral properties are rare. The identification of the composition and origin of the dark, particularly the darkest material, remains to be explored. The spectral properties and the morphology of the dark sites suggest an endogenic origin, but it is not clear whether they are more or less primitive surficial exposures or excavated subsurface but localized material. The reflectance, spectral properties, inferred composition, and geologic context collectively suggest that the bright and dark material tends to gradually change toward the average surface over time. This could be because of multiple processes, i.e., impact gardening/space weathering, and lateral mixing, including thermal and aqueous alteration, accompanied by changes in composition and physical properties such as grain size, surface temperature, and porosity (compaction).  相似文献   

10.
High-resolution spectroscopic observations of asteroids Ceres and Pallas have been obtained in the 1.0- to 2.6-μm region. Combined with previous spectralmeasurements at other wavelengths, this work presents the broadband spectral reflectances of these asteroids over the 0.4 to 3.6-um region. This extended coverage permits new analyses of the surface mineralogies of these objects. Using laboratory comparison spectra of meteorites and mixtures of terrestrial minerals, the surfaces of Ceres and Pallas are consistent with mixtures of opaques and hydrated silicates, such as are found in types C1 and C2 meteorites. This research emphasizes the importance of the 3-um spectral region for studying by remote methods the relationship of carbonaceous chondrite mineralogies to asteroid surfaces.  相似文献   

11.
Abstract— We measured infrared diffuse reflectance spectra of several carbonaceous chondrites in order to obtain additional information on the surface materials of their presumed parent bodies, C-type asteroids. The presence and intensity of absorption bands near 3 μm in the reflectance spectra are due to the presence and abundance of hydrates and/or hydroxyl ions. The absorption features of the 3 μm hydration bands of carbonaceous chondrites were compared with those of asteroids 1 Ceres and 2 Pallas. They are commonly classified into separate subtypes, G- and B-type. The spectral shapes of Pallas and Renazzo (CR2 chondrite) around the 3 μm absorption band are an excellent match. This result may suggest that the amount of hydrous minerals in the surface material of Pallas is smaller than that in the CM2 or CI chondrites, and the hydrous minerals on the surface of Pallas may be similar to those found in Renazzo. The spectral features around the 3 μm band of Ceres are different from those of carbonaceous chondrites studied in this paper.  相似文献   

12.
The common appearance of hygroscopic brine (“sweating”) on ordinary chondrites (OCs) from Oman during storage under room conditions initiated a study on the role of water‐soluble salts on the weathering of OCs. Analyses of leachates from OCs and soils, combined with petrography of alteration features and a 11‐month record of in situ meteorite and soil temperatures, are used to evaluate the role of salts in OC weathering. Main soluble ions in soils are Ca2+, SO42?, HCO3?, Na+, and Cl?, while OC leachates are dominated by Mg2+ (from meteoritic olivine), Ca2+ (from soil), Cl? (from soil), SO42? (from meteoritic troilite and soil), and iron (meteoritic). “Sweating meteorites” mainly contain Mg2+ and Cl?. The median Na/Cl mass ratio of leachates changes from 0.65 in soils to 0.07 in meteorites, indicating the precipitation of a Na‐rich phase or loss of an efflorescent Na‐salt. The total concentrations of water‐soluble ions in bulk OCs ranges from 600 to 9000 μg g?1 (median 2500 μg g?1) as compared to 187–14140 μg g?1 in soils (median 1148 μg g?1). Soil salts dissolved by rain water are soaked up by meteorites by capillary forces. Daily heating (up to 66.3 °C) and cooling of the meteorites cause a pumping effect, resulting in a strong concentration of soluble ions in meteorites over time. The concentrations of water‐soluble ions in meteorites, which are complex mixtures of ions from the soil and from oxidation and hydrolysis of meteoritic material, depend on the degree of weathering and are highest at W3. Input of soil contaminants generally dominates over the ions mobilized from meteorites. Silicate hydrolysis preferentially affects olivine and is enhanced by sulfide oxidation, producing local acidic conditions as evidenced by jarosite. Plagioclase weathering is negligible. After completion of troilite oxidation, the rate of chemical weathering slows down with continuing Ca‐sulfate contamination.  相似文献   

13.
Abstract— Infrared diffuse reflectance spectra (2.53–25 μm) of some carbonaceous (C) chondrites were measured. The integrated intensity of the absorption bands near 3 μm caused by hydrous minerals were compared with the modal content of hydrous minerals for the meteorites. The CM and CI chondrites show larger values of the integrated intensity than those of the unique C chondrites Y82162, Y86720 and B7904, suggesting that the amount of hydrous minerals in the CM and CI chondrites is larger, which supports the contention that hydrous minerals were dehydrated by thermal metamorphism in the unique chondrites. Orgueil (CI) has the largest value of the integrated intensity among the C chondrites we measured and shows a sharp absorption band at 3685 cm?1 (2.71 μm) that is not seen in the spectra of the CM chondrites. There is an excellent correlation between the observed hydrogen content in C chondrites and the integrated intensity. The CM chondrites show a wide variation in the strength of absorption bands at 1470 cm?1 (6.8 μm), despite the similarity in absorption features near 3 μm for all CM chondrites. The 1470 cm?1 band could be due to the presence of some hydrocarbons but may also be a result of terrestrial alteration processes.  相似文献   

14.
Abstract— I review the dynamical and compositional evidence for possibly linking CM chondrites and asteroids having G-class taxonomic designations. Three G asteroids have been identified through previous theoretical studies as being likely meteorite source bodies due to their locations near resonances. Two of these objects, 19 Fortuna and 13 Egeria, have spectral properties that are consistent with such a linkage with CM chondrites. Fortuna has a similar strength 0.7 μm absorption feature and near-infrared spectral slope to CM chondrites but a weaker ultraviolet feature. Egeria also has the characteristic 0.7 μm feature of CM chondrite spectra but does not match as well in the near-infrared. However, since the 0.7 μm feature is apparent in the spectra of approximately one-half of measured C-type asteroids, no definitive statement about any linkages can be made. Ceres is spectrally different from known meteorites in the 3 μm wavelength region and cannot be convincingly linked with any meteorite group.  相似文献   

15.
We investigate the region of crater Haulani on Ceres with an emphasis on mineralogy as inferred from data obtained by Dawn's Visible InfraRed mapping spectrometer (VIR), combined with multispectral image products from the Dawn Framing Camera (FC) so as to enable a clear correlation with specific geologic features. Haulani, which is one of the youngest craters on Ceres, exhibits a peculiar “blue” visible to near‐infrared spectral slope, and has distinct color properties as seen in multispectral composite images. In this paper, we investigate a number of spectral indices: reflectance; spectral slopes; abundance of Mg‐bearing and NH4‐bearing phyllosilicates; nature and abundance of carbonates, which are diagnostic of the overall crater mineralogy; plus a temperature map that highlights the major thermal anomaly found on Ceres. In addition, for the first time we quantify the abundances of several spectral endmembers by using VIR data obtained at the highest pixel resolution (~0.1 km). The overall picture we get from all these evidences, in particular the abundance of Na‐ and hydrous Na‐carbonates at specific locations, confirms the young age of Haulani from a mineralogical viewpoint, and suggests that the dehydration of Na‐carbonates in the anhydrous form Na2CO3 may be still ongoing.  相似文献   

16.
Dwarf-planet (1) Ceres is one of the two targets, along with (4) Vesta, that will be studied by the NASA Dawn spacecraft via imaging, visible and near-infrared spectroscopy, and gamma-ray and neutron spectroscopy. While Ceres’ visible and near-infrared disk-integrated spectra have been well characterized, little has been done about quantifying spectral variations over the surface. Any spectral variation would give us insights on the geographical variation of the composition and/or the surface age. The only work so far was that of Rivkin and Volquardsen ([2010], Icarus 206, 327) who reported rotationally-resolved spectroscopic (disk-integrated) observations in the 2.2–4.0 μm range; their observations showed evidence for a relatively uniform surface.Here, we report disk-resolved observations of Ceres with SINFONI (ESO VLT) in the 1.17–1.32 μm and 1.45–2.35 μm wavelength ranges. The observations were made under excellent seeing conditions (0.6″), allowing us to reach a spatial resolution of ~75 km on Ceres’ surface. We do not find any spectral variation above a 3% level, suggesting a homogeneous surface at our spatial resolution. Slight variations (about 2%) of the spectral slope are detected, geographically correlated with the albedo markings reported from the analysis of the HST and Keck disk-resolved images of Ceres (Li et al. [2006], Icarus 182, 143; Carry et al. [2008], Astron. Astrophys. 478, 235). Given the lack of constraints on the surface composition of Ceres, however, we cannot assert the causes of these variations.  相似文献   

17.
Abstract— We present combined multi‐spectral imager (MSI) (0.95 μm) and near‐infrared spectrometer (NIS) (0.8–2.4 μm) observations of Psyche crater on S‐type asteroid 433 Eros obtained by the Near‐Earth Asteroid Rendezvous (NEAR)—Shoemaker spacecraft. At 5.3 km in diameter, Psyche is one of the largest craters on Eros which exhibit distinctive brightness patterns consistent with downslope motion of dark regolith material overlying a substrate of brighter material. At spatial scales of 620 m/ spectrum, Psyche crater wall materials exhibit albedo contrasts of 32–40% at 0.946 μm. Associated spectral variations occur at a much lower level of 4–8% (±2–4%). We report results of scattering model and lunar analogy investigations into several possible causes for these albedo and spectral trends: grain size differences, olivine, pyroxene, and troilite variations, and optical surface maturation. We find that the albedo contrasts in Psyche crater are not consistent with a cause due solely to variations in grain size, olivine, pyroxene or lunar‐like optical maturation. A grain size change sufficient to explain the observed albedo contrasts would result in strong color variations that are not observed. Olivine and pyroxene variations would produce strong band‐correlated variations that are not observed. A simple lunar‐like optical maturation effect would produce strong reddening that is not observed. The contrasts and associated spectral variation trends are most consistent with a combination of enhanced troilite (a dark spectrally neutral component simulating optical effects of shock) and lunar‐like optical maturation. These results suggest that space weathering processes may affect the spectral properties of Eros materials, causing surface exposures to differ optically from subsurface bedrock. However, there are significant spectral differences between Eros' proposed analog meteorites (ordinary chondrites and/or primitive achondrites), and Eros' freshest exposures of subsurface bright materials. After accounting for all differences in the measurement units of our reflectance comparisons, we have found that the bright materials on Eros have reflectance values at 0.946 μm consistent with meteorites, but spectral continua that are much redder than meteorites from 1.5 to 2.4 μm. Most importantly, we calculate that average Eros surface materials are 30–40% darker than meteorites.  相似文献   

18.
We have measured the bi-directional reflectance phase function on selected meteorite samples (1 howardite, 1 eucrite, 1 diogenite, Orgeuil (CI), Tagish Lake (CC), Allende (CV), Lunar meteorite (MAC 88105), Forest Vale (H4)) covering part of the geochemical and petrologic diversity expected for asteroid surfaces. Samples were measured as powders, for which we achieved reflectance measurements from phase angles down to 3°, and up to 150°, at five different wavelengths covering the VIS–NIR spectral region. The data were fitted by the photometric model of Hapke (Hapke, B. [1993]. Theory of reflectance and emittance spectroscopy. Cambridge University Press, Cambridge). The physical sense of the retrieved Hapke’s parameters seems unclear but they permit to interpolate the data to any observation geometry. Strong opposition effects were observed for all samples. The absolute intensity of this effect appears moderately variable among our sample suite, and is not correlated with the average sample reflectance. We interpret this observation as Shadow-Hiding Opposition Effect (SHOE). In the case of samples presenting intense absorption bands (the Fe crystal field band at 1 μm of HED and the ordinary chondrite), we observe significant dependence of band depth to phase angle, up to 70°, even for moderate variation of phase angle. In addition, a general trend of spectral reddening with phase angle is observed. This reddening, linear with phase angle, is present in all meteorites studied. This behavior is not predicted by classical radiative theories. We propose that small-scale roughness (of the order of or below the wavelength) may induce such a behavior.  相似文献   

19.
We compare 13 near-infrared (0.8-2.4 μm) spectra of two low albedo C complex outer-belt asteroid families: Themis and Veritas. The disruption ages of these two families lie at opposite extremes: 2.5 ± 1.0 Gyr and 8.7 ± 1.7 Myr, respectively. We found striking differences between the two families, which show a range of spectral shapes and slopes. The seven Themis family members (older surfaces) have “red” (positive) slopes in the 1.6-2.4 μm region; in contrast, the six Veritas members (younger surfaces) have significantly “flatter” slopes at these same wavelengths. Moreover, the two families are characterized by different concavity at shorter (1.0-1.5 μm) wavelengths with the Themis group being consistently flat or concave up (smile) and the Veritas group being consistently concave down (frown). Each family contains a broad range of diameters, suggesting our results are not due to comparisons of asteroids of different sizes. The statistically significant clustering of the two spectral groups could be explained by one of the following three possibilities or a combination of them: (1) space weathering effects, (2) differences in original composition, or (3) differences in thermal history perhaps as a result of the difference in parent body sizes. As a result of our analyses, we propose a new method to quantify broad and shallow structures in the spectra of primitive asteroids. We found reasonable matches between the observed asteroids and individual carbonaceous chondrite meteorites. Because these meteoritic fits represent fresh surfaces, space weathering is neither necessary nor ruled out as an explanation of spectral differences between families. The six Veritas family near-infrared (NIR) spectra represent the first NIR analysis of this family, thus significantly increasing our understanding of this family over these wavelengths.  相似文献   

20.
Reliable quantitative mapping of minerals exposed on Vesta's surface is crucial for understanding the crustal composition, petrologic evolution, and surface modification of the howardite, eucrite, and diogenite (HED) parent body. However, mineral abundance estimates derived from visible–near infrared (VIS–NIR) reflectance spectra are complicated by multiple scattering, particle size, and nonlinear mixing effects. Radiative transfer models can be employed to accommodate these issues, and here we assess the utility of such models to accurately and efficiently determine modal mineralogy for a suite of eucrite and olivine‐bearing (harzburgitic) diogenite meteorites. Hapke and Shkuratov radiative transfer models were implemented to simultaneously estimate mineral abundances and particle size from VIS–NIR reflectance spectra of these samples. The models were tested and compared for laboratory‐made binary (pyroxene–plagioclase) and ternary mixtures (pyroxene–olivine–plagioclase) as well as eucrite and diogenite meteorite samples. Results for both models show that the derived mineral abundances are commonly within 5–10% of modal values and the estimated particle sizes are within the expected ranges. Results for the Hapke model suggest a lower detection limit for olivine in HEDs when compared with the Shkuratov model (5% versus 15%). Our current implementation yields lower uncertainties in mineral abundance (commonly <5%) for the Hapke model, though both models have an advantage over typically used parameters such as band depth, position, and shape in that they provide quantitative information on mineral abundance and particle size. These results indicate that both the Hapke and Shkuratov models may be applied to Dawn VIR data in a computationally efficient manner to quantify the spatial distribution of pyroxene, plagioclase, and olivine on the surface of Vesta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号