首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Height distribution of the stratospheric aerosol extinction coefficient was measured in the altitude range 10 to 20 km by a balloon-borne multi-color sunphotometer in May 1978. It is demonstrated that detailed structures of the distribution of stratospheric aerosol can be remotely measured by the solar occultation method as well as by lidar andin situ particle counter observations. In the aerosol layer appearing at 18 km altitude the extinction coefficient at 800–1000 nm wavelength reached to 3×10–7 m–1, which was reasonable compared with lidar observations. Wavelength dependence of the aerosol optical depth was crudely estimated to be proportional to –1.5.  相似文献   

2.
Summary The value of three different methods for deducing aerosol size distribution from diffusional decay measurements — the exhaustion method proposed byPollak andMetnieks, the method byFuchs et al. and the method byNolan andScott — is investigated with numerical examples of known distributions and also by applying them to laboratory experiments. It was found that the exhaustion method and the method proposed byFuchs et al. are satisfactory for deducing the mean particle size and that none of the three methods is quite satisfactory for deducing dispersion of the distributions with higher accuracy.  相似文献   

3.
Abstract

The physics of the geodynamo is discussed. The main processes relevant for the buoyancy driven geodynamo are isolated. The successive stages of development of geodynamo theory are briefly described. The mechanism of local turbulence in the Earth's core is explained, and an estimate is presented of the turbulent transport of density inhomogeneities in the Earth's core. The significance of this turbulent transport to the geodynamo mechanism is stressed. The general scheme of the complete geodynamo theory of the future is outlined.  相似文献   

4.
Summary When a vapor pressure gradient exists in air containing suspended particulate matter, the particles are propelled toward the region of lower vapor pressure by molecular bombardment of vapor molecules. It has been proposed that this effect is important as a process for removing the particles of natural aerosols from the air surrounding growing cloud droplets.This effect has been investigated experimentally by observing the removal of artificial aerosol particles form an experimental chamber in which a known vapor pressure gradient was established. The velocities imparted to particles under the action of a vapor pressure gradient were determined. The results of the measurements were used to calculate the rate of removal of particles in the vicinity of growing cloud droplets. It was concluded that less than 1% of the particles in the region would be removed during the growth of a typical cloud.This work has been submitted in partial satisfaction of the requirements for the degree of Master of Science.  相似文献   

5.
A theoretical model based on some physical assumptions has been integrated to study the scattering of solar radiation by aerosol particulates of any size present in the atmosphere. Using this model, which incorporates multiple scattering, scattered fluxes of radiation with varying optical depths and also the optical depth versus wavelengths are computed. The present results are found to be in close agreement with the observations of the Pre-Indian Ocean Experiment (INDOEX) 1996. This provides evidence of the direct effect of aerosol particulates on the radiative forcing of the atmosphere.  相似文献   

6.
The level of scattered radiation is analyzed using data of diurnal solar coronograph observations at the Mountain Astronomic Station in the period 1957?C2010 around coronal spectral lines at 5303 ? and 6374 ?. The observations were performed near the solar limb and were normalized by the intensity of the solar disk center. The measurements revealed variations on different timescales: seasonal variations, local maxima on timescales of a few years, and long-term trends. The local changes in the level of scattered radiation were found to be probably due to volcanic eruptions. An analysis revealed a tendency towards an increased in scattered radiation by approximately 40% during the last 50 years. The variations in the level of scattered radiation are compared with the concentration of atmospheric aerosols. The long-term growth in scattered radiation compares well with changes in the Earth??s near-surface temperature and is possibly associated with global climate change.  相似文献   

7.
Summary The motion of an aerosol can be described by a general force balance equation, independent of the detailed structure of the flow, provided that the interaction between the external flow field and the local flow induced by the aerosol is weak. A necessary and sufficient condition for the interaction to be weak is that the length scale of the aerosol is much less than that of the external flow. High and low Reynolds number regimes can be distinguished for the motion of an aerosol relative to the external flow. In some extreme conditions the equation of motion reduces to an algebraic equation for the aerosol velocity.After submission of this article the author was made aware of a similar treatment published inTopics of Appl. Phys., 12 (Turbulence, Chapter 7), Springer Verlag, Berlin, which at the time of the article's submission had not yet appeared in Australia. (Ed.)  相似文献   

8.
Recent advances in the theory of fracture and fragmentation are reviewed. Empirical laws in seismology are interpreted from a fractal perspective, and earthquakes are viewed as a self-organized critical phenomenon (SOC). Earthquakes occur as an energy dissipation process in the earth's crust to which the tectonic energy is continuously input. The crust self-organizes into the critical state and the temporal and spatial fractal structure emerges naturally. Power-law relations known in seismology are the expression of the critical state of the crust. An SOC model for earthquakes, which explains the Gutenberg-Richter relation, the Omori's formula of aftershocks and the fractal distribution of hypocenters, is presented. A new view of earthquake phenomena shares a common standpoint with other disciplines to study natural complex phenomena with a unified theory.  相似文献   

9.
Single particle mass spectrometry has been widely used to determine the size and chemical compositions of atmospheric aerosols; however, it is still rarely used for the microphysical properties measurement. In this study, two methods were developed for determining aerosol effective density by a single particle aerosol mass spectrometer (SPAMS). Method I retrieved effective density through comparison between measured light scattering intensities and Mie theoretical modelled partial scattering cross section. Method II coupled a differential mobility analyzer (DMA) with SPAMS to simultaneously determine the electric mobility and vacuum aerodynamic diameter, and thus the effective density. Polystyrene latex spheres, ammonium sulfate and sodium nitrate were tested by these methods to help validate their effectiveness for determining the aerosol effective density. This study effectively extends SPAMS measurements to include particle size, chemical composition, light scattering, and effective density, and thus helps us better understand the environment and climate effects of aerosols.  相似文献   

10.
Summary This article analyzes the nature of the aerosol information that current or planned spacecraft measurements could contribute toward the required input data for studies of natural anthropogenic influences on the middle atmosphere, and their consequent effects on our weather and climate. The analysis is conducted with particular reference to the solar occultation sounding technique as applied by the SAGE I experiment on the Atmospheric Explorer Mission B spacecraft. Its conclusions should prove to be of use in both the interpretation of the SAGE I data, and in the design of the follow-on mission on the Earth Radiation Budget satellite.Our analysis shows, in particular, that further studies are required in: the choice and number of sounding channels; the data taking sequence in relation to the atmospheric regions probed; the accuracy and vertical resolution of the atmospheric profiling, and their dependence on both the instrument/spacecraft parameters and the data inversion techniques; and the data reduction procedures. Neither of the selected channels is in a one-to-one relationship with an atmospheric constituent; hence, unless further assumptions are introduced, inversion techniques based on such a property are not applicable. The aerosol wavelengths are not satisfactory as they are only sensitive to the large size tail of the aerosol size distribution rather than to the predominant sizes; for these, UV wavelengths would be required. Owing to the change of the Sun's shape due to atmospheric refraction as the Sun either sets or rises, the higher altitudes will be scanned fewer times than the lower altitudes. Also, because transmission approaches rapidly unity above 40 km, the same high altitudes are more sensitive to measurement errors-errors that will propagate to lower altitude determinations when inverted profiles are reconstructed from the top of the atmosphere. These two factors, combined with the small air mass values at the high altitudes, are the cause of the mathematical ill-conditioning of the inversion problem. They point toward the need for a data-taking sequence strategy that would trade off between data storage and transmission constraints, larger accuracy at the high altitudes, and proper division of the atmosphere in order to overcome the ill-conditioning. Likewise, and as a result of the above considerations, there is a need for a detailed trade off study between data accuracy and vertical resolution of the reconstructed profiles. This should take into account the seasonal and geographical variations in the distribution of atmospheric constituents, as well as a representative statistical set at any given location and time, appropriate error measures and their vertical profiles, and several inversions utilizing as initial guesses profiles that depart from the true ones.It is also shown that the aerosol and ozone number densities cannot be recovered simultaneously without introducing some formula for the aerosol extincition or assumptions on the form of the aerosol size distribution. This problem is not resolved by the addition of sounding channels because each such channel introduces an additional unknown aerosol extinction. Thus, one is led to a separate rather than a simultaneous determination of the various constituents by resorting to complementary measurements. For a future experiment, it is suggested to determine the ozone separately from measurements at a close pair of appropriate wavelengths between which the aerosol extinction varies slowly whereas that of ozone exhibits a rapid variation. A similar technique could also be used for the separate determination of NO2. The relaxation-type of inversion suggest byChu andMcCormick (1979) does not seem to be appropriate because each channel is not sensitive selectively to an individual constituent, the aerosol channels are not sensitive to the important sizes in the distribution, and the sensitivity of the channels to the constituents of interest varies greatly with altitude.In the retrieval of the vertical profiles, the cause of the ill-conditioning of the inversion is identified. Two approaches are suggested for overconing this problem: (i) build the profile starting from the top of the atmosphere (forward procedure) but with an initial layer of sufficient air mass, or preferably (ii) reconstruct the profile from the lowest altitude reached (backward procedure) with a renormalization at the top of the atmosphere. In this process, the minimization search method (Fymat, 1976) would appear to be a better technique than the onion-peeling technique, as demonstrated byMill andDrayson (1978).In order to maximize the scientific return of SAGE I, a data inversion procedure is proposed. It assumes that (i) there are no aerosols above 25 km, and no NO2 below this altitude (as suggested byChu andMcCormick, 1979), (ii) below 25 km, ozone (and NO2, if present) could be determined separately, and (iii) the aerosol has a known refractive index at all wavelengths of interest, is assumed to be spherical (or describable in terms of equivalent spheres), and the minimum and maximum radii of its size distribution are known a priori. Under these assumptions, it is possible to retrieve the neutral density, NO2 and O3 profiles above 25 km, by either the forward or the backward procedure described above. Taking into consideration the power law variation of the air density with altitude, it is further possible to reconstruct the corresponding profiles at all the lower altitudes from the determinations in the altitude range 30–40 km. Below 25 km, the four SAGE I channels would then all become available for the aerosol inversion. While the profile reconstruction could proceed as for the higher altitudes, the aerosol inversion at each individual altitude presents problems of its own. Results of numerical experiments for aerosol inversion using all four SAGE wavelengths and seven different inversion routines are presented. If good a priori information is available on the sought size distribution solution, reasonably satisfactory inversions can be performed (see line 1 of Table 2, and Fig. 3c and 3d). However, in the absence of such information, there are as many solutions as inversion methods tried, in complete conformity with the well-known ill-conditioning of the problem. Among methods providing physically meaningful solutions, no method could be singled out as preferable to the others. In these inversions, the data were assumed to be exact, and 99% of the distribution were used. Under different conditions, the nonuniqueness of the inversion would be further compounded.Lastly, based on the present study, a strategy is suggested for the design and data interpretation of a follow-on SAGE-type experiment. Considering the important advantages to this problem presented by forward scattering, as demonstrated byFymat andMease (1978), a composite (extinction-forward scattering) experiment is recommended for the future experiments.Invited article for the Special Issue The Middle Atmosphere, Journal of Pure and Applied Geophysics.Supported by NASA Contract NAS 7-100 with the Jet Propulsion Laboratory, sponsored by the Offices of Planetary Atmospheres and Earth Applications. JPL Atmospheres Publication No.  相似文献   

11.
Summary Theoretical considerations are put forward for identifying the Dynamic and Static Methods of Diffusion measurements of aerosol particles. On the basic of this equality the Exhaustion Method of Diffusion developed byPollak andMetnieks for the size-frequency resolution of a heterogeneous aerosol by Dynamic Diffusion Methods should be applicable to Static Methods. This hypothesis is tested using a Pollak-Nolan nucleus counter as decay vessel. It is shown that turbulence in the counter is the most serious obstacle against this type of approach to finding the size components of an aerosol. The time involved, the high humidity in the counter and a hypothetical nucleus-free zone are other major difficulties for relatively large Aitken nuclei. It is established, however, that for particles whose diffusion coefficient is of the order of 10–3 cm2 sec–1, the proposed method should be quite workable.  相似文献   

12.
Studies of aquatic invertebrate production have been primarily conducted at the level of individual taxa or populations. Advancing our understanding of the functioning and energy flow in aquatic ecosystems necessitates scaling-up to community and whole-lake levels, as well as integrating across benthic and pelagic habitats and across multiple trophic levels. In this paper, we compare a suite of non-cohort based methods for estimating benthic invertebrate production at subpopulation, habitat, and whole-lake levels for Sparkling Lake, WI, USA. Estimates of the overall mean benthic invertebrate production (i.e. whole-lake level) ranged from 1.9 to 5.0 g DM m−2 y−1, depending on the method. Production estimates varied widely among depths and habitats, and there was general qualitative agreement among methods with regards to differences in production among habitats. However, there were also consistent and systematic differences among methods. The size-frequency method gave the highest, while the regression model of Banse and Mosher (Ecol Monogr 50:355–379, 1980) gave the lowest production estimates. The regression model of Plante and Downing (Can J Fish Aquat Sci 46:1489–1498, 1989) had the lowest average coefficients of variation at habitat (CV = 0.17) and whole-lake (CV = 0.08) levels. At the habitat level, variance in production estimates decreased with sampling effort, with little improvement after 10–15 samples. Our study shows how different production estimates can be generated from the same field data, though aggregating estimates up to the whole-lake level does produce an averaging effect that tends to reduce variance.  相似文献   

13.
14.
15.
Summary By the «limiting sphere» method the combination coefficients for gaseous ions and aerosol particles were calculated, allowing for the jump in ion concentration at the surface of the particles. Hence the stationary charge distribution on aerosol particles in a symmetrical bipolar ionic atmosphere was determined. The use of the Boltzmann equation for this purpose proposed by some authors is theoretically wrong asthis equation applies to equilibrium rather than to stationary states. In practice, the Boltzmann equation can be used for particles with radius 3·10–5 cm (under atmospheric pressure). Within this range the image forces and the jump in ion concentration may be neglected. The conditions of the applicability of the steady diffusion equations to the theory of the stationary charge distribution in aerosols are discussed.  相似文献   

16.
The precision of height measurements derived from laser scanning a weathered rock surface was analysed. Different registration methods for comparing surfaces to deduce weathering were assessed and the most precise was found to be the method that used registration shapes as control, located in different planes relative to the scanned surface. In addition, the different sources of error in scanning precision were assessed by varying factors such as scan distance, lens configuration, scan angle and the nature of the topography being scanned. From this analysis it was possible to suggest what the optimal scanning conditions were for this particular experimental set‐up. The procedures outlined for assessing errors in the precision of height measurements are transferable to other scanning studies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
We describe a dynamic model developed from a commercially available modeling package (ECoS-III) to simulate estuarine dissolved inorganic nitrogen (DIN) dynamics, and consequent N(2)O production and atmospheric flux on the timescale of tidal cycles. Simulated model state variables were NH(4)(+), NO(3)(-) and N(2)O concentrations, and salinity. Model outputs were evaluated through comparison with summer field data for the Tyne estuary, UK. The model adequately reproduced the observed axial profiles of NH(4)(+), NO(3)(-) and N(2)O concentrations. Nitrification was shown to be the dominant N(2)O source and estimates of the ratios nitrification to DIN load and N(2)O emission to DIN load are considerably lower than the corresponding values adopted in global scale models of estuarine N(2)O emissions based on DIN transformations. Hence our results are consistent with the requirement imposed by atmospheric N(2)O growth rate constraints that the amount of atmospheric N(2)O arising from agriculturally related sources, including estuarine transformations of N, be revised downward.  相似文献   

18.
目前,我国处于开发中后期的油田平均产水率高达80%以上.因此对产层进行评价,确定地层动态渗透率等参数及剩余油的平面分布,由此研究其特点具有十分重要的意义.在储层径向流动方程分析的基础上,研究了储层渗透率与产液量/吸水量和油并内流压变化等生产测井资料之间的关系,提出了利用油田生产测井资料估算各产层的动态渗透率的方法.该方法不需关井,计算过程相对简单、可以节约成本,还可以避免常规压力恢复或压力降落试井造成低产井降产甚至停产的可能性.计算结果能较好地反映各小层的产液性质.  相似文献   

19.
Summary The National Center for Atmospheric Research Lidar Sustem is briefly described. Data will be presented showing stratification and temporal variations of optical backscattering due to atmospheric aerosol up to a height of 40 kilometers. Short lived (less than 4 seconds) layers with thicknesses and spacing of 30 meters are routinely observed over the entire range of observation. A well-defined layer of temporal stability of several hours is very often found at the tropopause. The so-called 20 kilometer sulphate layer is found to be subject to variations in altitude, thickness, and assuming a non-varying size distribution and composition, in concentration. Significant and quasistable layers exist between 25 and 40 kilometers including one at the 36 kilometer leve which has been postulated by preliminary calculations of Mateer to be responsible for the blue and white bands observed and photographed by astronauts.Paper published by Journal of Geophysical Research75 (1970), 3123–3132.  相似文献   

20.
Summary The concentrations of Na, Cl and SO4 have been measured as a function of time in snow from Jarl-Joset, Greenland. Large sulfate to chloride ratios and a strong parallelity between sulfate- and sea salt components were obtained in the period 1880 to 1968. The possible origin of the excess sulfate and the reason for the parallelity are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号