首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The seismic probing of the crust and upper mantle in Canada started in 1938 and since then has involved many government and university groups using a wide variety of techniques. These have included simple profiling with both wide and narrow station spacing, areal time-term surveys, detailed deep reflection experiments, very long-range refraction studies and the analysis of surface wave dispersion between stations of the Canadian Standard Network.

A review of the published interpretation leads to the general conclusion that:

1. (1) Pn-velocities vary from a value possibly as low as 7.7 km/sec under Vancouver Island to 8.6 km/sec and higher in the extreme eastern part of the shield and some parts of the Atlantic coast.

2. (2) Large areas of Canada have a crustal thickness of 30–40 km, with Vancouver Island, the southwestern Prairies, the Lake Superior basin and parts of the eastern shield of Quebec being thicker. No continental area in Canada is known to have a crust thinner than 29 km.

3. (3) The Riel discontinuity — a deep intra-crustal reflector and sometime refractor, is widely reported in the Prairies and Manitoba. It is not seen to the north in the vicinity of Great Slave Lake, nor in the Hudson Bay, Lake Superior and Maritime regions, nor in the interior of British Columbia. It may be present in some areas of the eastern shield.

4. (4) As experiments have become more detailed, crustal structures of greater complexity have been revealed. The concept that crustal structure becomes simpler with increasing depth is apparently unfounded.

Long-range refraction studies suggest that the Gutenberg P-wave low-velocity channel is poorly developed under the Canadian Shield. The analysis of the dispersion of surface waves, however, suggests that the channel is better developed for S-waves, and is present throughout the country. The lid of the channel is deepest under the central shield and shallowest under the Cordillera.  相似文献   


2.
Claus Prodehl 《Tectonophysics》1981,80(1-4):255-269
The crustal structure of the central European rift system has been investigated by seismic methods with varying success. Only a few investigations deal with the upper-mantle structure. Beneath the Rhinegraben the Moho is elevated, with a minimum depth of 25 km. Below the flanks it is a first-order discontinuity, while within the graben it is replaced by a transition zone with the strongest velocity gradient at 20–22 km depth. An anomalously high velocity of up to 8.6 km/s seems to exist within the underlying upper mantle at 40–50 km depth. A similar structure is also found beneath the Limagnegraben and the young volcanic zones within the Massif Central of France, but the velocity within the upper mantle at 40–50 km depth seems to be slightly lower. Here, the total crustal thickness reaches only 25 km. The crystalline crust becomes extremely thin beneath the southern Rhônegraben, where the sediments reach a thickness of about 10 km while the Moho is found at 24 km depth. The pronounced crustal thinning does not continue along the entire graben system. North of the Rhinegraben in particular the typical graben structure is interrupted by the Rhenohercynian zone with a “normal” West-European crust of 30 km thickness evident beneath the north-trending Hessische Senke. A single-ended profile again indicates a graben-like crustal structure west of the Leinegraben north of the Rhenohercynian zone. No details are available for the North German Plain where the central European rift system disappears beneath a sedimentary sequence of more than 10 km thickness.  相似文献   

3.
Models of continental crust and of geosynclinal processes, in their historical perspective, and generalized views on composition and structure of the tectonosphere are presented and discussed, particularly in reference to the local inversion stage, regional metamorphism, and granitization in geosynclines. Because of the known variations of the tectonosphere, depending on its position (e.g., under geosynclines, platforms, or zones of tectonic activation), it stands to reason that it varies also depending on the stage of the evolution of the overlying zones. -- V.P. Sokoloff.  相似文献   

4.
A rheological model of the Indian shield has been constructed using the thermal structure derived from available surface heat flow and heat generation data and the flow properties of characteristic minerals and rocks like quartz, diabase and olivine which respectively represent the upper crust, lower crust and upper mantle. Lateral variations in the thicknesses of the brittle and ductile crust and of the brittle upper mantle have thus been obtained for different tectonic environments. Implications of these results to interpretation of the seismic structure of the Indian shield have been pointed out.  相似文献   

5.
A synthesis of the heat-flow data for Romania enabled a study of the thermal regime of the crust and upper mantle to be made. This showed lateral thermal differences between various tectonic units. The thermal structure of the crust and upper mantle appears to be mainly the result of mantle convection and plate interaction in the studied area.  相似文献   

6.
A mechanism responsible for the “range-basin” topography is suggested, on the assumption of a high (fluid)viscosity of the asthenosphere, and hence a significant difference between the densities on either side of the Benioff surface sufficient for a development of the vertical component of the pressure against the lithosphere.– V. P. Sokoloff.  相似文献   

7.
Wencai Yang 《Tectonophysics》2009,475(2):226-234
All results from integrated geophysical investigations in the Sulu region are summarized in this paper, trying to reconstruct the Sulu UHPM processes. New seismic S-wave tomographic results suggest a velocity-abnormal zone occurs beneath the Sulu crust, revealing detailed upper mantle structures that high-velocity lumps within the abnormal zone are sequentially distributed beneath the bottom of the asthenosphere. These high-velocity lumps might represent delaminated eclogites or residuals of the subducted oceanic plate. Based on integrated interpretation of the geophysical data, we propose a working model for tectonic reconstruction of the Sulu UHPM processes, which can explain the crust and upper mantle structures of the area. The involved tectonic processes are related to north-eastward escaping of the Sulu terrane, subduction and delamination cycles of the Dabie-Sulu oceanic plate, and post-orogenic lithospheric thinning and magma underplating. The UHPM rocks are believed to have syn-subduction delaminated down to the bottom of the asthenosphere during 245-180 Ma, and the delamination process seemed smooth and nearly continuous without extensive violence.  相似文献   

8.
Tectonosphere of the Earth: upper mantle and crust interaction   总被引:1,自引:0,他引:1  
V.V. Beloussov 《Tectonophysics》1990,180(2-4):139-183
The endogenic geological processes, which include tectonic, magmatic and metamorphic processes, form regular combinations called endogenic regimes. These regimes are: géosynclinal, orogenic, platform, rift, tectonic-magmatic activation (diwa), taphrogenic, plateau-basalt, oceanic basins and mid-oceanic ridges. The endogenic regimes are connected with the peculiarities of the structure, composition and state of the entire tectonosphere, i.e. not only of the crust but of the upper mantle as well.

Heat flow is a major factor controlling the type of the regime. The other conditions are the temperature distribution in the tectonosphere and the degree and type of penetrability of the tectonosphere to melts and fluids. There is a certain regular succession of regimes. The structural evolution of the tectonosphere and the transformation of the matter in it are in close relationship.

The main trend in the development of the tectonospheric material is directed towards geochemical depletion of the upper mantle by fractioning. At the initial stages, fractioning occurred mostly by degassing, and under these conditions the continental crust was formed, rich in non-compatible elements. At that stage the calc-alkaline magmas prevailed. As the upper mantle was depleted and began to lose its volatiles, the mechanism of fractioning changed: degassing was substituted for selective melting, and in this environment most of the tholeiitic magmas were formed. This change in magma composition and in fractioning mechanism was combined with the destruction of the continental crust and the formation of the oceanic crust. The diwa regime and the rifts were the first steps in the destruction of continental crust. The stages that followed were represented by taphrogenic regimes at various levels. These kinds of regimes were manifested in deep continental and marine depressions, compensated and not compensated by sediments.

Taphrogenic regimes are advancing from the east and west onto the Eurasian continent: in the east they form marginal seas and cause subsidence of the eastern parts of the Chinese platform; in the west they produce collapses of the crust in the Mediterranean area.

The major crisis occurred between the Palaeozoic and Mesozoic and since that time the process of substitution of the continental crust by the oceanic crust has proceeded over increasingly large territories.

The evolution of the tectonosphere, instigated by the changes in its matter, was further complicated by temporal and spatial irregularities in deep heat escape, which caused the alternation of excited and quiescent endogenic regimes (tectonomagmatic periodicity) and their co-existence. The combination of all these phenomena creates the structural inhomogeneity of the Earth's crust at any stage of its history.  相似文献   


9.
Based on rheological interpretation of formalized gravity models, earlier known deep-seated structures in the Earth’s crust and mantle of Transbaikalia have been detailed and new ones discovered. The structures are asymmetric and transverse relative to the Baikal rift zone. Their presence explains the peculiar features of the Baikal rift, including the one-way southeasterly direction of horizontal displacement of tectonic masses and northwestern migration of the Earth’s crust extension processes. The prolonged history (more than 250 Ma) of the Baikal rift zone and Transbaikalia mountainous country involved gravity or rotational detachments of rigid tectonic slabs from the craton and their sliding along intracrustal and subcrustal decollement zones into the above-dome area of the Transbaikalia asthenolith.  相似文献   

10.
S. Mueller  K.-P. Bonjer   《Tectonophysics》1973,20(1-4):283-293
An average crust-mantle model has been derived for the East African Rift system based on a number of presently available seismic data. The inversion of experimentally determined spectral transfer ratios of long-period body waves recorded at stations AAE (Addis Ababa, Ethiopia), NAI (Nairobi, Kenya) and LWI (Lwiro, Zaïre) requires at least a two-layer crust. Except for station AAE. the observed P-wave delays can be accounted for by differences in the deduced crustal structure. Phase- and group-velocity measurements of Rayleigh waves along the path AAE-NAI provide additional information on the gross structure of the crust and upper mantle. Only a well-developed asthenosphere channel can explain the observed surface-wave dispersion. It is shown that the average model MS-71 permits a satisfactory interpretation of all the data presented in this paper.  相似文献   

11.
A resistivity model of the southern Urals to depths of 120 km was obtained by numerical simulation of natural- and controlled-source EM soundings at 160 kHz to 4⋅10−4 Hz. The structure of crust and upper mantle was imaged along a transect running ∼800 km across the East European Platform, the Ural foredeep, and the Ural mountains. The new data on geology and tectonics of the southern Urals enlarge the knowledge gained through URSEIS-95 reflection profiling along one of best representative cross-orogen profiles. We discovered a large conductor traceable to depths at least 100–120 km at the junction between the East European Platform and the Ural foredeep. It indicates that the Ural foredeep originated in a weak tectonic zone at the platform edge. The Ural orogen is imaged as a nearly bivergent structure to depths of 70–80 km producing a mosaic pattern of conductors rooted deep beneath the Magnitogorsk greenstone province and the granitic belt of the central East Ural uplift where it is 150 km wide at a depth of ∼120 km. We interpret the discovered deep roots in the context of the geological history of the Urals.  相似文献   

12.
The structure and properties of the deep crust and upper mantle can be investigated using magnetotelluric observations. Near-surface and upper crustal complexities may distort or limit the capability of the data to adequately resolve deep structure. Granite batholiths have been regarded as windows into the lower crust in the context of seismic reflection data although the granite bodies themselves are not usually detected. Magnetotelluric data from SW England are here used to demonstrate that, in addition to imaging the internal structure and base of a granite, the batholith itself provides a suitable environment for the effective estimation of the resistivity structure to lower crustal and upper mantle depths.  相似文献   

13.
A tectonic interpretation of data on the mechanism of earthquake foci enables us to clarify the mechanism of deformation of the earth's crust and upper mantle. The association between the stressed state and the physicomechanical properties of the deformed material ts emphasized. The source of the tectonic deformations is considered to be gravitational differentiation of material of the deep parts of the mantle. —Authors.  相似文献   

14.
《International Geology Review》2012,54(12):1513-1536
New data on velocities of elastic waves in rocks and minerals under pressures, anisotropism of elastic properties of monocrysts, oceanic volcanism, deep seismic profiles, isotopic composition of strontium and distribution-abundance of Sr87 in ancient and in young rocks, and others, tend to show that the "M" discontinuity is but an expression of the state of compaction of the rocks, devoid of any petrographic or geochemical connotations, that the sialitic shell of the Earth, with its heterogeneities, extends to depths exceeding 100 km (i.e. deeper than the "M"), and that the two types of the crust, "oceanic" and "continental," created by geophysicists, are actually one and the same type. Tentatively drawn analogies between the terrestrial and the lunar crust, on the assumption of a lunar origin of tektites, and the.crust of Mars, with regard to densities and planetary size relationships, are used as illustrations of the re-evaluated ratios between the crust and the upper mantle of the earth. — IGR Staff.  相似文献   

15.
The evolution of the Black and Caspian seas is considered based on the analysis of new stratigraphic and paleogeographic data. Three transgression stages (Karangatian, Surozh, Black-Sea) and two regression stages (Post-Karangatian and New-Euxinian) were characterized for the Black Sea, as well as four transgression stages (late Khazarian, early Khvalynian, late Khvalynian, and New-Caspian) and three regression stages (Atelian, Enotaevkan, Mangyshlakian), for the Caspian Sea. The analysis of data on the absolute age of deposits allowed correlation of paleogeographic events for the basins, between them and with the stages of the Last (Valdai) Glaciation: the Karangatian and late Khazarian transgressions were correlated with the Mikulinian Interglacial; the post-Karangatian and Atelian regressions, with the Kalininan glaciation; the early Khvalynian and Surozh transgressions, with the middle Valdai Interstadial; the New-Euxinian and Enotaevkan regressions, with the Ostashkovian glaciation; the Black Sea, late Khvalynian, and New-Caspian transgression, with the late glaciation — post-glaciation periods; the Mangyshlakian regression, with the Older Dryas (?). The last connections between the Caspian and Black seas are dated to the middle Valdai time when waters of the early Khvalynian basin drained down to the Surozh basin.  相似文献   

16.
The previously published results of a deep seismic refraction study of the Dead Sea—Gulf of Elat rift show crustal thinning underneath the rift and the presence of a 5 km thick velocity transition zone in the lower crust along the rift. The structural interpretation of the first-arrival data was revised using the detailed velocity-depth distribution.The revised crustal thicknesses are 35 km near Elat and 27 km, 160 km south of Elat.The crustal thinning and the presence of the velocity transition zone are interpreted as being the result of intrusion of upper mantle material into the lower crust, possibly representing the initial shape of the processes which have been active further south in the Red Sea since earlier times.  相似文献   

17.
《Gondwana Research》2014,26(4):1690-1699
The continental collision between the Indian and Asian plates plays a key role in the geologic and tectonic evolution of the Tibetan plateau. In this article we present high-resolution tomographic images of the crust and upper mantle derived from a large number of high-quality seismic data from the ANTILOPE project in western Tibet. Both local and distant earthquakes were used in this study and 35,115 P-wave arrival times were manually picked from the original seismograms. Geological and geochemical results suggested that the subducting Indian plate has reached northward to the Lhasa terrane, whereas our new tomography shows that the Indian plate is currently sub-horizontal and underthrusting to the Jinsha river suture at depths of ~ 100 to ~ 250 km, suggesting that the subduction process has evolved over time. The Asian plate is also imaged clearly from the surface to a depth of ~ 100 km by our tomography, and it is located under the Tarim Basin north of the Altyn Tagh Fault. There is no obvious evidence to show that the Asian plate has subducted beneath western Tibet. The Indian and Asian plates are separated by a prominent low-velocity zone under northern Tibet. We attribute the low-velocity zone to mantle upwelling, which may account for the warm crust and upper mantle beneath that region, and thus explain the different features of magmatism between southern and northern Tibet. But the upwelling may not penetrate through the whole crust. We propose a revised geodynamic model and suggest that the high-velocity zones under Lhasa terrane may reflect a cold crust which has interrupted the crustal flow under the westernmost Tibetan plateau.  相似文献   

18.
华南地壳及上地幔三维速度结构成像   总被引:2,自引:0,他引:2  
利用国家地震科学数据共享中心的地震目录及临时台网资料,挑选出11 113个区域地震的77 093条P波走时和93 541条S波走时,采用1°×1°的经纬度网格划分,反演获得了深至60km的华南南部地区的地壳及上地幔三维P波和S波的速度结构。研究结果表明,纵波速度结构与横波速度结构从整体来看具有较好的一致性,说明该研究获得的深部速度结果具有较高的可信性,但是在50km的深度纵、横波速度结构的一致性较差,可能是由于该深度的纵横波走时数据存在着较大的差异所导致的。本研究显示了研究区域内的速度结构存在着明显的横向不均匀性,东南沿海地区的地壳中出现了大规模的低速异常,可能与该区地幔物质的上涌有关;而在珠江三角洲、雷州半岛、北部湾及海南岛等地区莫霍面下方出现的低速异常,则与该区的热运动有关。经分析认为,华南南部地壳及上地幔的速度不均匀性和华南板块与扬子地块的相互作用有关,因此开展进一步研究能为探索和分析华南再造以及中国南海北部的构造演化提供重要信息。  相似文献   

19.
20.
A new approach to the investigation of the Sm/Nd evolution of the upper mantle directly from the data on lherzolite xenoliths is described in this paper.It is demonstrated that the model age TCHUR of an unmetasomatic iherzolite zenolith ca represent the mean depletion age of its mantle source, thus presenting a correlation trend between f^Sm/Nd and the mean depletion age of the upper mantle from the data on xenoliths.This correlation trend can also be derived from the data on river suspended loads as well as from granitoids.Based on the correlation trend mentioned above and mean depletion ages of the upper mantle at various geological times, an evolution curve for the mean f^Sm/Nd value of the upper mantle through geological time has been established.It is suggested that the upwilling of lower mantle material into the upper mantle and the recycling of continental crust material during the Archean were more active ,thus maintaining fairly constantf^Sm/Nd and εNd values during this time period. Similarly ,an evolution curve for the mean f^Sm/Nd value of the continental crust through geological time has also been established from the data of continental crust material.In the light of both evolution curves for the upper mantle and continental crust ,a growth curve for the continental crust has been worked out ,suggesting that :(1)about 30%(in volume )of the present crust was present as the continental crust at 3.8 Ga ago ;(2)the growth rate was much lower during the Archean ;and (3)the Proterozoic is another major period of time during which the continental crust wsa built up .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号