首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper provides a brief review of the role that chorus waves play in controlling the dynamics of the Earth's outer radiation belt. Three major topics are discussed: (i) the morphology, characteristics, and properties of chorus waves themselves, with special emphasis on more recent results, (ii) the role that chorus waves play in the loss of radiation belt particles, showing initial results from modeling of relativistic electron microbursts, and estimated lifetimes based on microburst occurrence rates during the main phase of storms, and (iii) the role that chorus waves play in the acceleration of electrons to relativistic energies in the recovery phase of storms, based on a new quasilinear diffusion based calculation.  相似文献   

2.
The present-day state of the studies of the outer radiation belt relativistic electrons and the boundary of the solar proton penetration into the magnetosphere during magnetic storms is briefly reviewed. The main attention is paid to the results from studying the interrelation between these structural formations and other magnetospheric plasma structures. It has been indicated that the relationship between the position of the maximum of belt of relativistic electrons injected during magnetic storms (L max) and the magnetic storm amplitude (|Dst|max = 2.75 × 104/L max4) can be used to predict the extreme latitudinal position of such magnetospheric plasma formations as a trapped radiation region boundary, the nighttime equatorial boundary of the auroral oval, and westward electrojet center during a storm. Using the examples of still rare studies of the solar proton boundary dynamics in the magnetosphere based on the simultaneous measurements on several polar satellites, it has been demonstrated that a change in the geomagnetic field topology during magnetic storms can be diagnosed.  相似文献   

3.
The data on fluxes of electrons with energy Ee > 1 MeV and on radiation doses under the Al shielding of about 2 g/cm2 measured on the GLONASS satellite (circular orbit with altitude 20000 km and inclination 65°) for the period from December 2006 through May 2010 are analyzed. The minimum of the 23rd solar cycle turned out to be the longest for all over the space exploration age. Consequently, average semiannual electron fluxes and daily radiation doses are showing the decrease by more than an order of magnitude in comparison with the levels observed in 2007. We present an example of a diffusion wave of relativistic electrons; the wave develops in a period between magnetic storms. This process may result in a significant increase of the radiation dose measured in the orbit, even under the conditions of weak geomagnetic disturbances. The dynamics of variations in relativistic electron fluxes during the magnetic storm of April 5?C6, 2010, is discussed so far as this is the first strong flux enhancement in the 24th solar cycle.  相似文献   

4.
On the basis of the currents induced by electron fluxes in the Scintillating Fibre Detector (SFD) onboard the EQUATOR-S satellite launched on 2 December 1997, an in-situ acceleration of radiation belt electrons is found to possibly contribute to the increase of the flux of electrons with energies greater than 400 keV. The data acquired between 16 December 1997 and 30 April 1998 on the 500–67300 km, 4° inclination EQUATOR-S orbit show that the increase of the energetic electron flux corresponds to the enhanced geomagnetic activity measured through the Dst index.  相似文献   

5.
陈文磊  谢伦 《地球物理学报》2010,53(12):2796-2804
本文利用低高度太阳同步轨道系列卫星NOAA/POES从1996年到2006年的>0.3 MeV高能电子观测数据,分析了>0.3 MeV高能电子注入辐射带槽区的特征,研究了注入槽区事件与行星际条件、太阳活动和地磁扰动之间的联系.研究表明>0.3 MeV高能电子注入辐射带槽区事件与磁暴的发生密切相关,注入事件的发生与太阳活动的强度有一定的相关性.在此研究的基础上,本文通过分析辐射带槽区>0.3 MeV高能电子通量和Dst指数的相关性,提出了利用Dst指数推算辐射带槽区>0.3 MeV高能电子通量的方法,继而给出了可行的辐射带槽区高能电子辐射环境的预警模式.  相似文献   

6.
7.
8.
Understanding the dynamics of the Earth’s radiation belts is important for modeling and forecasting the intensities of energetic electrons in space. Wave diffusion processes are known to be responsible for loss and acceleration of electrons in the radiation belts. Several recent studies indicate pitch angle and energy mixed-diffusion are also important when considering the total diffusive effects. In this study, a two-dimensional Fokker Planck equation is solved numerically using the Alternating Direction Implicit method. Mixed diffusion due to whistler-mode chorus waves tends to slow down the total diffusion in the energy-pitch angle space, particularly at smaller equatorial pitch angles. We then incorporate the electron energy and pitch angle mixed diffusions due to whistler-model chorus waves into the 4-dimensional Radiation Belt Environment (RBE) model and study the effect of mixed diffusion during a storm in October 2002. The 4-D simulation results show that energy and pitch angle mixed diffusion decrease the electron fluxes in the outer belt while electron fluxes in the slot region are enhanced (up to a factor of 2) during storm time.  相似文献   

9.
The solar wind velocity is the primary driver of the electron flux variability in Earth's radiation belts. The response of the logarithmic flux (“log-flux”) to this driver has been determined at the geosynchronous orbit and at a fixed energy [Baker, D.N., McPherron, R.L., Cayton, T.E., Klebesadel, R.W., 1990. Linear prediction filter analysis of relativistic electron properties at 6.6 RE. Journal of Geophysical Research 95(A9), 15,133–15,140) and as a function of L shell and fixed energy [Vassiliadis, D., Klimas, A.J., Kanekal, S.G., Baker, D.N., Weigel, R.S., 2002. Long-term average, solar-cycle, and seasonal response of magnetospheric energetic electrons to the solar wind speed. Journal of Geophysical Research 107, doi:10.1029/2001JA000506). In this paper we generalize the response model as a function of particle energy (0.8–6.4 MeV) using POLAR HIST measurements. All three response peaks identified earlier figure prominently in the high-altitude POLAR measurements. The positive response around the geosynchronous orbit is peak P1 (τ=2±1 d; L=5.8±0.5; E=0.8–6.4 MeV), associated with high-speed, low-density streams and the ULF wave activity they produce. Deeper in the magnetosphere, the response is dominated by a positive peak P0 (0±1 d; 2.9±0.5RE; 0.8–1.1 MeV), of a shorter duration and producing lower-energy electrons. The P0 response occurs during the passage of geoeffective structures containing high IMF and high-density parts, such as ICMEs and other mass ejecta. Finally, the negative peak V1 (0±0.5 d; 5.7±0.5RE; 0.8–6.4 MeV) is associated with the “Dst effect” or the quasiadiabatic transport produced by ring-current intensifications. As energies increase, the P1 and V1 peaks appear at lower L, while the Dst effect becomes more pronounced in the region L<3. The P0 effectively disappears for E>1.6 MeV because of low statistics, although it is evident in individual events. The continuity of the response across radial and energy scales supports the earlier hypothesis that each of the three modes corresponds to a qualitatively different type of large-scale electron acceleration and transport.  相似文献   

10.
Simultaneous observations of the slow solar wind off the southeast limb of the Sun were made in May 1999 using optical measurements from the C2 and C3 LASCO coronagraphs on board the SOHO spacecraft and radio-scattering measurements from the MERLIN and EISCAT facilities. The observations show the slow solar wind accelerating outwards from 4.5 solar radii (R), reaching a final velocity of 200–300 km s-1 by 25–30 R. The acceleration profile indicated by these results is more gentle than the average profile seen in earlier LASCO observations of larger scale features, but is within the variation seen in these studies.  相似文献   

11.
The studies are based on the experimental mass sounding of the interplanetary plasma near the Sun at radial distances of R = 4−70 R S, performed at Pushchino RAO, Russian Academy of Sciences, and on the calculated magnetic fields in the solar corona based on the magnetic field strength and structure measured on the Sun’s surface at J. Wilcox Solar Observatory, United States. The experimental data make it possible to localize the position of the boundary closest to the Sun of the transition transonic region of the solar wind in the near-solar space (R ≈ 10−20 R S) and to perform an interrelated study of the solar wind structure and its sources, namely, the magnetic field components in the solar corona based on these data. An analysis of the evolution of the flow types in 2000–2007 makes it possible to formulate the physically justified criterion responsible for the time boundaries of different epochs in the solar activity cycle.  相似文献   

12.

开发地球电子辐射带的数据同化模型, 对于理解辐射带电子的动态演化过程和辐射带空间天气预报具有重要意义.结合范阿伦卫星的辐射带电子观测数据和外辐射带三维扩散模型, 采用卡尔曼滤波算法, 本文开发了基于Fortran语言的外辐射带电子三维数据同化模型(Three-dimensional Data Assimilative Model of Outer Radiation belt Electrons, 简称TDAMORE), 实现对L*=3~7、能量范围为0.1~5 MeV、投掷角范围为5°~90°的外辐射带电子时空变化过程的三维重构.通过对2018年8月期间外辐射带电子通量演化过程的重构, 证实TDAMORE模型可以较好地重现不同能量和不同投掷角电子通量在磁暴前后的演化特征.通过分析电子通量的观测和同化结果之间的相关系数、平均误差、平均绝对误差和均方误差, 发现对于能量低于4 MeV的电子, 观测与同化结果之间的相关系数基本大于0.8且误差相对较低.而对于更高能量的电子, 观测与同化结果之间的误差相对较高, 这可能是同化模型忽略了电磁离子回旋波对电子的散射损失导致的.

  相似文献   

13.
Resonant transformation of fast magnetosonic (FMS) wave flux into Alfven and slow magnetosonic (SMS) oscillations is investigated in the one-dimensionally inhomogeneous magnetosphere. Spatial distribution of energy absorption rate of FMS oscillations penetrating into the magnetosphere from the solar wind is studied. The FMS wave energy absorption rate caused by magnetosonic resonance excitation is shown to be several orders of magnitude greater than that caused by Alfven resonance excitation at the same surface. It is connected with the spectrum of incident FMS waves. The Kolmogorov spectrum is used in numerical calculations. Magnitude of the Fourier harmonics exciting resonant Alfven oscillations is much smaller than that of the harmonics driving lower-frequency magnetosonic resonance. It is shown that resonant transformation of FMS waves into SMS oscillations can be an effective mechanism of energy transfer from the solar wind to the magnetosphere.  相似文献   

14.
15.
The velocities of the stationary extra-ecliptic solar wind are analyzed depending on the heliolatitudes, heliocentric distances, and solar activity. An analysis has been performed using the direct measurements of the solar plasma flux velocities onboard Ulysses and the simultaneous ground-based IPS observations. The arguments for the hypothesis that primary high-speed (V ∼ 900 km/s) flows exist at the corona bottom and are directly related to the photosphere and solar magnetic fields are presented. The possible mechanism by which high-speed streams are generated is generally considered.  相似文献   

16.
The paper suggests that spacecraft equipment failures in the near-Earth environment may be caused by one of the following types of streams coming to the Earth’s orbit: (a) slow solar wind in the streamer belt or chains; (b) sporadic solar wind; (c) proton flux with an energy of E > 60 MeV. The laws of solar-terrestrial physics derived to date allow sufficiently reliable determination of the sources of these streams on the Sun as well as fairly precise calculation of their parameters and time of arrival at the Earth’s orbit. We have concluded that spacecraft maintenance and extension of their service life require timely and fairly accurate information regarding the onset of an adverse environmental effect on spacecraft. A successful solution to the problem depends mainly on the current state of the art of research and development in solar-terrestrial, ionospheric, and magnetospheric physics.  相似文献   

17.
18.
C. Jacobi 《Annales Geophysicae》1998,16(12):1534-1543
At the Collm Observatory of the University of Leipzig LF D1 low-frequency total reflection nighttime wind measurements have been carried out continuously for more than two decades. Using a multiple regression analysis to derive prevailing winds, tides and the quasi-2-day wave from the half-hourly mean values of the horizontal wind components, monthly mean values of mesopause wind parameters are obtained that can be analysed with respect to long-term trends and influences of solar variability. The response of the prevailing wind to the 11-year solar cycle differs throughout the year. While in winter no significant correlation between the zonal prevailing wind and solar activity is found, in spring and summer a negative correlation between the TWC can be seen from the measurements. This is connected with stronger vertical gradients of the zonal prevailing wind during solar maximum than during solar minimum. Since the amplitude of the quasi-2-day wave is dependent on the zonal mean wind vertical gradient, this is connected with a positive correlation between solar activity and quasi-two-day wave activity.Paper Presented at the Second IAGA/ICMA (IAMAS) Workshop on Solar Activity Forcing of the Middle Atmosphere, Prague, August 1997  相似文献   

19.
Increases in solar protons and variations in the electron and proton fluxes from the outer radiation belt are studied based on the GLONASS satellite measurements (the circular orbit at an altitude of ~20000 km with an inclination of ~65°) performed in December 2006. Indications in the channels, registered protons with energies of Ep = 3–70 MeV and electrons with energies of Ee > 0.04 and >0.8 MeV, are analyzed. The data on electrons with Ee = 0.8–1.2 MeV, measured on the Express-A3 geostationary satellite, are also presented. Before the strong magnetic storm of December 14 (|Dst|max = 146 nT), the maximum of the outer belt electrons with the energy >0.7 MeV was observed at L ~ 4.5. After the storm, the fluxes of these electrons increased by more than an order of magnitude as compared to the prestorm level, and the maximum of a “new” belt shifted to L < 4 (minimal L reached by the GLONASS orbit). Under quiet geomagnetic conditions, solar protons with the energies >3 MeV fill only high-latitude legs of the GLONASS orbit. During the strong magnetic storm of December 15, the boundary of proton penetration into the magnetosphere almost merged with the orbital maximum of the proton radiation belt.  相似文献   

20.
Using a model of the general circulation, the response of the temperature and wind in the Earth’s atmosphere to variations in solar UV radiation flows during an 11-year activity cycle is studied with respect to their dependence on the wavelength. Satellite measurement data for the 23rd cycle that were characterized by anomalously low flows of UV radiation at minimum activity are used in calculations. To implement numerical scenarios, wavelength-dependent variations in the UV radiation flow changing absorption in the bands of ozone and molecular oxygen are used in the radiation block of the model. Based on empirical data, a spatial structure of stationary disturbances having the wavenumbers S = 1, 2, and 3 are assigned at the lower boundary of the model. The calculation results demonstrating the changes in the atmospheric parameters between the solar activity maximum and minimum within the height range 0–120 km are presented. It is shown that the response of monthly average values has a wavy structure in latitude, i.e., a nonseasonal character, amounting to several degrees in the lower atmosphere. The results obtained indicate that planetary waves are an important link in the transmission of an external effect on the lower atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号