首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flow structure at an asymmetrical stream confluence   总被引:2,自引:0,他引:2  
Measurements of downstream and cross-stream velocities at a small, asymmetrical stream confluence show that the structure of low-stage flows is influenced by the tributary/main stem momentum flux ratio, the total discharge of the incoming flows, and the bed morphology. Flow accelerates through the confluence during all three measured events. This acceleration is associated with a downstream reduction in channel capacity caused in part by the presence of a large bar along the inner bank of the downstream channel. As the momentum ratio increases, flow from the lateral tributary increasingly deflects flow from the main stream toward the outer channel bank within the confluence. As a result, the mixing interface between the converging flows also shifts outward. The large bar in the downstream channel deflects flow along the inner bank toward the adjacent scour hole, enhancing flow convergence downstream of the confluence and producing a region of flow separation adjacent to, or in the lee of the bar. The loci of maximum topographic deflection and flow separation vary with momentum ratio and total discharge.Secondary circulation within the downstream channel is characterized by a single large helical cell when the momentum ratio exceeds one, and weak surface-convergent helical cells on opposite sides of the mixing interface when the momentum ratio is less than one. Curvature of the flow, and thus the strength of helical motion, is greatest on the tributary side of the mixing interface. Although the flow events measured in this study did not exceed the threshold for sediment movement, the bed morphology at the confluence can be explained by the flow structure observed during these low-stage events, suggesting that formative flows may have similar downstream and cross-stream velocity fields.  相似文献   

2.
Changes in bed morphology and sedimentology at stream confluences in relation to specific hydrological events have not been documented extensively. Moreover, few, if any, studies have investigated the effect of net hydrological conditions on channel change at a confluence over a period of many years. Repeat cross section surveys and sampling of bed material at a small, asymmetrical stream confluence reveal the short-term effects of hydrological variability on bed morphology and spatial patterns of bed material texture. Survey data over a 15-year period illustrate the long-term response of channel morphology at the confluence to net hydrological conditions. Results confirm that this confluence is a dynamic fluvial environment, involving shifts in the zone of scour and repeated deposition and erosion of a bar complex at the downstream junction corner as the discharge ratio changes in response to hydrological variability in the tributary streams. Persistent faster runoff-response times of the lateral tributary compared to the main stem have resulted in long-term net erosion of the channel bank opposite this tributary. The documented morphological and sedimentological changes are consistent with and can be explained by results of experimental studies and by past investigations at this confluence that have documented changes in patterns of mean flow structure and turbulence in response to variation in the discharge ratio of contributing streams.  相似文献   

3.
黄河上游沙漠宽谷段高含沙支流对干流的淤堵影响   总被引:1,自引:1,他引:0  
王平  胡恬  郭秀吉  张原锋 《中国沙漠》2017,37(6):1240-1249
黄河上游沙漠宽谷段支流——十大孔兑的高含沙洪水多次淤堵黄河干流,造成灾害。基于实测水文泥沙资料和模型试验手段对孔兑高含沙洪水特点、淤堵干流过程和交汇区沙坝形态进行了研究。结果表明:孔兑洪水具有陡涨陡落、持续时间短、洪峰流量大、含沙量高、输沙量大等特点;孔兑洪水形成沙坝、淤堵黄河的过程可分为形成、相对稳定和冲刷3个阶段,支流洪水量级较大,形成的沙坝规模较大,沙坝冲刷历时也较长;孔兑高含沙水流入黄交汇区水流结构分区包括壅水区、回流区、高流速带、剪切层等组成要素,沙坝淤积形态模式包括壅水区、回流区、回流区下游淤积体和交汇区输水输沙窄槽;基于沙坝淤堵判别方法以及实测和试验数据提出了孔兑入黄交汇区沙坝判别条件。  相似文献   

4.
5.
Field measurements of three-dimensional hydraulics in a step-pool channel   总被引:4,自引:0,他引:4  
We investigated the effects of morphologic position and discharge on flow structure in a steep (0.10 m/m) mountain channel by collecting three-dimensional measurements of time-averaged and turbulent velocity components with a SonTek FlowTracker Handheld ADV (acoustic Doppler velocimeter) on a 30-m reach of a step-pool channel in the Colorado Rockies. Velocity profiles were measured at morphologic positions characteristic of steep channels (above steps, step lips, base of steps, pools, cascades, runs), and at five different discharges. A marked three-dimensionality of flow structure was documented in East St. Louis Creek. Velocities in the streamwise component were the largest contributors to overall velocity vector magnitudes; cross-stream and vertical components contributed averages of 20% and 15%, respectively, to overall vector magnitudes. Turbulence intensities were especially multi-dimensional, however, with large contributions to turbulent kinetic energy from the vertical component of velocity. Analysis of variance indicated that discharge and morphologic position significantly affected mean streamwise velocities, with substantially higher velocities upstream from steps than in pools. Discharge and morphology effects on cross-stream and vertical velocity components, however, were not significant. Discharge and morphologic position also significantly affected turbulence intensities for all flow components, with the greatest turbulence intensities occurring in pools and at high discharges. These results illustrate the strong discharge-dependence of hydraulics in step-pool channels, where relative submergence of bedforms changes rapidly with discharge, and the substantial spatial variation in hydraulics created by step-pool sequences.  相似文献   

6.
Downstream hydrologic effects since the closure of Glenbawn Dam, a large dual-purpose storage for water conservation and flood mitigation, include: (i) a reduction in mean annual runoff of about 21 × 106 m3; (ii) a change in the probability distribution of mean daily flows involving a truncation of flows >;8 × 106 m3 d?1, a much reduced frequency of flows >7 × 105 m3 d?1 and an increased frequency of flows <7 × 105 m3 d?1; and (iii) a reduction in flood magnitude of at least 80 per cent for all probabilities of exceedance. From suspended sediment samples collected before and after dam closure, sediment trap efficiency has been estimated at 99 per cent.An accommodation adjustment of the channel has occurred upstream of the first unregulated tributary because the bed is armoured, the banks are well vegetated, some bedrock and concrete controls are present and all regulated releases are incompetent to transport the bed material. Immediately downstream of the first unregulated tributary, the channel has contracted by up to 45 per cent and degraded by up to 69 per cent during lateral migration. Further downstream no channel changes were recorded although the bed material has progressively coarsened over time.  相似文献   

7.
The 270 km long section of the Upper Yellow River at the First Great Bend is comprised of single channel and multiple channel systems that alternate among anastomosing, anabranching, meandering and braided reaches. The sequence of downstream pattern changes is characterized as: anastomosing-anabranching, anabranching-meandering, meandering-braided and braided-meandering. Remote sensing images, DEM data and field investigations are used to assess ahd interpret controls on these reach transitions. Channel slope and bed sediment size are key determinants of transitions in channel planform. Anas- tomosing reaches have a relatively high bed slope (0.86‰) and coarser sediment bed material (d50 = 3.5 mm). In contrast, meandering reaches have a low slope (0.30‰) and fine sediment bed material (d50 = 0.036 mm). The transition from a meandering to braided pattern is characterized by an increase in channel width-depth ratio, indicating the important role of bank strength (i.e. cohesive versus non-cohesive versus channel boundaries). Interestingly, the braided-meandering and meandering-braided transitions are coincident with variable flow inputs from tributary rivers (Baihe and Heihe rivers respectively). Theoretical analysis of the meandering-braided transition highlights the key control of channel width-depth ratio as a determinant of channel planform.  相似文献   

8.
荒漠下垫面陆面过程和大气边界层相互作用敏感性实验   总被引:7,自引:10,他引:7  
建立了一个研究荒漠下垫面陆面物理过程与大气边界层相互作用的模式. 模拟了荒漠下垫面的土壤环境物理、地面热量通量、蒸发、蒸散及大气边界层结构特征.并对主要的环境物理参数进行了敏感性实验.结果表明,本模式能合理地模拟荒漠下垫面地表热量平衡、土壤体积含水量、地表植被蒸发散阻抗、地表水汽通量日变化和湍流交换系数、湍流动能、位温和比湿廓线等.该模式还可进一步应用于研究区域陆面物理过程与大气边界层相互作用机制,及与中尺度大气模式耦合用于区域环境生态和气候的研究.  相似文献   

9.
This study characterizes the flow field above and around multiple instream submerged cobbles, boulders, and pebble clusters in order to obtain a better understanding of the hydrodynamics associated with large roughness elements (LREs) in gravel-bed rivers. Spatially distributed high frequency, three-dimensional velocity measurements were recorded in situ using acoustic Doppler velocimeters at different flow stages. The spatial distributions of turbulent kinetic energy, ke, longitudinal component integral timescales, ITSu, and Reynolds shear stresses were characterized and are presented for selected sites. The longitudinal–vertical Reynolds shear stress increased with flow stage more strongly than the longitudinal–lateral or lateral–vertical Reynolds shear stresses and dominate at the highest measured flows. Canonical redundancy analysis was used to relate LRE morphometrics and mean flow conditions to the turbulence parameters estimated in the LRE wakes (i.e., ke, ITSu, and Reynolds shear stresses). LRE size and mean unobstructed velocity explained the highest proportion of the variance in the turbulent wake statistics. Multivariate regression models based on LRE width, mean unobstructed longitudinal velocity and flow depth are presented offering a tool to predict LRE wake turbulence.  相似文献   

10.
11.
This article analyzes the water and suspended solid fluxes through a straightened meander of the southern branch of the Danube Delta (the St. George branch) during episodic flooding. The Mahmudia study site corresponds to a vast natural meander which was cut off in 1984–1988 by an artificial canal opened to shipping. The meander correction accelerated fluxes through the artificial canal and dramatically enhanced deposition in the former meander. After his formation, the cutoff meander acted as sediment storage locations, essentially removing channel and point bar sediments from the active sediment budget of the main channel. Increases in slope and stream power in reaches upstream and downstream have also occurred, but to a lesser degree. During the one-hundred-year recurrent flood in April 2006, bathymetry, flow velocity and discharge data were acquired across several sections of both natural and artificial channels with an acoustic Doppler current profiler (aDcp Workhorse Sentinel 600 kHz, Teledyne RDI) in order to investigate the distribution of the flow and sediment and his impact on sedimentation in a channelized reach and its adjacent cutoff. The contrasting hydro-sedimentary processes at work in both channels and bifurcation/confluence nodal points are analyzed from the measured flux distribution, morphological profiles and velocity and concentration patterns. In the cutoff, a diminishing of the intensity of the flow velocity (c. 50%) and of the SSC was observed correlated with the aggradation of the river bed. In the bifurcation/confluence nodal points and in the artificial canal were observed the most intensive hydrodynamic activity (high flow velocity, SSC concentration, degradation of the river bad). Both the event-scale and long-term morphological trends of the alluvial system are discussed analyzing the boundary shear stress and SSC variability. Excess boundary shear stress in the sub-reaches directly affected by cutoffs resulted in scour that increased downstream bed material load. These high sediment loads play a key role in driving morphological adjustments towards equilibrium in the cutoff channel.The approach followed in this paper combines detailed episodic in-situ aDcp measurements and robust numerical 1D modeling in order to provide a practical comprehension of the relevant morphodynamical processes. The 1D model reproduces robustly the continuity of hydrodynamical variables along the streamwise axes of the two-channel network. The simulated are used in the paper for highlighting reach-scale morphological processes, at both event and long-term scales.  相似文献   

12.
Velocity profile of a sand cloud blowing over a gravel surface   总被引:2,自引:0,他引:2  
Particle dynamic analyzer (PDA) measurement technology was used to study the turbulent characteristics and the variation with height of the mean horizontal (in the downwind direction) and vertical (in the upward direction) particle velocity of a sand cloud blowing over a gravel surface. The results show that the mean horizontal particle velocity of the cloud increases with height, while the mean vertical velocity decreases with height. The variation of the mean horizontal velocity with height is, to some extent, similar to the wind profile that increases logarithmically with height in the turbulent boundary layer. The variation of the mean vertical velocity with height is much more complex than that of the mean horizontal velocity. The increase of the resultant mean velocity with height can be expressed by a modified power function. Particle turbulence in the downwind direction decreases with height, while that in the vertical direction is complex. For fine sands (0.2–0.3 mm and 0.3–0.4 mm), there is a tendency for the particle turbulence to increase with height. In the very near-surface layer (<4 mm), the movement of blown sand particles is very complex due to the rebound of particles on the bed and the interparticle collisions in the air. Wind starts to accelerate particle movement about 4 mm from the surface. The initial rebound on the bed and the interparticle collisions in the air have a profound effect on particle movement below that height, where particle concentration is very high and wind velocity is very low.  相似文献   

13.
In September 2002, a catastrophic geomorphic event occurred in the Caucasus Mountains, southern Russia, in which almost the entire mass of Kolka Glacier detached from its bed, accelerated to a very high velocity (max. 65–80 m/s), and traveled a total distance of 19 km downstream as a glacier-debris flow. Based on the interpretation of satellite imagery obtained only 8.5 h before the event occurred, the analysis of seismograms from nearby seismic stations, and subsequent detailed field observations and measurements, we suggest that this remarkable event was not a response to impulse loading from a rock avalanche in the mountainside above the glacier, or to glacier surging, but due entirely to the static and delayed catastrophic response of the Kolka glacier to ice and debris loading over a period of months prior to the September 20 detachment. We reconstruct the glacier-debris flow using field observations in conjunction with the interpretation of seismographs from nearby seismic stations and successfully simulate the behaviour (runout, velocity, and deposition) of the post-detachment glacier-debris flow using a three-dimensional analytical model. Our demonstration of a standing-start hypothesis in the 2002 Kolka Glacier detachment has substantial implications for glacier hazard assessment and risk management strategies in valleys downstream from unstable debris-covered glaciers in the mountain regions of the world.  相似文献   

14.
不同带宽的防风固沙林流场结构及防风效能风洞实验   总被引:3,自引:1,他引:2  
林带宽度是防风固沙林建植时要考虑的基本参数,研究不同带宽林带的防护效果对防风固沙林配置及构建具有重要的指导意义。通过风洞模拟实验,在7、10、15 m·s-1风速条件下,对单行一带(Ⅰ型)、三行一带(Ⅱ型)、六行一带(Ⅲ型)和九行一带(Ⅳ型)共4种带宽的林带的迎风面、带中和背风面的风速进行了测定,分析了4种林带的风速流场、风速加速率和防风效果。结果表明:(1)4种林带流场结构和垂直风速变化规律相似,沿来风向均形成了林带上方和迎风面林缘附近的小范围高风速区及其后的风影区相互组合的流场结构;依据风速垂直变化规律划分为上部变化层(高度30~60 cm,受林带的影响最小)、中间变化层(高度5~20 cm,风速受林冠遮蔽作用,影响最大,且为风影区形成层)和近床面变化层(高度1~3 cm)。(2)4种林带在垂直纵剖面上的平均风速加速率随林带宽度的增大而减小,即Ⅰ型(0.90) > Ⅱ型(0.87) > Ⅲ型(0.79) > Ⅳ型(0.78)。(3)4种林带的防风效果为Ⅰ型和Ⅱ型林带相同,Ⅲ型和Ⅳ型林带相同,后2种林带的防风效果优于前2种林带,且4种林带的防风效能均随着风速的增大而减小。  相似文献   

15.
冲积河流的粗颗粒河床,具有较大的渗透性,河床渗透对明渠水流运动特性的影响不可忽视.通过水槽试验,研究了河床渗透对垂线流速分布的影响.距试验玻璃水槽进口10m处,设计一个长1.65m、宽0.7m的收缩段,由12层直径1cm的玻璃珠紧密有规则铺成,以模拟粗糙透水床面.其上下游铺上1层相同玻璃珠,形成粗糙度相同但不透水的床面.垂线流速分布通过激光多普勒测速仪及配套的高精度坐标架系统测量.试验施放了3种流量,分别在不透水和透水床面进行垂线流速分布测量.试验结果表明:1)不透水床面的垂线流速分布符合粗糙床面的对数分布公式;2)粗糙透水床面明渠流的垂线流速分布与不透水床面相似;3)相同水流条件下,透水床面的摩阻流速要大于不透水床面;4)透水床面的摩阻流速与积分常数的变化规律有待进一步研究.  相似文献   

16.
AtmosphericboundarylayerstructureandtubulentfluxtransferovertheZhongshanStationarea,AntarcticaTX@曲绍厚@高登义@邹捍Atmosphericboundarylay...  相似文献   

17.
This paper describes the application of a commercially available, three-dimensional computational fluid dynamic (CFD) model to simulate the flow structure in an upland river that is prone to flooding. Simulations use a rectangular channel geometry, smooth sidewalls and a bed topography obtained from the field site that contains a subdued pool–riffle sequence. The CFD model uses the RNG κ turbulence closure scheme of Yakhot and Orszag (J. Sci. Comput. 1 (1986) 1), as implemented in FLUENT 4.4.4, with a free surface. Results are shown for numerical runs simulating a 1:100 year return interval flood. Output from the numerical model is compared to a physical model experiment that uses a 1:35 scale fibreglass mould of the field study reach and measures velocity using ultrasonic Doppler velocity profiling (UDVP). Results are presented from the numerical and flume models for the water surface and streamwise velocity pattern and for the secondary flows simulated in the numerical model. A good agreement is achieved between the CFD model output and the physical model results for the downstream velocities.Results suggest that the streamwise velocity is the main influence on the flow structure at the discharge and channel configuration studied. Secondary flows are, in general, very weak being below the resolution of measurement in the physical model and less than 10% of the streamwise velocity in the numerical model. Consequently, there is no evidence for a ‘velocity dip’. It is suggested that the subdued topography or inlet morphology may inhibit the development of secondary flows that have been recorded in previous flat-bed, rectangular open channel flows. A significant corollary of these results is that the morphological evolution of the pool–riffle sequence at high discharges may be controlled primarily by the downstream distribution of velocity and sediment transport with little role for lateral sorting and sediment routing by secondary flows. This paper also raises a number of issues that may be of use in future CFD modelling of three-dimensional flow in open channels within the geomorphological community.  相似文献   

18.
中山站地区大气边界层结构和湍流通量的输送特征   总被引:1,自引:0,他引:1       下载免费PDF全文
本文根据作者随中国第11次南极考察队(1994-1996年)赴中山站夏考期间,使用TMT(系留式气象塔)观测系统,在中山站、冰盖和海冰等三个点上观测到的气温、湿度、风速、风向和气压等大气要素的廓线资料,利用相似理论的通量-廓线关系,给出这三个观测点上的动量通量、曳力系数和感热通量,在近中性条件下,中山站粗糙度高度为2.9cm,冰盖与海冰点二者粗糙度高度差不多,分别为2.8×10-2cm和3.6×10-2cm,曳力系数则分别为5.06×10-3、1.34×10-3和1.41×10-3。结果表明,即使在中山站地区这样一个尺度范围内,由于下垫面的热力学特性、地形、地貌、地势和地理位置等的差异,无论是大气边界层结构还是湍流通量等的输送特性都有明显的差别,因此南极地区的大气边界层结构和冰(雪)-气交换特征都是比较复杂的,具有很强的局地性  相似文献   

19.
Six experimentally derived formulae that predict the conditions for alternate bar formation and equilibrium bar dimensions are assessed using field data. The study site is an artificially straightened section of the Embarras River located approximately 16 km south of Champaign, Illinois. Data were collected on channel form, gradient, alternate bar dimensions, bar sediment size, and flow conditions over a two-year study period. Experimental flume studies suggest that alternate bars form in wide, straight, shallow streams, have wavelengths between 4 and 15 channel widths, and have heights that are roughly equal to the average depth of flow. Bar formation under unsteady flow conditions can be predicted accurately by the experimentally derived steady-flow formulae, but these formulae fail to predict bar dimensions sucessfully. These results suggest that the process of bar formation in artificially straightened, sand-bedded natural streams may occur outside the range of flow conditions predicted by existing empirical models. Further work should focus on attempting to isolate physical mechanisms responsible for alternate bar formation in straight natural streams with heterogeneous bed material and flashy flow regimes [Key words: alluvial channels, artificial channels, geomorphology, rivers, sedimentology].  相似文献   

20.
利用2007/2008年中国第24次南极考察队在南极中山站附近冰盖上观测试验获得的湍流脉动及相关资料,对原始资料通过坐标旋转订正后,应用涡动相关法计算分析了冰盖近地面层的湍流强度(I)、稳定度参数(z/L)、摩擦速度(u*)、拖曳系数(Cd)、地表粗糙度(z0)及动量通量(τ)和感热通量(H),并与空气动力学方法的计算结果进行对比。结果表明,Louis方案能够较好地模拟近地面层湍流通量;在平均状态下,全天雪面以感热形式从大气获得净的能量;近中性层结下地表粗糙度z0为4.54×10-4m,拖曳系数Cd=1.7×10-3,在非中性条件下,稳定度越小Cd越大,反之,则稳定度越大Cd越小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号