首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
安徽一次强烈龙卷的多普勒天气雷达分析   总被引:49,自引:20,他引:49  
利用多普勒天气雷达资料,对2003年7月8日夜间发生在安徽无为县的强烈龙卷过程进行了详细的分析。该龙卷发生前的主要天气背景是江淮梅雨期暴雨的天气形势:一个东移的高空槽、强烈的对流不稳定和低空的西南风急流。低层垂直风切变很大并且抬升凝结高度较低,有利于强龙卷的产生。产生该强龙卷的对流系统最初是一条位于大片层状云降水区中的长对流雨带。在随后的演变中,对流雨带的南段逐渐消散,北段逐渐变宽,最终成为一个团状的对流系统,而龙卷产生自该系统南端的一个超级单体。最初的中层中气旋形成于7月8日22:49(北京时,下同),相应对流单体的反射率因子尚没有呈现出超级单体的特征。随后中气旋迅速加强,在22:55,反射率因子形态呈现出经典超级单体的特征:明显的低层入流缺口和其左侧的阵风锋,入流缺口位于超级单体移动方向(东北方向)的右后侧,低层的弱回波区和中高层的回波悬垂结构,最大反射率因子超过55 dBz。在龙卷产生前8min,即23:12中气旋达到强中气旋标准,相应的垂直涡度值达到2.3×10-2/s。在龙卷产生前几分钟和龙卷进行过程中,中气旋保持很强,但相应的反射率因子强度减弱,低层入流缺口渐渐消失。在龙卷进行过程中的23:29,雷达速度图像呈现出一个强烈中气旋包裹着一个更小尺度的龙卷式涡旋特征TVS,与TVS对应的垂直涡度值达5.0×10-2/s。上述导致龙卷的中层中气旋局限于4 km以下的低层大气,前后共持续了1 h 49 min,相应超级单体的高反射率因子区局限在6 km以下,属于低质心的对流系统,产生的天气是强烈龙卷,伴随有暴雨,但没有冰雹。文中还对此次龙卷的生成机制进行了探讨。  相似文献   

2.
070703天长超级单体龙卷的多普勒雷达典型特征   总被引:9,自引:1,他引:9  
刘娟  朱君鉴  魏德斌  宋子忠  卢海  周红根 《气象》2009,35(10):32-39
主要使用南京多普勒天气雷达资料,分析了2007年7月3日发生在安徽天长和江苏高邮的龙卷风天气,着重分析了中气旋和龙卷涡旋特征(TVS)等产品的典型特征.龙卷发生在飑线回波带的北端强烈发展的超级风暴单体中,回波带前沿存在强烈的水平风切变,使得回波带上不断有中气旋生成.对产生龙卷的超级风暴单体,龙卷发生30min前,雷达给出了中气旋(M)产品,该中气旋持续了7个体扫的时间(42min),在中气旋出现后第5个体扫,雷达给出龙卷涡旋特征(TVS)产品,龙卷涡旋特征持续了3个体扫,综合切变产品也给出了显著的提醒.实地调查结果,龙卷风和第2个TVS同时发生,龙卷风位置与TVS位置对应,但位于TVS的南侧,位于中气旋最大风速圈的南缘.虽然CINRAD/SA雷达的TVS产品有虚警的情况,但结合反射率因子、平均径向速度、中气旋、综合切变等产品的分析,对于龙卷监测和预警会很有帮助的.  相似文献   

3.
2018年8月19日受台风“温比亚”影响,山东省临沂市遭受龙卷袭击。通过实地灾情调查,给出了该龙卷的影响范围、灾害分布和强度评估等,综合考虑不同标识物和致灾过程,评估本次龙卷强度为EF3级。分析龙卷发生的环境和天气雷达特征,结果表明:龙卷发生在低抬升凝结高度(≤300 m)、强低层垂直风切变(≥18×10-3s-1)、强相对风暴螺旋度(≥350 m2/s2)和较低对流有效位能(≤400 J/kg)的有利环境条件下;龙卷超级单体嵌于台风右侧螺旋雨带内,龙卷发生在中气旋与风暴后侧下沉气流区相接一侧,与龙卷涡旋特征位置对应;龙卷及地时中气旋向下延伸加强,同时风暴顶及单体质心迅速下降;若探测到低层中等强度中气旋时应发布龙卷预警,则此次过程的龙卷预警时间提前量为15~20 min。  相似文献   

4.
利用高空、地面常规观测资料、分钟级加密自动气象站资料和榆林多普勒雷达资料,对 2013 年8月4日傍晚发生在榆林市的一次超级强对流风暴天气进行中尺度分析。结果表明:(1)此次过程疑似一次超级单体龙卷天气过程;(2)从环流背景来看,榆林市上空中层强干冷平流配合低层切变线、西南急流,高层干冷、低层暖湿特征明显;从环境条件来看,强风暴发生前和发生期间能量、抬升凝结高度、风切变满足龙卷发生所需的热力不稳定、垂直风切变条件;(3)雷达钩状回波结构清晰,并伴有强中气旋,大于60 dBZ的回波和正负速度对已接地,呈现龙卷发生时的回波特征;(4)强风暴发生前后,由北向南经过榆林地区有多个龙卷涡旋TVS产品被识别;(5)气象要素场变化剧烈,地面气压明显降低,风速出现极值增强,风向发生突变,与龙卷发生期间风场观测特征基本一致,表明该区域出现龙卷的可能性较大。  相似文献   

5.
一次山区龙卷的双部雷达回波监测分析   总被引:1,自引:0,他引:1  
李延江  孙丽华  杨梅 《高原气象》2011,30(6):1701-1708
利用秦皇岛S波段和承德C波段天气雷达资料、NCEP 1°×1°6h再分析资料、中尺度物理量及灾情报告,对2009年7月20日河北承德平泉县一次龙卷天气过程进行了综合分析。结果表明,龙卷发生在西高东低的山谷中,冷空气南压,高空西南急流动量下传,使得低层中尺度水平风场-V分量沿山谷西部增大,产生不对称小尺度山谷风次级环流,...  相似文献   

6.
曾明剑  吴海英  王晓峰  蒋义芳 《气象》2016,42(3):280-293
利用逐日4次1°×1°FNL/NCEP分析资料及多普勒天气雷达、地面自动气象站等观测资料,在对近十年江苏梅雨期龙卷天气的环境特征进行合成分析并提炼对流参数特征值后,着重对2013年7月7日发生在安徽天长至江苏高邮一带导致龙卷的对流风暴的形成和结构特征演变进行了分析。结果表明:江淮梅雨期间,地面中尺度气旋的右侧附近(100 km)、对流层低层中尺度低涡右下方约200~300km处和低空急流左后侧之间区域是龙卷易发区;梅雨期大气环流背景为龙卷的发生提供了对流层低层充沛的水汽和有利的不稳定层结与动力条件,低层气旋性涡度在龙卷发生前强烈发展,边界层内强的垂直风切变促进了龙卷风暴内气旋性涡度的迅速增强,而对流层低层辐合的增强将有利于初始对流的触发;但梅雨期龙卷对对流不稳定能量蓄积条件要求低于冰雹和雷暴大风;龙卷对流参数特征值及其与气候平均值的差异性为龙卷天气的短期预报提供了参考依据。引发2013年7月7日龙卷的对流风暴起源于地面辐合线附近,地面辐合及中尺度锋区的增强有利于对流风暴的快速发展,此次系列龙卷是由一个生命史较长的超级单体风暴产生,该对流风暴具有典型超级单体的回波特征,风暴内的中气旋维持2h之久,中气旋相关参数的演变对龙卷的临近预警有较高的参考价值,当中气旋底高较低且中气旋切变值明显增强时,发生龙卷天气的可能性较大。  相似文献   

7.
江淮地区龙卷超级单体风暴及其环境参数分析   总被引:3,自引:1,他引:3  
利用多普勒雷达探测资料和NCEP再分析资料,对2003—2010年发生在江淮地区的6个龙卷超级单体风暴及其环境参数进行了分析。研究表明:(1)龙卷超级单体风暴HBASE平均为1.7 km,HTOP平均为9.1 km;H多在风暴的下部,近于下部的1/4处。HBASE平均值比江淮地区各种超级单体的平均值低得多,HTOP则略低。(2)龙卷超级单体IVIL平均为25.6 kg/m2,ZMX平均为54.8 dBz。和江淮地区超级单体相比,龙卷IVIL要小得多,而龙卷ZMX略低。(3)龙卷超级单体的中气旋MBASEMTOPMSHR平均值分别为1.2 km、3.9 km和14.4×10-3s-1,和江淮地区超级单体相比,龙卷MBASEMTOP明显低,而MSHR略高。(4)TVS参数最强时的VAD在12—45 m/s,VLLD多大于30 m/s,VMXD多超过30 m/s,VMXD的高度不低于0.8 km,TDPT在2.4—6.4 km,TBASE在0.7—1.5 km,TTOP在2.3—6.4 km,TMXSHR超过22×10-3s-1。TVS参数最强时间与龙卷实际时间基本吻合,平均相差4.2 min;平均而言,TVS出现后6 min有龙卷发生。(5)雷达推算的龙卷超级单体的0—6 km风垂直切变比江淮地区超级单体的风垂直切变平均值高15.2%;龙卷发生前ICAPE平均为1752 J/kg,IK为38℃,850 hPa到地面风切变平均超过12 m/s,850—500 hPa温差平均为23.7℃。龙卷发生前能量处在中等到强的状态,大气不稳定性较强,风垂直切变大。  相似文献   

8.
9.
通过对2020年7月22日安徽省宿州市龙卷的现场灾情调查,并利用地面区域自动气象站、探空资料、欧洲中心再分析资料、蚌埠和阜阳站S波段双偏振雷达资料,分析此次超级单体龙卷风暴的天气背景条件,并探讨龙卷发生时双偏振雷达观测特征.(1)此次龙卷自西向东移动,路径长约60 km,持续时间约1小时,强度为EF2级.(2)龙卷发生...  相似文献   

10.
利用常规气象观测、广州多普勒天气雷达及NCEP/NCAR再分析等资料对比广东省佛山市2015年10月4日EF3级和2006年8月4日EF2级台风外围强龙卷过程。结果表明:两次强龙卷都发生在登陆台风的东北象限,低层辐合、高层辐散及中低空强劲东南急流在珠江三角洲叠加是其产生的相似环境背景。环境参数均表现为较小的对流有效位能、低的对流抑制与抬升凝结高度、强的垂直风切变和大的风暴相对螺旋度。两个龙卷母体均为微型超级单体,前者雷达回波强度更强,钩状回波特征更明显;都存在强中气旋和龙卷涡旋特征(TVS),中气旋都在中低层形成后,向更低层发展最终导致龙卷。TVS比龙卷触地提前1个体扫出现,或与龙卷触地同时发生,中气旋和TVS的底高和顶高均很低。但两次龙卷触地前后,前者中气旋和TVS的底高和顶高出现突降现象,而后者中气旋和TVS的底高和顶高一直维持较低高度。龙卷触地前后,两者风暴单体的最强切变均出现剧增现象,但前者TVS的最强切变更强,比后者大1倍以上。  相似文献   

11.
1999年夏季青海多雨形势分析   总被引:6,自引:2,他引:6  
利用1959-1999年降水,气温、高度场等资料分析得出,1999年夏季青海省多雨与乌拉尔山高压脊偏强,西太平洋副热带高压位置偏北及西伸脊点位置偏东,极涡强度偏强等因素有关,其中,中高纬度地区乌拉尔山高压脊多次建立和稳定维持,以及西太平洋副热带高压脊线位置异常偏北,西伸脊点位置偏东是造成青海省夏季多雨的最关键因子。  相似文献   

12.
强龙卷超级单体风暴特征分析与预警研究   总被引:14,自引:12,他引:14       下载免费PDF全文
利用多普勒雷达资料,对发生在安徽的3次强烈龙卷过程进行了分析.重点研究了导致F2~F3级强龙卷的3次超级单体风暴多普勒雷达回波特征及其与强冰雹超级单体风暴的差异.另外,利用安徽省、市、县气象报表、历年气候评价灾情资料(部分来自民政部门的灾情报告),对1960年至今的龙卷天气的时空分布及变化趋势、产生龙卷的环流形势特征进行了分析,结果表明:(1)龙卷主要出现在淮北东部和江淮之间东部地势平坦地区,7月份出现龙卷的概率最高.(2)超级单体龙卷产生在中等大小的对流有效位能和强垂直风切变条件下,同时抬升凝结高度较低.(3)3次F2~F3级龙卷在发生前、发生时在多普勒雷达上都探测到强中气旋和龙卷涡旋特征TVS.与非龙卷超级单体风暴相比,导致强龙卷的中气旋底高明显偏低,基本在1 km以下.同时风暴结构也有所不同,造成龙卷天气的超级单体风暴最大反射率因子与风暴质心高度接近,基本在3 km左右,反射率因子在50~60 dBz.造成强冰雹的超级单体风暴在冰雹产生前,风暴最大反射率因子高于风暴质心的高度;当风暴开始降雹时,最大反射率因子高度开始降低,而风暴质心的高度变化不大,高于最大反射率因子高度,基本保持在5km左右,反射率因子在60~70 dBz.  相似文献   

13.
分析了2006年6月29日发生在安徽泗县的龙卷多普勒雷达的中气旋和龙卷涡旋特征(TVS)等产品。龙卷发生前,卫星云图上有3个对流云团呈东北—西南向排列,每个云团的东南侧有弓状回波发展,3条弓状回波首尾相连,也呈东北-西南向排列,龙卷发生在最西南的弓状回波的顶部。龙卷发生前弓状回波在上游产生了短时强降水,2 h降水量达到60 mm以上。在弓状回波的前沿,雷达探测到一系列的中气旋,龙卷发生前30 min,最西南的弓状回波追上其前面的回波带,发生了2个回波带合并,回波合并前,回波带上有2个中气旋,回波合并后,探测到一个特大直径的中气旋(径向直径25.8 km)。在龙卷发生地的上游,有一条带状的灾害性大风区,实地位置测定结果,该带状大风区与一系列中气旋最大风速圈的南边缘移过的路径一致。分析认为中气旋最大风速圈的南边缘,中气旋的风向与弓状回波后的直线风方向相同,两者叠加造成灾害性大风。出现龙卷1 h 40 min之前(05:00),在泗县上游淮北地区,雷达开始探测到中气旋产品,在12 min之前探测到TVS(龙卷涡旋特征)产品,这些雷达产品对大风灾害的临近预报无疑是非常有用的。  相似文献   

14.
After several decades of little work, a revised tornado climatology for Austria is presented. Tornadoes seldom form in the alpine areas, however, near the eastern flanks of the Alps, favourable conditions for tornado genesis are found. Whereas in the alpine regions less than 0.3 tornadoes per 10,000 km2 a year touch down (averaged for provinces or major parts of a province), we can count 0.9 in the greater Graz area, 1.0 in the greater Linz area and 1.2 tornadoes per 10,000 km2 a year in the greater Vienna area, suggesting the existence of so-called tornado alleys. As these regions are the most populated areas of Austria, there is a possible population bias in the dataset. The overall average for Austria is 0.3 tornadoes per 10,000 km2 a year.The database consists of 89 tornadoes, one landspout and six waterspouts, with a total of 96 events. The seasonal peak is in July with a maximum probability of tornadoes in the late afternoon and early evening hours. Every fifth tornado occurs in the hour after 5 p.m. The maximum intensity determined for a tornado in Austria was T7 on the TORRO-Scale (F3 on the Fujita-Scale), the most common intensity is T2 on the TORRO-Scale (F1 on the Fujita-Scale).  相似文献   

15.
2017年8月1日18:10—18:30受1710号台风海棠外围螺旋雨带影响,江苏省淮安市淮安区出现EF1级龙卷。利用常规观测资料、NCEP 1°×1°再分析资料、多普勒雷达资料等,对龙卷过程进行分析。结果显示:龙卷发生在海棠残留低压和副高边缘间的东南暖湿急流中,其发生前1h地面出现小尺度涡旋并沿着地面辐合线移动。龙卷影响时,相邻地面自动站观测到气压上升、气温和露点下降、风力明显增大。逐渐增大的对流有效位能、小的对流抑制能量、较大的0~1km垂直风切变、1km以下的抬升凝结高度、干侵入等环境场特征均有利于本次龙卷风暴的生成。淮安多普勒雷达探测到入流缺口、TVS特征、气旋性风场结构。通过垂直螺旋度分析和双多普勒雷达风场反演等方法,发现在龙卷发生前低层环境垂直风切变有利于小尺度涡旋生成,中低层水平风场以辐合为主。当出现龙卷时,气旋式辐合中心下降有利于涡旋触地,龙卷发生地位于低层涡旋移动方向左前侧与1km高度切变线附近。  相似文献   

16.
热带一次致灾龙卷形成物理过程研究   总被引:1,自引:0,他引:1  
王秀明  俞小鼎 《气象学报》2019,77(3):387-404
2016年6月5日海南出现了一个弱风垂直切变背景下的EF2级致灾龙卷。利用海口多普勒天气雷达观测资料、10 min间隔的地面自动气象站观测资料以及风廓线资料,研究了该龙卷风暴的结构、龙卷风暴与龙卷形成的可能物理过程。初始风暴在文昌附近向西传播,而同时海口风暴亦由海风锋触发并向东移动,两风暴下沉气流导致的出流相遇在海风锋辐合线上,触发了龙卷母云体。龙卷初始涡旋在低层两风暴出流相遇的切变辐合线上形成,当初始涡旋与其上方深厚且强烈的上升气流叠置时,拉伸作用加强了垂直涡度,使得龙卷形成。深厚的强上升气流有3个来源:对流风暴的出流边界相遇形成的辐合抬升,环境正浮力造成的对流单体内强上升气流,还可能与中高层强中气旋强迫的扰动低压有关。龙卷形成过程中,中高层强中气旋位于6—9 km高空并向上发展,龙卷初始涡旋先于龙卷母云体出现且比一般微气旋尺度大,伸展至更高的高度,属于非典型中气旋龙卷(或非典型超级单体龙卷)。此次热带强龙卷出现在弱的大尺度系统强迫的天气背景下,水平风垂直切变弱,海风锋、出流边界等边界层β中尺度辐合线边界在龙卷形成过程中可能起决定性作用。   相似文献   

17.
2013年7月7日苏皖龙卷环境场与雷达特征分析   总被引:3,自引:0,他引:3  
以雷达探测资料为主,结合探空资料、天气图和地面灾情,对2013年7月7日苏皖2省交界处的龙卷进行了分析。结果表明:⑴龙卷是在低层有明显的风切变的有利形势下产生的,环境场具有较强的对流不稳定性、大的低层垂直风切变和较低的对流凝结高度。⑵反射率因子在60 dBZ左右;速度图上有正负速度对,低仰角的转动速度〉13 m·s-1;近地面相邻像素间速度差〉11 m·s-1,满足TVS速度差的最低阈值要求;天长龙卷和高邮龙卷都是发生在风暴发展极为旺盛后的1~2个体扫内,也发生在VIL比较大而下降到40~45 kg·m-2左右之时;天长龙卷发生在连续多个TVS之后,高邮龙卷发生在中气旋下降和TVS出现之时。风暴参数和TVS参数表征的指标越强越有利于龙卷的发生,影响范围也越大。⑶这次龙卷验证了出现龙卷的各项雷达识别指标:最强回波在6 km以下;有气旋性辐合,低仰角旋转速度〉13 m·s-1;既探测到中气旋也探测到TVS。⑷对经典龙卷概念模型进行简化,建立的简易模型证实了传统的龙卷风暴概念模型,给出了龙卷发生在TVS靠近上升气流一侧的解释。  相似文献   

18.
辽宁空气中度污染和重污染天气类型分析   总被引:2,自引:1,他引:2       下载免费PDF全文
统计分析了2005-2009年辽宁省14个城市5种污染物逐日的污染指数API数据,基于东北低压型、南大风型、干冷锋北大风型和夏秋大雾型四种易形成辽宁地区沙尘污染的天气类型,对污染天气类型进行归类统计分析。结果表明:重污染和中度污染天气中PM10污染所占比例最高,污染天气类型主要是干冷锋北大风型。  相似文献   

19.
天气形势对哈尔滨市空气质量影响的初步研究   总被引:15,自引:0,他引:15  
应用2000~2003年哈尔滨市三年来空气污染物浓度资料,研究空气质量与天气形势的关系,总结出哈尔滨市冬春两季空气污染的主要天气形势特征,研制了哈尔滨市空气质量天气图客观预报方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号