首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Explosive activity at Arenal and associated tephra fall that has occurred over the 14-year period from 1987–2001 is described. Explosions have been notably variable in both frequency and size. A marked decrease in both frequency and quantity of tephra fallout occurred in early 1998 until the end of 2001. Grainsize distributions of cumulative tephra samples collected once a month are typically bimodal. Aggregation causing premature fallout of fine ash and possibly fallout from ash plumes produced by pyroclastic flows are considered responsible for the bimodality of fallout. Scanning electron microscopy of the glass component of tephra from single explosions show predominantly blocky and blocky/fluidal clast types, interpreted as being the product of vulcanian type explosions. Fragmentation of a mainly rigid, degassed magma body, and a minor molten component is inferred for these explosions. Pyroclastic flows were produced either associated with the larger explosions by a mechanism of column collapse (1987–1990), or unrelated to explosions by partial collapse of the crater wall (1993, 1998, 2000, 2001). Pyroclastic flow activity has migrated from west to north during the period reported. Pyroclastic flow deposits are variable in the quantity of juvenile material and any associated surge component. Large juvenile blocks were partially molten on emplacement and many have a typical cauliform texture. Blocks with both juvenile and lithic textures indicate that at the summit magma was in intimate contact with the pre-existing edifice, rather than as a simple open crater or lava pool. Crater wall collapse may have been promoted by the reduction in explosive activity, which has increased the lava accumulation at the summit and in turn increased instability of the summit region. Thus although explosive activity has waned, if the lava output is maintained, the hazard of pyroclastic flows is likely to continue.Editorial responsibility: R. Cioni  相似文献   

2.
Arenal Volcano has effused basaltic andesite lava flows nearly continuously since September, 1968. The two different kinds of material in flows, lava and lava debris, have different rheologic properties and dynamic behavior. Flow morphology depends on the relationship between the amount and distribution of the lava and the debris, and to a lesser extent the ground morphology.Two main units characterize the flows: the channel zone and the frontal zone. The channel zone consists of two different units, the levées and the channel proper. A velocity profile in the channel shows a maximum value at the plug where the rate of shear is zero, and a velocity gradient increasing outward until, at the levées, the velocity becomes zero. Cooling produces a marked temperature gradient in the flow, leading to the formation of debris by brittle fracture when a critical value of shear rate to viscosity is reached. When the lava supply ceases, much of this debris and part of the lava is left behind after the flow nucleus drains out, forming a collapsed channel.Processes at the frontal zone include levée formation, debris formation, the change in shape of the front, and the choice of the flow path. These processes are controlled primarily by the rheological properties of the lava.Frontal zone dynamics can be understood by fixing the flow front as the point of reference. The lava flows through the channel into the front where it flows out into the levées, thereby increasing the length of the channel and permitting the front to advance. The front shows a relationship of critical height to the yield strength (τ0) surface tension, and slope; its continued movement is activated by the pressure of the advancing lava in the channel behind. For an ideal flow (isothermal, homogeneous, and isotropic) the ratio of the section of channel proper to the section of levées is calculated and the distance the front will have moved at any time tx can be determined once the amount of lava available to the front is known. Assuming that the velocity function of the front {G(t)} during the collapsing stage is proportional to the entrance pressure of the lava at the channel-front boundary, an exponential decrease of velocity through time is predicted, which shows good agreement with actual frontal velocity measurements taken on two flows. Local variations in slope have a secondary effect on frontal velocities.Under conditions of constant volume the frontal zone can be considered as a machine that consumes energy brought in by the lava to perform work (front advancement). While the front will use its potential energy to run the process, the velocity at which it occurs is controlled by the activation energy that enters the system as the kinetic energy of the lava flowing into the front. A relation for the energy contribution due to frontal acceleration is also derived. Finally the entrance pressure, that permits the front to deform, is calculated. Its small value confirms that the lava behaves very much like a Bingham plastic.  相似文献   

3.
4.
Arenal volcano in Costa Rica has been erupting nearly continuously, but at a diminishing rate, since 1968, producing approximately 0.35 km3 of lavas and tephras that have shown consistent variations in chemistry and mineralogy. From the beginning of the eruption in July 1968 to early 1970 (stage 1, vol.=0.12 km3) tephras and lavas became richer in Ca, Mg, Ni, Cr, Fe, Ti, V, and Sc and poorer in Al2O3 and SiO2. Concentrations of incompatible trace elements (including Sr) decreased by 5%–20%. Phenocryst contents increased 20–50 vol%. During stage 2 (1970–1973, vol. = 0.13 km3) concentrations of compatible trace elements rose, and concentrations of incompatible trace elements either remained constant or also rose. Al2O3 contents decreased by 1 wt%. Phenocryst content increased slightly, principally due to increased orthopyroxene. During stage 3 (mid-1974 to the present, vol.= 0.10 km3) concentrations of SiO2 increased by 1 wt%, compatible trace elements decreased slightly, and incompatible trace element concentrations increased by 5% to 10%. Although crystals increased in size during stage 3, their overall abundance stayed roughly constant.Our modeling suggests that early stage-1 magmas were produced by boundary layer fractionation under high-p H2O conditions of an unseen basaltic andesitic magma that intruded into the Arenal system after approximately 500 B.P. Changes in composition during stage 2 resulted from mixing of this more mafic original magma with new magma that had a similar SiO2 content, but higher compatible and incompatible element concentrations. The changes during stage 3 resulted from continued influx of the same magma plus crystal removal.We conclude that the eruption proceeded in the following way. Before 1968 zoned stage-1 magma resided in the deep crust below Arenal. A new magma intruded into this chamber in July 1968 causing ejection of the stage-1 magmas. The intruding magma mixed with mafic portions of the original chamber producing the mixed lavas of stage 2. Continued mixing plus crystal fractionation along the chamber and conduit walls produced stage-3 lavas. The time scales of crustal level magmatic processes at Arenal range 100–103 years, which are 3–6 orders of magnitude shorter than those of larger, more silicic systems.  相似文献   

5.
In order to constrain the moment tensor solution of an explosive seismic event recorded on Arenal volcano, Costa Rica, we perform tests using synthetic data. These data are generated using a 3D model including the topography of the volcano and the best estimation of the velocity model available for Arenal. Solutions for (i) the moment tensor components, and (ii) the moment tensor plus single forces, are analyzed. When noisy data and mislocated sources are used in the inversion, spurious single forces are easily generated in the solution for the moment tensor components plus single forces. Forces also appear when the inversion is performed using an explosive event recorded on Arenal in 2005. Synthetic tests indicate that these forces might be spurious. However the mechanism is correctly retrieved by the inversion in both solutions. The ability to recover the explosive mechanism for the 2005 event combined with the interpretative aids from the synthetics tests will enable us to invert for the large variation in events observed on Arenal.  相似文献   

6.
The volume of magma emitted by Volcan Arenal from July 1968 to March 1980 has been calculated to be 304 × 106 m3 (dense rock equivalent). Most of this magma has been emplaced as block lava flows on the western flanks of the volcano following the initial explosive eruptions in 1968. From 1968 to 1973 the volumetric discharge rate of magma decreased from about 3-2 m3 s−1 to about 1 m3 s−1. During a break in activity in late 1973 the site of effusion moved from Crater A to Crater C about 400 m higher. Subsequent effusion was at a lower rate (0.3 m3 s−1) which remained constant for the next six years. Comparison of dry-tilt measurements during this latter period of steady-state effusion with numerical finite-element models of Arenal's elastic response to the evacuation of magma from an underlying reservoir favor a very shallow reservoir (< 2 km depth) to explain the data. However, the constraints imposed by the measured volumes of magma are not compatible with such a reservoir. Instead, it is argued that the steady downward tilting of the volcano's summit was caused by the loading of the western side of the volcano by about 19 × 106 m3 of lava. Surface loading by lava flows may be an important deformational effect at other volcanoes. A system of magma supply involving open conduits (pipes) for the uppermost one kilometer and transitory conduits (cracks) to a crustal reservoir is proposed. This crustal reservoir initially contained a compositionally graded magma which was evacuated from 1968 to 1973. The subsequent abrupt decrease in effusion rate is compatible with the increased magmatic head required to reach Crater C. The constancy of magma composition and effusion rate from 1974 to 1980 implies a homogeneous magma reservoir.  相似文献   

7.
Bulletin of Volcanology - The bulk composition of magma erupted from Volcán Arenal has remained nearly constant (SiO2 = 53.6–54.9&;nbsp;wt%; MgO = 5.0–4.5&;nbsp;wt%) during...  相似文献   

8.
The pyroclastic flow that issued from the Arenal summit crater on 28 August 1993 came from the collapse of the crater wall of the cone and the drainage of a lava pool. The 3-km-long pyroclastic flow, 2.2ǂ.8᎒6 m3 in volume, was confined to narrow valleys (30-100 m wide). The thickness of the pyroclastic deposit ranged from 1 to 10 m, and its temperature was about 400 °C, although single bombs were up to 1,000 °C. The deposit is clast-supported, has a bimodal grain size distribution, and consists of an intimate mixture of finely pulverized rock ash, lapilli, small blocks, and cauliflower bread-crusted bombs, in which are set meter-size lava fragments and juvenile and non-juvenile angular blocks, and bombs up to 7 m in diameter. Large faceted blocks make up 50% of the total volume of the deposit. The cauliflower bombs have deep and intricate bread-crust texture and post-depositional vesiculation. It is proposed that the juvenile material was produced entirely from a lava pool, whereas faceted non-juvenile blocks come from the crater-wall collapse. The concentration and maximum diameter of cauliflower bread-crusted bombs increases significantly from the base (rockslide + pyroclastic flow) to the top (the pyroclastic flow) of the deposit. An ash cloud deposited accretionary lapilli in the proximal region (outside of the pyroclastic flow deposit), and very fine ash fell in the distal region (between 5 and 30 km). The accretionary lapilli deposit is derived from the fine, elutriated products of the flow as it moved. A turbulent overriding surge blew down the surrounding shrubbery in the flow direction. The pyroclastic flow from August 1993, similar to the flows of June 1975, May 1998, August 2000, and March 2001, slid and rolled rather than being buoyed up by gas. They grooved, scratched, and polished the surfaces over which they swept, similar to a Merapi-type pyroclastic flow. However, the mechanism of the outpouring of a lava pool and the resulting flows composed of high- to moderate-vesiculated, cauliflower bread-crusted bombs and juvenile blocks have not been described before. High-frequency earthquake swarms, followed by an increase in low-frequency volcanic events, preceded the 1975, 1993, and 2000 eruptions 2-4 months before. These pyroclastic flow events, therefore, may be triggered by internal expansion of the unstable cone in the upper part because of a slight change in the pressure of the magma column (gas content and/or effusive rate). This phenomenon has important short-term, volcanic hazard implications for touristic development of some parts on the flanks of the volcano.  相似文献   

9.
10.
Microgravity changes with time, not always consistent with the Bouguer-corrected free air gradient, have been recorded and associated with cyles of eruptive activity at Krafla, Kilauea, Pacaya and Etna volcanoes. In contrast, over the non-erupting yet active fumarolic vents at Poás (Costa Rica), real-time gravity observations over three periods during the years 1983–1985 have identified ca. 140µGal amplitude, cyclic gravity variations. Their decrease in amplitude with distance from the active crater, coupled with a static sub-surface structural model, have allowed the effects of a variety of possible causative dynamic phenomena to be evaluated. It is concluded that cyclic changes in the average density (by ca. 0.03 Mg m–3) in the magma pipe at depths below 500 m, rather than variation in magma chamber or water table geometry, are responsible for the observed gravity variations. Specifically, anaverage of 1 % fluctuation in the volume of gas in crystal-free magma, a process driven by thermal convection cycles, probably accounts for the density/gravity change.  相似文献   

11.
Published gravity data on active volcanoes generally reflecteither the low density scoriaceous/pumiceous deposits that are localized within ring-fracture collapse depressions, such as the calderas of mature silicic volcanoes,or the high density frozen magma conduits that occur beneath basaltic shields and cones. The intensive gravity surveys reported here over three complex andesite volcanoes reveal features of both types. Their multi-component gravity fields have crater-centred positive anomalies (1–2 km diameter) surrounded by broader zones of negative gravity with similar amplitudes but greater width (5–10 km). The former are thought to reflect sub-crater magma pipes ofnormal density (ca. 2.5–2.6 Mg m−3) surrounded by pyroclastic scoria, ashes and occasional lava flows of muchlower net density (1.8–2.4 Mg m−3) which, in turn, account for the negative anomalous zones because the deeper, more consolidated and older parts of these andesite volcano edifices have more normal densities (2.3–2.6 Mg m−3).The low density materials are particularly interesting because they appear to have filled topographic depressions to depths of several hundred metres, especially where old caldera-like structures have been postulated from the steep gravity gradients over perimeter ring faults. A model is developed whereby short periods of caldera collapse, associated with intermittent, large high level magma bodies, are interspersed by normal crater-like activity with narrow sub-surface magma pipes. Dominantly pyroclastic activity from summit craters generates the materials that gradually fill earlier-formed topographic depressions. This study demonstrates the unique value of detailed gravity surveys, combined with surface geological information, for modelling and understanding the evolution of active volcano summit regions.  相似文献   

12.
Turrialba (10°02′N, 83°45′W) is a 3,349-m high stratovolcano belonging to the Holocene “Cordillera Central” volcanic belt of Costa Rica. The summit consists of three EW-oriented craters (East, Central, and West). Since its last eruptive phase (1864–1866), the Central and West craters have displayed modest fumarolic activity, with outlet temperatures clustering around 90°C. In 2001, seismic swarms, ground deformation, and increasing fumarolic activity occurred. From 2005 to 2008, new fumarolic vents opened between and within the Central and West craters, and along the western and southwestern outer flanks of the volcanic edifice. These physical changes were accompanied by a drastic modification in the gas chemistry that can be divided in three stages: (1) hydrothermal (from 1998 to autumn 2001), characterized by the presence of H2O, CO2, H2S, and, to a very minor extent, HCl and HF; (2) hydrothermal/magmatic (autumn 2001–2007), with the appearance of SO2 and a significant increase of HCl and HF; and (3) magmatic-dominated (2007–2008), characterized by increased SO2 content, SO2/H2S > 100, and temperatures up to 282°C. Accordingly, gas equilibrium in the CO2-CH4-H2 system suggests a progressive evolution of the deep fluid reservoir toward higher temperatures and more oxidizing conditions. The chemical–physical modifications of Turrialba in the last decade can be interpreted as part of a cyclic mechanism controlling the balance between the hydrothermal and the magmatic systems. Nevertheless, the risk of rejuvenation of the volcanic activity cannot be excluded, and an appropriate seismic, ground deformation, and geochemical monitoring program is highly recommended. Turrialba lies at a distance of 35 and 15 km from San José and Cartago, respectively, the two largest cities in Costa Rica.  相似文献   

13.
We have relocated 1658 earthquakes whichoccurred in Costa Rica, and its vicinity. Theserelocated earthquakes were then used to investigatethe stress and orientation of fault planes within thestudy area. The analysis was made using the polaritiesof first motion P-waves. We found that the subductionzone for Costa Rica is mainly characterized by thrustfaulting, with some areas also exhibiting a componentof strike-slip motion. The intraplate Caribbeanseismicity in central Costa Rica shows a predominantshallow left-lateral strike-slip faulting. In southernCosta Rica, the subduction of very young oceaniclithosphere beneath the Caribbean plate (i.e. PanamaBlock), enhanced by the collision and subduction ofthe Cocos Ridge, has produced a highly compressivestress regime. This highly compressive regime ischaracterized by strike-slip faults oriented in aNE-SW direction, extending all the way from thePacific margin into the back-arc, connecting with theNorth Panama Deformed Belt.  相似文献   

14.
Acid rain and ongoing eruptive activity at Rincón de la Vieja volcano in northwestern Costa Rica have created a triangular, deeply eroded “dead zone” west-southwest of the Active Crater. The barren, steep-walled canyons in this area expose one of the best internal stratigraphic profiles of any active or dormant volcano in Costa Rica. Geologic mapping along the southwestern flank of the volcano reveals over 300 m of prehistoric volcanic stratigraphy, dominated by tephra deposits and two-pyroxene andesite lavas. Dense tropical forests and poor access preclude mapping elsewhere on the volcano. In the “dead zone” four stratigraphic groups are distinguished by their relative proportions of lava and tephra. In general, early volcanism was dominated by voluminous lava emissions, with explosive plinian eruptions becoming increasingly more dominant with time. Numerous phreatic eruptions have occurred in historic times, all emanating from the Active Crater. The stratigraphic sequence is capped by the Río Blanco tephra deposit, erupted at approximately 3500 yr B.P. Approximately 0.25 km3 (0.1 km3 DRE) of tephra was deposited in a highly asymmetrical dispersal pattern west-southwest of the source vent, indicating strong prevailing winds from the east and east-northeast at the time of the eruption. Grain-size studies of the deposit reveal that the eruption was subplinian, attaining an estimated column height of 16 km. A qualitative hazards assessment at Rincón de la Vieja indicates that future eruptions are likely to be explosive in style, with the zone of greatest hazard extending several kilometers north from the Active Crater.  相似文献   

15.
Regional seismic apparent attenuation was estimated for Costa Rica, Central America, by using a time domain single scattering model of the shear wave coda decay of local earthquakes. The sensitivity of coda Q (Qc) measurements with respect to geological differences in the crust is demonstrated in eight sub-regions with a large variety of tectonic and geologic properties. The Qc estimations were performed for 96 selected local earthquakes recorded at 13 sites during a period of three months. In order to model the scattering as a weak process and to avoid short distance nonlinear effects, we made use of the S-wave coda data only from events within a hypocentral distance of 12 to 106 km with a lapse time between 9 and 53 s. Seismograms were also divided into groups with three different focal depths d, namely d<21 km, 21 kmc values are frequency dependent in the range 1–9 Hz, and are approximated by a least-squares fit to the power law Qc(f) = Q0(f/f0)n. The estimated parameters of the power-law dependence of Qc for the whole region, including all depths and possible wave paths, are Q0 = 91 (± 8.4) and n = 0.72 (±0.071). Differences in the parameter of Qc for different depths intervals are small, ranging from Q0 = 90 (±0.7) and n = 0.70 (±0.006) for the uppermost group, with focal depths less than 21 km, to Q0 = 97 (±0.7) and n = 0.79 (±0.005) for the deepest group with focal depths larger than 43 km. The regional differences in Qc for the eight sub-regions are significantly larger when compared with the differences between the three focal depth groups. An attempt is made to interpret the variation of Qc in terms of spatial variations in the geologic and tectonic properties of the crust. Other authors have found that the frequency exponent n might be larger in active tectonic areas and smaller in more stable regions. In the northern region of the Pacific coast we obtain a value of n = 0.52 (±0.011), which might indicate a lower level of tectonic activity when compared with n = 0.85 (±0.015) and 0.83 (±0.031), respectively, for the central and southern sub-regions along the Pacific coast. The latter two sub-regions are located closer to the active area near the Cocos ridge. We obtain the frequency exponent n = 0.72 (±0.052) along a major shear zone in central Costa Rica characterized by high volcanic activity and large geologic complexity. Values of n along the Panamean border are 0.62 (±0.029) in the north and 0.86 (±0.009) and 0.83 (±0.031) in two regions adjacent to the subduction zone and the Cocos Ridge, respectively.  相似文献   

16.
The 1963–65 eruption of Irazú, like all others of this volcano during the historic period, produced only ash and other fragmental ejecta without lava. The initial outbreak on March 13, 1963 started with a series of great explosions that hurled out much ash, blocks, and bombs, but the activity soon settled down to alternating periods of explosive cruptions and quiet emission of steam. Ash was deposited mostly along a zone that extended westward from the summit to and beyond the city of San Jose, 24 km away. The prolonged ashfall severely damaged dairy, vegetable, and coffee farms, and for a while made daily life in the affected cities extremely difficult. Accelerated runoff of rainwater from the ash-covered slopes of the volcano caused destructive floods, mudflows, and landslides. The climax of the cruption probably occurred during December 1963 and January 1964, when ash and incandescent scoria were erupted voluminously and the magma rose to within 100 meters of the lip of the vent. Precise levelling along the highway to the summit in May 1964 by the Geographic Institute revealed the upper part of the volcano upheaved as much as 11 cm above levels determined in 1949. A repetition of the levelling in September 1964 showed a subsidence to approximately the 1949 configuration, indicating a distinct reduction of pressure in the magma chamber. Substantial amounts of pulverized wallrock were present in the ash along with fragments of scoria and pumice. Progressive caving of the vent walls, which enlarged the diameter of the vent from 200 meters to 525 meters, kept dropping wallrock down onto the exploding magma, and at times stopped the eruption for a day or two by plugging the vent. The scoriaceous and pumiceous bombs were porphyritic two-pyroxene olivine basaltic andesite, and their composition remained remarkably constant throughout the eruption. The ash section was about 2 meters thick, 800 meters downwind from the vent in June 1964. In the section, deposits of the rainy season could be distinguished by their well developed stratification from those of the dry season. A zone containing three persistent pumice horizons represents the climactic period of December 1963 to January 1964. The cloudburst of December 10, 1963 is recorded by a highly rilled surface, and the strong winds of the dry season of 1964 are indicated by a rippled lag deposit.  相似文献   

17.
Concentrations of chloride and sulfate and pH in the hot crater lake (Laguna Caliente) at Poás volcano and in acid rain varied over the period 1993–1997. These parameters are related to changes in lake volume and temperature, and changes in summit seismicity and fumarole activity beneath the active crater. During this period, lake level increased from near zero to its highest level since 1953, lake temperature declined from a maximum value of 70°C to a minimum value of 25°C, and pH of the lake water increased from near zero to 1.8. In May 1993 when the lake was nearly dry, chloride and sulfate concentrations in the lake water reached 85,400 and 91,000 mg l−1, respectively. Minimum concentrations of chloride and sulfate after the lake refilled to its maximum volume were 2630 and 4060 mg l−1, respectively. Between January 1993 and May 1995, most fumarolic activity was focused through the bottom of the lake. After May 1995, fumarolic discharge through the bottom of the lake declined and reappeared outside the lake within the main crater area. The appearance of new fumaroles on the composite pyroclastic cone coincided with a dramatic decrease in type B seismicity after January 1996. Between May 1995 and December 1997, enhanced periods of type A seismicity and episodes of harmonic tremor were associated with an increase in the number of fumaroles and the intensity of degassing on the composite pyroclastic cone adjacent to the crater lake. Increases in summit seismic activity (type A, B and harmonic tremor) and in the height of eruption plumes through the lake bottom are associated with a period of enhanced volcanic activity during April–September 1994. At this time, visual observations and remote fumarole temperature measurements suggest an increase in the flux of heat and gases discharged through the bottom of the crater lake, possibly related to renewed magma ascent beneath the active crater. A similar period of enhanced seismic activity that occurred between August 1995 and January 1996, apparently caused fracturing of sealed fumarole conduits beneath the composite pyroclastic cone allowing the focus of fumarolic degassing to migrate from beneath the lake back to the 1953–1955 cone. Changes in the chemistry of summit acid rain are correlated changes in volcanic activity regardless of whether fumaroles are discharging into the lake or are discharging directly into the atmosphere.  相似文献   

18.
Amplitude variation with offset (AVO) analysis and waveform inversion are techniques used to determine qualitative or quantitative information on gas hydrates and free gas in sediments. However, the quantitative contribution of gas hydrates to the acoustic impedance contrast observed at the bottom‐simulating reflector and the reliability of quantitative AVO analyses are still topics of discussion. In this study, common‐midpoint gathers from multichannel wide‐angle reflection seismic data, acquired offshore Costa Rica, have been processed to preserve true amplitude information at the bottom‐simulating reflector for a quantitative AVO analysis incorporating angles of incidence of up to 60°. Corrections were applied for effects that significantly alter the observed amplitudes, such as the source directivity. AVO and rock‐physics modelling indicate that free gas immediately beneath the gas‐hydrate stability zone can be detected and low concentrations can be quantified from AVO analysis, whereas the offset‐dependent reflectivity is not sensitive to gas‐hydrate concentrations of less than about 10% at the base of the gas‐hydrate stability zone. Bulk free‐gas saturations up to 5% have been determined from the reflection seismic data assuming a homogeneous distribution of free gas in the sediment. Assuming a patchy distribution of free gas increases the estimated concentrations up to 14%. There is a patchy occurrence of bottom‐simulating reflectors south‐east of the Nicoya Peninsula on the continental margin, offshore Costa Rica. AVO analysis indicates that this phenomenon is related to the local presence of free gas beneath the gas‐hydrate stability zone, probably related to a focused vertical fluid flow. In areas without bottom‐simulating reflectors, the results indicate that no free gas is present.  相似文献   

19.
20.
Between 1986 and 1990 the eruptive activity of Erebus volcano was monitored by a video camera with on-screen time code and recorded on video tape. Corresponding seismic and acoustic signals were recorded from a network of 6 geophones and 2 infrasonic microphones. Two hundred Strombolian explosions and three lava flows which were erupted from 7 vents were captured on video. In December 1986 the Strombolian eruptions ejected bombs and ash. In November 1987 large bubble-bursting Strombolian eruptions were observed. The bubbles burst when the bubble walls thinned to ∼ 20 cm. Explosions with bomb flight-times up to 14.5 s were accompanied by seismic signals with our local size estimate, “unified magnitudes” (mu), up to 2.3. Explosions in pools of lava formed by flows in the Inner Crater were comparatively weak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号