首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 664 毫秒
1.
The microstructural development of synthetic rocksalt experimentally deformed at 100–200°C can be dominated either by grain boundary migration recrystallisation or by subgrain rotation recrystallisation, depending on water content. Samples taken from both regimes have been analysed using automated electron backscatter diffraction in order to collect crystallographic orientation and misorientation data. The frequency distribution of boundary misorientations, the boundary hierarchy characteristics and the nature of any crystallographic preferred orientation (CPO) have been used to determine the crystallographic signature of both recrystallisation processes. Dominant subgrain rotation recrystallisation results in many low to medium angle (4–20°) boundaries, a strong CPO and a continuous boundary hierarchy. Dominant grain boundary migration recrystallisation results in few low or medium angle boundaries, and a discrete boundary hierarchy. The causes of these differences and the potential application of crystallographic signatures to the study of naturally deformed rocks are discussed.  相似文献   

2.
The microstructure of a quartzite experimentally deformed and partially recrystallised at 900 °C, 1.2 GPa confining pressure and strain rate 10−6/s was investigated using orientation contrast and electron backscatter diffraction (EBSD). Boundaries between misoriented domains (grains or subgrains) were determined by image analysis of orientation contrast images. In each domain, EBSD measurements gave the complete quartz lattice orientation and enabled calculation of misorientation angles across every domain boundary. Results are analysed in terms of the boundary density, which for any range of misorientations is the boundary length for that range divided by image area. This allows a more direct comparison of misorientation statistics between different parts of a sample than does a treatment in terms of boundary number.The strain in the quartzite sample is heterogeneous. A 100×150 μm low-strain partially recrystallised subarea C was compared with a high-strain completely recrystallised subarea E. The density of high-angle (>10°) boundaries in E is roughly double that in C, reflecting the greater degree of recrystallisation. Low-angle boundaries in C and E are produced by subgrain rotation. In the low-angle range 0–10° boundary densities in both C and E show an exponential decrease with increasing misorientation. The densities scale with exp(−θ/λ) where λ is approximately 2° in C and 1° in E; in other words, E has a comparative dearth of boundaries in the 8–10° range. We explain this dearth in terms of mobile high-angle boundaries sweeping through and consuming low-angle boundaries as the latter increase misorientation through time. In E, the density of high-angle boundaries is larger than in C, so this sweeping would have been more efficient and could explain the relative paucity of 8–10° boundaries.The boundary density can be generalised to a directional property that gives the degree of anisotropy of the boundary network and its preferred orientation. Despite the imposed strain, the analysed samples show that boundaries are not, on average, strongly aligned. This is a function of the strong sinuosity of high-angle boundaries, caused by grain boundary migration. Low-angle boundaries might be expected, on average, to be aligned in relation to imposed strain but this is not found.Boundary densities and their generalisation in terms of directional properties provide objective measures of microstructure. In this study the patterns they show are interpreted in terms of combined subgrain rotation and migration recrystallisation, but it may be that other microstructural processes give distinctive patterns when analysed in this fashion.  相似文献   

3.
The electron backscattering diffraction technique (EBSD) was used to analyze bulging recrystallization microstructures from naturally and experimentally deformed quartz aggregates, both of which are characterized by porphyroclasts with finely serrated grain boundaries and grain boundary bulges set in a matrix of very fine recrystallized grains. For the Tonale mylonites we investigated, a temperature range of 300–380 °C, 0.25 GPa confining pressure, a flow stress range of ~ 0.1–0.2 GPa, and a strain rate of ~ 10− 13 s− 1 were estimated. Experimental samples of Black Hills quartzite were analyzed, which had been deformed in axial compression at 700 °C, 1.2–1.5 GPa confining pressure, a flow stress of ~ 0.3–0.4 GPa, a strain rate of ~ 10− 6 s− 1, and to 44% to 73% axial shortening. Using orientation imaging we investigated the dynamic recrystallization microstructures and discuss which processes may contribute to their development. Our results suggest that several deformation processes are important for the dismantling of the porphyroclasts and the formation of recrystallized grains. Grain boundary bulges are not only formed by local grain boundary migration, but they also display a lattice misorientation indicative of subgrain rotation. Dynamic recrystallization affects especially the rims of host porphyroclasts with a hard orientation, i.e. with an orientation unsuitable for easy basal slip. In addition, Dauphiné twins within porphyroclasts are preferred sites for recrystallization. We interpret large misorientation angles in the experimental samples, which increase with increasing strain, as formed by the activity of fluid-assisted grain boundary sliding.  相似文献   

4.
Deformation experiments have been carried out to investigate the effect of dynamic recrystallisation on crystallographic preferred orientation (CPO) development. Cylindrical samples of natural single crystals of quartz were axially deformed together with 1 vol.% of added water and 20 mg of Mn2O3 powder in a Griggs solid medium deformation apparatus in different crystallographic orientations with compression direction: (i) parallel to <c>, (ii) at 45° to <c> and 45° to <a> and (iii) parallel to <a>. The experiments were performed at a temperature of 800 °C, a confining pressure of 1.2 GPa, a strain rate of  10− 6 s− 1, to bulk finite strains of  14–36%. The deformed samples were analysed in detail using optical microscopy, electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). Two different microstructural domains were distinguished in the deformed samples: (i) domains with undulatory extinction and deformation lamellae, and (ii) domains with new recrystallised grains. Within the domains of undulatory extinction, crystal-plastic deformation caused gradual rotations of the crystal lattice up to  30° away from the host orientation. New recrystallised grains show a strong CPO with c-axis maxima at  45° to the compression direction. This is the case in all experiments, irrespective of the initial crystallographic orientation. The results show that c-axes are not continuously rotated towards the new maxima. The new grains thus developed through a mechanism different from subgrain rotation recrystallisation. New grains have a subeuhedral shape and numerous microcavities, voids, fluid channels and fluid inclusions at their grain boundaries. No host control is recorded in misorientation axes across their large angle grain boundaries. New grains might have been created by nucleation from solution in the μm-scale voids and microfractures. The CPO most likely developed due to preferred growth of the freshly precipitated grains with orientations suitable for intracrystalline deformation at the imposed experimental conditions.  相似文献   

5.
The Ibituruna quartz-syenite was emplaced as a sill in the Ribeira-Araçuaí Neoproterozoic belt (Southeastern Brazil) during the last stages of the Gondwana supercontinent amalgamation. We have measured the Anisotropy of Magnetic Susceptibility (AMS) in samples from the Ibituruna sill to unravel its magnetic fabric that is regarded as a proxy for its magmatic fabric. A large magnetic anisotropy, dominantly due to magnetite, and a consistent magnetic fabric have been determined over the entire Ibituruna massif. The magmatic foliation and lineation are strikingly parallel to the solid-state mylonitic foliation and lineation measured in the country-rock. Altogether, these observations suggest that the Ibituruna sill was emplaced during the high temperature (~ 750 °C) regional deformation and was deformed before full solidification coherently with its country-rock. Unexpectedly, geochronological data suggest a rather different conclusion. LA-ICP-MS and SHRIMP ages of zircons from the Ibituruna quartz-syenite are in the range 530–535 Ma and LA-ICP-MS ages of zircons and monazites from synkinematic leucocratic veins in the country-rocks suggest a crystallization at ~ 570–580 Ma, i.e., an HT deformation > 35My older than the emplacement of the Ibituruna quartz-syenite. Conclusions from the structural and the geochronological studies are therefore conflicting. A possible explanation arises from 40Ar–39Ar thermochronology. We have dated amphiboles from the quartz-syenite, and amphiboles and biotites from the country-rock. Together with the ages of monazites and zircons in the country-rock, 40Ar–39Ar mineral ages suggest a very low cooling rate: < 3 °C/My between 570 and ~ 500 Ma and ~ 5 °C/My between 500 and 460 Ma. Assuming a protracted regional deformation consistent over tens of My, under such stable thermal conditions the fabric and microstructure of deformed rocks may remain almost unchanged even if they underwent and recorded strain pulses separated by long periods of time. This may be a characteristic of slow cooling “hot orogens” that rocks deformed at significantly different periods during the orogeny, but under roughly unchanged temperature conditions, may display almost indiscernible microstructure and fabric.  相似文献   

6.
The volcano-sedimentary formations from the southern Vosges are subdivided in two main series: a lower Visean series characterized by a volcanism of spilite-keratophyre type, and an upper Visean series which includes a normal volcanic association of shoshonitic tendency. Paleomagnetic study of 50 sites sampled in both series, but mostly in the upper one, yields three types of directions of characteristic magnetizations. The first type corresponds to Tertiary and Quaternary remagnetizations with low apparent blocking temperatures (350°–500°C, titano-maghemites?). The second group is formed by remagnetizations which have taken place during late Carboniferous-early Permian times, and which show high blocking temperatures of magnetite and mostly titano-haematites. The mean direction is D = 16°, I = 7°, α95 = 9° for 13 sites, (λ = 43°N, φ = 165°E). The last group is represented by primary magnetizations of latest Visean age and post-Sudetic remagnetizations, with blocking temperatures of magnetite and haematite. The mean direction D = 323°, I = −17°, α95 = 9° for 18 sites, (λ = 25°N, φ = 228°E), deviates from about 60° from the theoretical direction, calculated with the early Carboniferous, European pole position. This deviation is interpreted as resulting from a counterclockwise rotation of the southern Vosges between late Visean and Westphalian times. One consequence may be the formation of the variscan “V”, due to the anticlockwise rotation of the eastern branch of the chain. The northwesterly directions show a variation of the inclinations which may indicate that the rotation was preceded by a relatively significant drift of the Vosges to the north.

Résumé

Les terrains volcano-sédimentaires des Vosges méridionales se subdivisent en deux séries principales: la série du Viséen inférieur caractérisée par un volcanisme du type spilite-kératophyre et la série du Viséen supérieur qui comporte une association volcanique normale à tendance shoshonitique. L'étude paléomagnétique de 50 sites échantillonnés dans les deux séries, avec une prédominance dans la série supérieure, met en évidence trois types de directions d'aimantations caractéristiques, Le premier type correspond à des réaimantations d'áge Tertiaire à Quaternaire, à températures de blocage apparentes basses (350°–500°C, titano-maghemites?). Le second groupe est f'orme par des réaimantations mises en place au Carbonifère supérieur-Permien inférieur, à température de blocage haute de magnétite et surtout de titanohématites. La direction moyenne est D = 16°, I = 7°, α95 = 9° pour 13 sites. (λ = 43°N, φ = 165°E). Le dernier groupe est représenté par des aimantations primaires, d'âge Viséen supérieur et des réaimantations post phase Sudète II, à température de blocage de magnetite et d'hématite. La direction moyenne D = 323°, I = −17°, α95 = 9° pour 18 sites (λ = 25 °N, φ = 228°E), dévie de prés de 60° de la direction théorique calculée à partir du pôle européen au Carbonifère inférieur. Cette déviation est interprétée comme résultant d'une rotation antihoraire des Vosges méridionales entre le Viséen supérieur et le Westphalien. Une des conséquences en serait la formation du “V” varisque. par suite de la rotation antihoraire de la branche orientale de la chaîne. Les directions nord-ouest présentent une variation en inclinaison qui semble indiquer que la rotation antihoraire était précédée par une dérive relativement importante des Vosges vers le Nord.  相似文献   

7.
A microstructural analysis was carried out on mylonitic rocks of the Azul megashear zone (AMSZ), Tandilia, which were formed in a range of metamorphic conditions from lower greenschist to amphibolite facies. Tailed porphyroclasts are common and mostly symmetric. Scarce asymmetric rotated porphyroclasts show both sinistral and dextral senses of shear. In sections parallel to the mylonitic foliation, porphyroclasts are round. The AMSZ is probably related to the late Transamazonian orogenic cycle and may be due to NNE–SSW-directed convergence. In weakly deformed protolith and protomylonites, quartz deforms by dynamic recrystallization, mainly subgrain rotation in dislocation creep Regime 2. K-feldspar porphyroclasts and plagioclase show scarce fracturation and deform by dynamic recrystallization along grain boundaries. Quartz microstructures in mylonites indicate predominantly Regime 3 grain boundary migration recrystallization. Feldspar structures indicate recrystallization through the nucleation and growth of new grains at grain boundaries. The temperatures of deformation from mineral assemblages in the CNKFMASH system in four bulk compositions are in the range of 400–450 °C, and the pressures are more than 6 kb.  相似文献   

8.
Detailed electron microscope and microstructural analysis of two ultrahigh temperature felsic granulites from Tonagh Island, Napier Complex, Antarctica show deformation microstructures produced at  1000 °C at 8–10 kbar. High temperature orthopyroxene (Al 7 wt.% and  11 wt.%), exhibits crystallographic preferred orientation (CPO) and frequent subgrain boundaries which point to dislocation creep as the dominating deformation mechanism within opx. Two different main slip systems are observed: in opx bands with exclusively opx grains containing subgrain boundaries with traces parallel to [010] and a strong coupling of low angle misorientations (2.5°–5°) with rotation axes parallel to [010] the dominating slip system is (100)[001]. Isolated opx grains and grain clusters of 2–5 grains embedded in a qtz–fsp matrix show an additional slip system of (010)[001]. The latter slip system is harder to activate. We suggest that differences in the activation of these slip systems is a result of higher differential stresses imposed onto the isolated opx grains and grain clusters. In contrast to opx, large qtz grains (up to 200 μm) show random crystallographic orientation. This together with their elongate and cuspate shape and the lack of systematic in the rotation axes associated with the subgrain boundaries is consistent with diffusion creep as the primary deformation mechanism in quartz.Our first time detailed microstructural observations of ultrahigh temperature and medium to high pressure granulites and their interpretation in terms of active deformation mechanisms give some insight into the type of rheology that can be expect at lower crustal conditions. If qtz is the mineral phase governing the rock rheology, Newtonian flow behaviour is expected and only low differential stress can be supported. However, if the stress supporting mineral phase is opx, the flow law resulting from dislocation creep will govern the rheology of the rock unit; hence, an exponential relationship between stress and strain rate is to be expected.  相似文献   

9.
Three samples of gem quality plagioclase crystals of An60 were experimentally deformed at 900 °C, 1 GPa confining pressure and strain rates of 7.5–8.7×10−7 s−1. The starting material is effectively dislocation-free so that all observed defects were introduced during the experiments. Two samples were shortened normal to one of the principal slip planes (010), corresponding to a “hard” orientation, and one sample was deformed with a Schmid factor of 0.45 for the principal slip system [001](010), corresponding to a “soft” orientation. Several slip systems were activated in the “soft” sample: dislocations of the [001](010) and 110(001) system are about equally abundant, whereas 110{111} and [101] in ( 31) to ( 42) are less common. In the “soft” sample plastic deformation is pervasive and deformation bands are abundant. In the “hard” samples the plastic deformation is concentrated in rims along the sample boundaries. Deformation bands and shear fractures are common. Twinning occurs in close association with fracturing, and the processes are clearly interrelated. Glissile dislocations of all observed slip systems are associated with fractures and deformation bands indicating that deformation bands and fractures are important sites of dislocation generation. Grain boundaries of tiny, defect-free grains in healed fracture zones have migrated subsequent to fracturing. These grains represent former fragments of the fracture process and may act as nuclei for new grains during dynamic recrystallization. Nucleation via small fragments can explain a non-host-controlled orientation of recrystallized grains in plagioclase and possibly in other silicate materials which have been plastically deformed near the semi-brittle to plastic transition.  相似文献   

10.
A tectonic mélange exposed on land is examined to reveal relationships between mélange formation, underplating, and deformation mechanisms, focusing on the deformation of basaltic rocks. The studied Mugi Mélange of the Shimanto Belt is composed of a shale matrix surrounding various blocks of sandstone, pelagic sediments, and basalts. The mélange was formed during Late Cretaceous to early Tertiary times in a subduction zone under PT conditions of 150–200 °C and 6–7 km depth as estimated from vitrinite reflectance and quartz veins fluid inclusions. The mélange represents a range of deformation mechanisms; pressure solution with micro-scale cataclasis in the shale matrix, brittle tension cracking in the blocks, and ubiquitous strong cataclasis in the basal portion of basaltic layers. The cataclastic deformation in the basalts suggests a breakage of a topographic high in the seismogenic depth.  相似文献   

11.
The orientation of the optical indicating surface of vitrinite in reflected light has been determined following deformation at 350 and 500°C, confining pressures of 500 and 800 MPa and a strain rate of 10−5 s−1. High temperature and large strain have facilitated reorientation of the indicating surface, increase in anisotropy (bireflectance) and an increase in maximum vitrinite reflectance. In a specimen deformed at 500°C and 23% axial strain the maximum vitrinite reflectance has been reoriented more than 70° from close to parallel to σ1 in the undeformed state to perpendicular to σ1 following deformation. Orientation of the optical indicating surface of some of the deformed specimens suggests the orientation of the maximum reflectance is a composite product of the original orientation of the indicating surface and an orientation produced during deformation.  相似文献   

12.
Tin-polymetallic greisen-type deposits in the Itu Rapakivi Province and Rondônia Tin Province, Brazil are associated with late-stage rapakivi fluorine-rich peraluminous alkali-feldspar granites. These granites contain topaz and/or muscovite or zinnwaldite and have geochemical characteristics comparable to the low-P sub-type topaz-bearing granites. Stockworks and veins are common in Oriente Novo (Rondônia Tin Province) and Correas (Itu Rapakivi Province) deposits, but in the Santa Bárbara deposit (Rondônia Tin Province) a preserved cupola with associated bed-like greisen is predominant. The contrasting mineralization styles reflect different depths of formation, spatial relationship to tin granites, and different wall rock/fluid proportions. The deposits contain a similar rare-metal suite that includes Sn (±W, ±Ta, ±Nb), and base-metal suite (Zn–Cu–Pb) is present only in Correas deposit. The early fluid inclusions of the Correas and Oriente Novo deposits are (1) low to moderate-salinity (0–19 wt.% NaCl eq.) CO2-bearing aqueous fluids homogenizing at 245–450 °C, and (2) aqueous solutions with low CO2, low to moderate salinity (0–14 wt.% NaCl eq.), which homogenize between 100 and 340 °C. In the Santa Bárbara deposit, the early inclusions are represented by (1) low-salinity (5–12 wt.% NaCl eq.) aqueous fluids with variable CO2 contents, homogenizing at 340 to 390 °C, and (2) low-salinity (0–3 wt.% NaCl eq.) aqueous fluid inclusions, which homogenize at 320–380 °C. Cassiterite, wolframite, columbite–tantalite, scheelite, and sulfide assemblages accompany these fluids. The late fluid in the Oriente Novo and Correas deposit was a low-salinity (0–6 wt.% NaCl eq.) CO2-free aqueous solution, which homogenizes at (100–260 °C) and characterizes the sulfide–fluorite–sericite association in the Correas deposit. The late fluid in the Santa Bárbara deposit has lower salinity (0–3 wt.% NaCl eq.) and characterizes the late-barren-quartz, muscovite and kaolinite veins. Oxygen isotope thermometry coupled with fluid inclusion data suggest hydrothermal activity at 240–450 °C, and 1.0–2.6 kbar fluid pressure at Correas and Oriente Novo. The hydrogen isotope composition of breccia-greisen, stockwork, and vein fluids (δ18Oquartz from 9.9‰ to 10.9‰, δDH2O from 4.13‰ to 6.95‰) is consistent with a fluid that was in equilibrium with granite at temperatures from 450 to 240 °C. In the Santa Bárbara deposit, the inferred temperatures for quartz-pods and bed-like greisens are much higher (570 and 500 °C, respectively), and that for the cassiterite-quartz-veins is 415 °C. The oxygen and hydrogen isotope composition of greisen and quartz-pods fluids (δ18Oqtz-H2O=5.5–6.1‰) indicate that the fluid equilibrated with the albite granite, consistent with a magmatic origin. The values for mica (δ18Omica-H2O=3.3–9.8‰) suggest mixing with meteoric water. Late muscovite veins (δ18Oqtz-H2O=−6.4‰) and late quartz (δ18Omica-H2O=−3.8‰) indicate involvement of a meteoric fluid. Overall, the stable isotope and fluid inclusion data imply three fluid types: (1) an early orthomagmatic fluid, which equilibrated with granite; (2) a mixed orthomagmatic-meteoric fluid; and (3) a late hydrothermal meteoric fluid. The first two were responsible for cassiterite, wolframite, and minor columbite–tantalite precipitation. Change in the redox conditions related to mixing of magmatic and meteoric fluids favored important sulfide mineralization in the Correas deposit.  相似文献   

13.
The microstructure and texture in cordierites of a moldanubian gneiss from the Bohemian Massif has been analysed by transmission electron microscopy (TEM) and universal stage in order to get information on the deformation mechanisms and textural development of this rock-forming mineral. Deformation may have taken place at temperatures between about 500° C and 630° C and pressures smaller than about 3 kb. The elongated cordierite xenoblasts show a typical dislocation creep microstructure consisting of subgrain boundaries and free dislocations. The dislocations have [001], [010] and 1/2<110> Burgers vectors. [001] dislocations often have pure screw and edge character the latter type being climb-dissociated on (001). Among the dislocations reactions are common. The main subgrain boundaries observed are (010)[001], {110}[001] and (001)[010] tilt boundaries. Burgers vectors and dislocation line directions reveal (100)[001], (010)[001], (100)[010], {110} 1/2<110> and (001)1/2<110> as activated slip systems. The crystallographic preferred orientation (here referred to as texture) consists of a [001] maximum in the foliation parallel to the mineral lineation. [100] and [010] maxima are perpendicular to it within and normal to the foliation, respectively, with a girdle tendency normal to the lineation. The texture may be explained by simple shear deformation on the {hkO}[001] slip systems with preference of (010)[001].  相似文献   

14.
The 102 Ma El Potrero pluton, in the western foothills of Sierra San Pedro Mártir, in north-central Baja California, was emplaced during a long period of contractional deformation bracketed between 132 and 85 Ma that affected this segment of the Peninsular Ranges Batholith. The pluton records regional and emplacement related deformation manifested by: (1) a solid-state fabric developed on its eastern contact, which is produced by eastward lateral pluton expansion; (2) cleavage triple point zones in the host-rock NW and SE of the pluton; (3) subhorizontal ductile shear zones indicative of top-to-the-east transport; (4) magmatic and tectonic foliations parallel to regional structural trends and regional shear zones; (5) variable axial ratios of microgranitoid enclaves close to pluton–wall rock contacts; (6) evidence of brittle-emplacement mechanisms in the western border of the pluton, which contrast with features indicating mainly ductile mechanisms toward the east; and, (7) markedly discordant paleomagnetic directions that suggest emplacement in an active tectonic setting. The overall mean for 9 accepted paleomagnetic sites is Dec = 34.6°, I = 25.7° (k = 88.3, α95 = 5.5°), and is deviated  35° with respect to the reference cratonic direction. This magnetization is interpreted to indicate a combination of tilt due to initial drag during vertical diapiric ascent (or westward lateral-oblique expansion) of the adjacent San Pedro Mártir pluton and later rotation ( 15°) by Rosarito Fault activity in the southwest; this rotation may have occurred as eastward contraction acted to fill the space emptied by the ascending San Pedro Mártir pluton. The Rosarito fault may have tilted several plutons in the area (Sierra San Pedro Mártir, El Potrero, San José, and Encinosa). Magnetic susceptibility fabrics for 13 sites reflect mostly emplacement-related stress and regional stress. Paleomagnetic data and structural observations lead us to interpret the El Potrero pluton as a syntectonic pluton, emplaced within a regional shear zone delimited by the Main Mártir Thrust and the younger Rosarito Fault.  相似文献   

15.
Previous experiments by Raleigh et al. (1971) have shown that at strain rates of 10−2.sec−1 to 10−7.sec−1 only slip occurs in dry enstatite at temperatures above 1300°C and 1000°C, respectively.The present experiments have been conducted on polycrystalline enstatite under wet conditions in this regime where enstatite only slips, polygonizes and recrystallizes. Slip occurs throughout the whole regime on the system (100)[001] and at strains greater than 40% the system (010)[001] is observed. Polygonization and intragranular recrystallization begin at about 1300°C and 10−4.sec−1 and the orientation of these neoblasts is host-controlled. At lower strain rates intergranular neoblasts develop and their fabric is one of [100] maximum parallel with σ1 and [010] and [001] girdles in the σ2 = σ3 plane, similar to those in natural enstatite tectonites.Dislocation substructures of experimentally deformed enstatite have been examined by transmission electron microscopy. The samples were deformed within the field in which slip polygonization and recrystallization are the dominant deformation mechanisms. Samples within this regime have microstructures that are characterized by stacking faults and partial dislocations. Under the conditions of steady-state flow in olivine, these microstructures inhibit the operation of recovery mechanisms in enstatite.Other samples deformed within the polygonization and recrystallization field have microstructures that confirm the optical observations of intragranular and intergranular growth of neoblasts. It is suggested that the former result from strain-induced tilt of subrains, whereas the latter may result from bulge nucleation into adjacent subgrains.Mechanical data from constant strain-rate experiments at steady state, stress relaxation and temperature-differential creep tests are best fit to a power-law creep equation with the stress exponent, n~3 and the apparent activation energy for creep, Q~65 kcal/mole. Extrapolation of this equation to a representative natural geologic strain rate of 10−4. sec−1, over the temperature interval 1000–2000°C, gives an effective viscosity range of 1020–1018 poise and stresses in the range of 7-0.1 bar, respectively. Comparison with corrected wet-olivine mechanical data (Carter, 1976) over the same environment indicates that olivine is consistently the weaker of the two minerals and will recrystallize whilst enstatite will only slip and kink, thus accounting for the different habits of olivine and enstatite in ultramafic tectonites.  相似文献   

16.
Ferrous granulites in the area of Tidjénouine (Central Hoggar) exhibit a remarkable mineralogical composition characterized by the association orthoferrossilite–fayalite–quartz. These granulites are metamorphosed mafic igneous rocks showing the juxtaposition of different metamorphic parageneses. Peak paragenesis with garnet–clinopyroxene–amphibole–plagioclase–quartz reach to assemblage with orthopyroxene–plagioclase2. Secondary orthopyroxene reacted with garnet to produce symplectites with fayalite + plagioclase + quartz. The latest stage corresponds to an orthopyroxene–fayalite–quartz–plagioclase assemblage. The metamorphic history of the ferrous granulites is inferred by combining the study of phase relations with the construction of a petrogenetic grid and pseudosection in the CFMASH and CFAS systems using the Thermocalc program of [J. Metamorph. Geol. 6 (1988) 173]. The evolution of paragenetic minerals indicates a metamorphic PT path through the following conditions: 7.1 ± 1 kbar at 880 °C, 4.9 ± 1.6 kbar at 750 °C and 3–4 kbar at 700 °C, which is consistent with a clockwise PT path recorded throughout the area.  相似文献   

17.
Artificially prepared specimens of bischofite (MgCl2-6H2O) have been experimentally deformed at temperatures between 20 and 100°C, strain rates between 10−4 and 10−88 s−1, and confining pressures between 0.1 and 28 MPa. Development of microstructure with strain was studied by in-situ deformation experiments, and results of these were correlated with observations made on thin sections of deformed samples.In a first series of experiments the effect of grain size, impurity content and water content on the flow behaviour was investigated. Addition of about 0.1 wt.% water to dry samples was found to decrease the flow stress by a factor of 5. This effect was found to be associated with the formation of a thin fluid film on grain boundaries, strongly enhancing dynamic recrystallization due to the movement of high-angle grain boundaries, and possibly also to enhanced intracrystalline plasticity due to excess water present in the lattice. In a second series of experiments the strain-rate sensitivity of the flow stress of selected samples was investigated. Two regimes could be distinguished: one with a stress exponent n = 4.5 in the power law creep equation for values of the differential stress above 2.0 MPa, and one with n = 1.5 for stresses below this value.The main deformation mechanisms were intracrystalline slip, twinning, and grain-boundary sliding. Recrystallization occurred by subgrain rotation and high-angle grain-boundary migration. The rates of grain-boundary migration fell into two different regimes, one regime being distinguished by extremely fast migration rates. The applicability of the experimentally found flow law to the behaviour of bischofite rocks in nature is discussed.  相似文献   

18.
Dunite, experimentally deformed at 800° C, exhibits predominantly pure screw dislocations parallel to [001] and dense, tangled zones of dislocations subparallel to the plane (001). Olivine single crystals experimentally deformed at 900° C, are characterized by pure screw dislocations parallel to [001] and [100], and dislocations of undetermined character with Burgers vectors [001]. All observations are consistent with deformation mechanisms deduced from optically visible features.  相似文献   

19.
20.
The southern Andes plate boundary zone records a protracted history of bulk transpressional deformation during the Cenozoic, which has been causally related to either oblique subduction or ridge collision. However, few structural and chronological studies of regional deformation are available to support one hypothesis or the other. We address along- and across-strike variations in the nature and timing of plate boundary deformation to better understand the Cenozoic tectonics of the southern Andes.Two east–west structural transects were mapped at Puyuhuapi and Aysén, immediately north of the Nazca–South America–Antarctica triple junction. At Puyuhuapi (44°S), north–south striking, high-angle contractional and strike-slip ductile shear zones developed from plutons coexist with moderately dipping dextral-oblique shear zones in the wallrocks. In Aysén (45–46°), top to the southwest, oblique thrusting predominates to the west of the Cenozoic magmatic arc, whereas dextral strike-slip shear zones develop within it.New 40Ar–39Ar data from mylonites and undeformed rocks from the two transects suggest that dextral strike-slip, oblique-slip and contractional deformation occurred at nearly the same time but within different structural domains along and across the orogen. Similar ages were obtained on both high strain pelitic schists with dextral strike-slip kinematics (4.4±0.3 Ma, laser on muscovite–biotite aggregates, Aysén transect, 45°S) and on mylonitic plutonic rocks with contractional deformation (3.8±0.2 to 4.2±0.2 Ma, fine-grained, recrystallized biotite, Puyuhuapi transect). Oblique-slip, dextral reverse kinematics of uncertain age is documented at the Canal Costa shear zone (45°S) and at the Queulat shear zone at 44°S. Published dates for the undeformed protholiths suggest both shear zones are likely Late Miocene or Pliocene, coeval with contractional and strike-slip shear zones farther north. Coeval strike-slip, oblique-slip and contractional deformation on ductile shear zones of the southern Andes suggest different degrees of along- and across-strike deformation partitioning of bulk transpressional deformation.The long-term dextral transpressional regime appears to be driven by oblique subduction. The short-term deformation is in turn controlled by ridge collision from 6 Ma to present day. This is indicated by most deformation ages and by a southward increase in the contractional component of deformation. Oblique-slip to contractional shear zones at both western and eastern margins of the Miocene belt of the Patagonian batholith define a large-scale pop-up structure by which deeper levels of the crust have been differentially exhumed since the Pliocene at a rate in excess of 1.7 mm/year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号