首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results of various instrumental observations of geodynamic processes in the Earth’s crust and geophysical fields at the crust-atmosphere boundary in the Oka area of the Nelidovo-Ryazan tectonic structure and adjacent fractures and in the zone of the Gornyi Altai earthquake of September 27, 2003, are presented. The correlations between the geophysical fields are determined from the results of processing and analysis of microseismic vibrations, the emanation field of natural radon, and variations in the electric field in ground and the magnetic field in the surface atmospheric layer. Tidal deformations of the crust were considered as external effects enhancing the interactions between the geospheres. It is noted that tectonic faults determining the block structure of the crust are recognizable as anomalous variations in the geophysical fields and their high cross-correlation.  相似文献   

2.
Instrumental measurements of geophysical fields in several regions of the Earth’s crust with a complex structure and tectonics are analyzed. The observed geophysical fields include the electric field in the boundary layer of the atmosphere and in the subsurface crust, the ground magnetic field, and the fields formed by microseismic vibrations and natural radon emanation. It is shown that the fault zones are characterized by noticeably higher (compared to the middle segments of crustal blocks) variations in the geophysical fields, a stronger response to the faint external impacts in the form of lunisolar tides, and baric variations in the atmosphere, as well as by higher intensity relaxation processes. Energy transformations between the geophysical fields of different origins are observed predominantly in the fault regions.  相似文献   

3.
The gravitational interaction in the Earth–Moon–Sun system is considered from the standpoint of influencing the formation of time variations in the geophysical fields and some natural processes. The analysis of the results of instrumental observations revealed the main periodicities and cycles in the time variations of subsoil radon volumetric activity with the same periods as the vertical component of the variations of the tidal force. The amplitude modulation of seismic noise by the lunar-solar tide is demonstrated. It is shown that the intensity of relaxation processes in the Earth’s crust has a near-diurnal periodicity, whereas the spectrum of groundwater level fluctuations includes clearly expressed tidal waves. Based on the data on the tilts of the Earth’s surface, the role of tidal deformation in the formation of the block motions in the Earth’s crust is analyzed. A new approach is suggested for identifying tidal waves in the atmosphere by analyzing micropulsations of the atmospheric pressure with the use of adaptive rejection filters.  相似文献   

4.
Extraterrestrial forcing of natural environmental processes by gravitational interaction between the Sun, the Moon, and the Earth is considered. Based on the instrumental data, the main periodical components and cycles are identified in the time variations of some geophysical fields at the boundary between the Earth’s crust and the atmosphere. Correlation analysis shows that the lunar-solar tides are the key factor responsible for diurnal and quasi-biweekly variations in the ground electric field, radon emanation, water level in wells, and microseismic vibrations. The tidal influence on the various-scale movements of the blocks of the Earth’s crust is analyzed. In the context of the vertical, lateral, and rotational motion of crustal blocks, which is very important for the platforms, a new, precession-like type of displacements is revealed. These movements develop as a result of the nonsynchronous tidal responses of the block and the adjacent interblock gaps or tectonic structures whose strength and strain properties are different in different directions.  相似文献   

5.
地球自转及其和地球物理现象的联系:Ⅰ日长变化   总被引:8,自引:6,他引:8  
本文回顾了近十年来的研究进展,分各个时间尺度讨论了日长变化及其地球物理激发原因,并评估未来十年内地球自转运动可能的研究方向及课题。  相似文献   

6.
地球自转速率变化及其与地球物理现象关系研究的进展   总被引:9,自引:4,他引:5  
作为地球的基本运动形式之一的地球自转变化表征着地球的整体运动状态和地球系统各圈层之间的相互作用过程,其变化形式非常复杂.研究表明,地球自转速率的变化与众多地球物理现象有密切联系,与地震活动、EN-SO事件等重大自然灾害存在一定的相关性.因此,对地球自转速率变化及其与地球物理现象之间关系的研究长期以来就受到天文学家、地球科学家和从事灾害研究领域专家的重视.本文主要介绍了该研究领域近年来的研究进展,并认为在此基础上开展更深入的研究对天文学和地球科学的发展都是有意义的.  相似文献   

7.
The results of the experiment on studying the dynamics of the electromagnetic field (EM) generated by the stationary controlled ULF-band source during 30 days on the Baltic crystalline shield are presented. Diurnal variations in the EM fields and slow variations in the surface impedance with a period of about 14 days are revealed. The diurnal variations in the fields are mainly due to the fluctuations in the ionospheric parameters caused by the changes in the daytime ionization of the ionosphere by solar radiation. By comparing the harmonic component with a period of about 14 days, which was established in the time series of surface impedance, with the slow tidal deformations of the Earth’s crust, we revealed the correlation between the EM variations and tidal processes in the Earth. The estimates for the probable changes induced by tidal deformations in the structure and conductivity of the underlying medium are obtained by modeling.  相似文献   

8.
The amplitudes of variations in the magnetic and electric fields at extremely low frequencies were studied on the Kola Peninsula during a five-day-long experiment under different geophysical conditions. These studies demonstrated that the influence of the ionosphere is distinguishable at frequencies of <10 Hz and the structure of field variations reflected by the ionosphere is similar to that of the transverse wave. It is established that the ratio between semimajor axes of polarization ellipses of the electric and magnetic fields is independent of the state of the ionosphere and is likely determined by the deep structure of the crust beneath the site of the experiment.  相似文献   

9.
地球自转及其和地球物理现象的联系::Ⅱ.地极运动   总被引:5,自引:0,他引:5  
地球自转运动包括岁差和章动,极移和日长的变化,极移指自转轴相对地壳的运动。其主要激发原因是地球上物质分布的变化。因而,对极移的观测和研究必然为全球性的地球物理现象提供着信息。  相似文献   

10.
The temperature variations of the near-surface atmosphere in Kamchatka at Paratunka observatory and fluxes of outgoing infrared radiation prior to strong Kuril earthquakes (November 15, 2006, M = 8.3; January 13, 2007, M = 8.1) have been analyzed. It is shown that the radiation fluxes at ground level, as measured on satellites above the epicenter of earthquakes and above a remote observatory, coincide with each other, both in magnitude and in the feature of their time variations. The temperature measured directly at the observatory and the temperature at surface level estimated from satellite observations differ in magnitude, but they coincide in the feature of their time variations. The detected temperature increase (despite the negative regular trend at this time of year) is caused by the appearance of an additional heat source entering in the nearsurface atmosphere. This result, together with the studies of variations of various geophysical data before strong earthquakes performed earlier in Kamchatka, led to the conclusion that the additional heat source is in the Earth’s crust.  相似文献   

11.
Long-term variations in the parameters of the Earth’s upper atmosphere and geophysical activity have been studied based on the current spectra. The main sources of quasiperiodic oscillations in the atmosphere (including variations in the solar radiation, geomagnetic activity, and gravity) have been considered. It was shown that the most stable quasiharmonic variations are related to tidal gravitational oscillations and Rossby planetary waves with stable spectra. These oscillatory processes substantially contribute to the dynamics of the middle and upper atmosphere and manifest themselves in ionospheric parameters.  相似文献   

12.
The Earth has grown from chaotically mixed small dusts and gases to its present highly differentiated layered structure over the past 4.567 billion years. This differentiation has led to the formation of the atmosphere, hydrosphere,biosphere, crust, mantle, and core. The timing and mechanism for the formation and evolution of these different layers are still subjects of intense debate. This review brings together recent advances in using non-traditional stable isotopes to constrain major events and processes leading to the formation and differentiation of the Earth, including the Moon-forming giant impact, crustmantle interactions, evolution of life, the rise of atmospheric oxygen, extreme paleoclimate changes, and cooling rate of magmas.  相似文献   

13.
The spectral-profile and wavelet analyses are applied for estimating the periodicity in the depth variations of the elastic wave velocities in the detailed seismoacoustic model of the Kola Superdeep Borehole. The geological confinement of the revealed multiscale periodicity and its relationship with the geodynamical processes in the Earth??s crust are considered. The hierarchical sequence of the sizes of the blocks identified in the section is determined; this hierarchy is consistent with the geophysical structure of the medium.  相似文献   

14.
The temporal variations in shear-wave attenuation field in several focal zones of the strong earthquakes that occurred in the Earth??s crust and the upper mantle in the Garm region (Tajikistan) between 1980 and1991 are investigated by analyzing the detailed structure of coda envelopes of the local earthquakes. The significant role of fluids in the formation of the source zones of the strong Garm earthquakes is shown. The influence of the nonuniform rotation of the Earth on the dynamics of the deep fluid regime and seismicity is considered.  相似文献   

15.

The spectral-profile and wavelet analyses are applied for estimating the periodicity in the depth variations of the elastic wave velocities in the detailed seismoacoustic model of the Kola Superdeep Borehole. The geological confinement of the revealed multiscale periodicity and its relationship with the geodynamical processes in the Earth’s crust are considered. The hierarchical sequence of the sizes of the blocks identified in the section is determined; this hierarchy is consistent with the geophysical structure of the medium.

  相似文献   

16.
Observations of a complex of geophysical fields sensitive to deformation processes in the Earth’s crust point to the presence of components of different origins in their time variations. The variations contain not only regular components (seasonal, tidal, anthropogenic, and others) but also random and chaotic components. The chaotic component can be related to variations in the stress-strain state, as was shown in [Smirnov et al., 2005]. Some main properties of the behavior of the chaotic component can be determined on the basis of ideas of nonlinear dynamics. A method of extracting such a “dynamic” component in the process studied requires that its inherent properties be taken into account. This paper develops a method for separating components of a dynamic system from the superimposed component of an external process using invariant properties of the system. The applicability and effectiveness of the method is demonstrated by comparing model calculations with the use of a smoothing moving window of a variable width and real geophysical data.  相似文献   

17.
Since 2002 the two GRACE satellites observe the time varying gravity signal mainly caused by the sum of mass variations within the Earth subsystems ocean, atmosphere, and continental hydrosphere. It is a challenging problem to separate the integral GRACE signal and to identify and quantify the mass variations of the individual subsystems. This work proves first by a closed loop simulation that such a decomposition is successful by means of empirical orthogonal functions (EOF) derived from geophysical models and a least-squares adjustment with a multivariate Gauss–Markov model with time coefficients parameterized. The geophysical models are used to synthesize GRACE observations which are subsequently separated leading to time coefficients coinciding with those of the predefined models. In a second step the separation is performed with real, unfiltered time series of 5 years of monthly GRACE gravity field models (with atmospheric and oceanic background models reconstructed) and a limited number of EOFs. The reconstructed time coefficients are in good agreement with the original ones and exhibit high correlations (0.70 for ocean, 0.91 for atmosphere and 0.93 for continental hydrosphere). Analysis of GRACE residuals and the correlation among the time coefficients substantiate a successful identification.  相似文献   

18.
本文根据中国东部陆缘地区--郯庐断裂带两侧地壳与上地幔结构和综合地球物理场特征,阐述了其与一串含油气裂谷型盆地的分布规律,并讨论了其沉积和演化。 结果表明:这一系列含油气盆地,分布在上地幔顶部的隆起地区,均具有异常的地球物理场特征。这些盆地中有着巨厚的中、新生代的沉积,具备了良好的生油与储油条件。它们的形成与太平洋板块和欧亚板块的运动密切相关,并且受着深部地幔物质运移的制约。  相似文献   

19.
综合利用7条地学断面(GGT)资料研究了大兴安岭重力梯级带附近的壳幔地球物理特征模式.分析了形成上述地球物理特征的3种因素:东亚大陆边缘周边三大板块运动、地幔流运动和地幔热柱。对大兴安岭重力梯级带的重力异常的正演拟合结果表明,壳幔物质密度不均匀和莫霍界面超伏造成该带的重力异常,地应力场的综合作用产生了该重力梯级系列地球物理特征。最后,探讨了大兴安岭重力梯级带成因机制,提出了以“挤”、“涌”为动力的“三结点模型”。  相似文献   

20.
基于我国多年在青藏高原地区的深部地球物理探测研究及其所揭示的岩石层结构、构造和地球物理场特征,讨论了高原地壳短缩、增厚与隆升的深层过程和动力机制,提出了对青藏高原深化研究必须重视的几个问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号