共查询到20条相似文献,搜索用时 15 毫秒
1.
Sediment source changes over the last 250 years in a dry-tropical catchment, central Queensland, Australia 总被引:2,自引:0,他引:2
Rivers draining to the Great Barrier Reef are receiving increased attention with the realisation that European land use changes over the last 150 years may have increased river sediment yields, and that these may have adversely affected the reef environment. Mitigation of the effects associated with such changes is only possible if information on the spatial provenance and dominant types of erosion is known. To date, very few field-based studies have attempted to provide this information. This study uses fallout radionuclide (137Cs and 210Pbex) and geochemical tracing of river bed and floodplain sediments to examine sources over the last 250 years for Theresa Creek, a subcatchment of the Fitzroy River basin, central Queensland, Australia. A Monte Carlo style mixing model is used to predict the relative contribution of both the spatial (geological) sources and erosion types. The results indicate that sheetwash and rill erosion from cultivated basaltic land and channel erosion from non-basaltic parts of the catchment are currently contributing most sediment to the river system. Evidence indicates that the dominant form of channel erosion is gully headcut and sidewall erosion. Sheetwash and rill erosion from uncultivated land (i.e., grazed pasture/woodland) is a comparatively minor contributor of sediment to the river network. Analysis of the spatial provenance of floodplain core sediments, in conjunction with optical dating and 137Cs depth profile data, suggests that a phase of channel erosion was initiated in the late nineteenth century. With the development of land underlain by basalt in the mid-twentieth century the dominant source of erosion shifted to cultivated land, although improvements in land management practices have probably resulted in a decrease in sediment yield from cultivated areas in the later half of the twentieth century. On a basin-wide scale, because of the limited spatial extent of cultivation, channel sources are likely to be the largest contributor of sediment to the Fitzroy River. Accordingly, catchment management measures focused on reducing sediment delivery to the Great Barrier Reef should focus primarily on decreasing erosion from channel sources. 相似文献
2.
Sediment yield from small arid basins, particularly in the Mojave Desert, is largely unknown owing to the ephemeral nature of these fluvial systems and long recurrence interval of flow events. We examined 27 reservoirs in the northern and eastern Mojave Desert that trapped sediment from small (< 1 km2) drainage basins on alluvial fans over the past 100 yr, calculated annual sediment yield, and estimated the average recurrence interval (RI) of sediment-depositing flow events. These reservoirs formed where railbeds crossed and blocked channels, causing sediment to be trapped and stored upslope. Deposits are temporally constrained by the date of railway construction (1906–1910), the presence of 137Cs in the reservoir profile (post-1952 sediment), and either 1993, when some basins breached during regional flooding, or 2000–2001, when stratigraphic analyses were performed. Reservoir deposits are well stratified at most sites and have distinct fining-upward couplets indicative of discrete episodes of sediment-bearing runoff. Average RI of runoff events for these basins ranges from 2.6 to 7.3 yr and reflects the incidence of either intense or prolonged rainfall; more than half the runoff events occurred before 1963. A period of above-normal precipitation, from 1905 to 1941, may have increased runoff frequency in these basins. Mean sediment yield (9 to 48 tons km− 2 yr− 1) is an order of magnitude smaller than sediment yields calculated elsewhere and may be limited by reduced storm intensity, the presence of desert pavement, and shallow gradient of fan surfaces. Sediment yield decreases as drainage area increases, a trend typical of much larger drainage basins where sediment-transport processes constrain sediment yield. Coarse substrate and low-angle slopes of these alluvial fan surfaces likely limit sediment transport capacity through transmission losses and channel storage. 相似文献
3.
Characteristics, controlling factors and importance of deep gullies under cropland on loess-derived soils 总被引:3,自引:2,他引:3
Several studies describe the formation and importance of shallow ephemeral gullies under cropland (depth<0.8 m). Some of these gullies may develop into channels with a depth of more than 0.8 m (up to 4 m). Despite their spectacular nature, these deep gullies have not yet been studied in detail. Therefore, the objectives of this study are to analyze the characteristics and the controlling factors of these deep gullies, as well as their importance in terms of sediment production.Comparison of a dataset with 28 deep gullies, formed in the period 1985–2003 and 123 shallow ephemeral gullies formed in the period 1994–1999 in central Belgium indicates that the deep gullies have clearly different morphological characteristics compared to shallow ephemeral gullies. Several factors were analyzed to understand the formation of deep gullies. Plotting runoff contributing area versus slope of the soil surface at the gully head indicates that the topographical threshold for deep gully formation is significantly larger compared to ephemeral gully formation. Deep gullies form on short, steep valley sides and their position is strongly affected by the presence of linear landscape elements. All deep gullies incised on landscape positions with a very erodible soil horizon at shallow depth. Analysis of causative rainfall showed no significant differences in incision thresholds between rills and shallow ephemeral gullies on the one hand and deep gullies on the other hand.The relation between area-specific sediment yield in central Belgium and drainage area, indicates that the development of deep gullies contributes significantly to the sediment output of small rural catchments and causes peaks in the mean area-specific sediment yield that are up to a factor of three higher compared with catchments where shallow ephemeral gullying occurs. 相似文献
4.
Guifang Yang Zhongyuan Chen Fengling Yu Zhanghua Wang Yiwen Zhao Zhangqiao Wang 《Geomorphology》2007,85(3-4):166
This study examines the characteristics of sediment rating parameters recorded at various gauging stations in the Yangtze Basin in relation to their controls. Our findings indicate that the parameters are associated with river channel morphology of the selected reaches. High b-values (> 1.600) and low log(a) values (< − 4.000) occur in the upper course of the steep rock-confined river, characterizing high unit stream power flows. Low b-values (< 0.900) and high log(a) values (> − 1.000) occur in the middle and lower Yangtze River associated with meandering reaches over low gradients, and can be taken to imply aggradation in these reaches with low stream power. Higher b-values (0.900–1.600) and lower log(a)-values (− 4.000 to − 1.000) characterize the reaches between Yichang and Xinchang, immediately below the Three Gorges. These values indicate channel erosion and bed instability that result from changes in channel gradient from the upstream steep valley to downstream low slope flood plain settings. Differences in channel morphology accompany these changes. Confined, V-shaped valleys occur upstream and are replaced downstream by broad U-shaped channels. The middle and lower Yangtze shows an apparent increase in channel instability over the past 40 years. This inference is based on sediment rating parameters from various gauging stations that record increasing b-values against decreasing log(a)-values over that time. Analysis of the sediment load data also reveals a strong correlation between changes in sediment rating curve parameters and reduction of annual sediment budget (4.70 × 108 t to 3.50 × 108 t/year, from the 1950s to 1990s), largely due to the damming of the Yangtze and sediment load depletion through siltation in the Dongting Lake. Short-term deviations from the general trends in the sediment rating parameters are related to hydroclimatic events. Extreme low b-values and high log(a)-values signify the major flood years, while the reverse indicates drought events. When compared with rivers from other climate settings, it is evident that the wide range of values of the Yangtze rating parameters reflects the huge discharge driven by the monsoon precipitation regime of eastern China. 相似文献
5.
Fallout radionuclide tracers identify a switch in sediment sources and transport-limited sediment yield following wildfire in a eucalypt forest 总被引:2,自引:0,他引:2
S.N. Wilkinson P.J. Wallbrink G.J. Hancock W.H. Blake R.A. Shakesby S.H. Doerr 《Geomorphology》2009,110(3-4):140-151
Fire can alter sediment sources and transport rates in river basins, changing landforms and aquatic habitats and degrading downstream water quality. Variability in the response between environments, between fires, and with time since fire makes predicting the catchment-scale effect of individual fires difficult. This study applies the fallout radionuclides 137Cs and 210Pbxs to trace the sources and transport of fine sediment through a river network following a wildfire of moderate to extreme severity in the 629-km2 eucalypt-forested Nattai River water-supply catchment near Sydney, Australia. The tracer analysis showed that post-fire erosion caused a switch in fine (< 10 µm) sediment sources from 80% subsoil derived from gully and river bank erosion to 86% topsoil derived from hillslope surface erosion. The fine sediment phosphorus content increased 4–10 fold over pre-fire levels. Annual post-fire sediment yields estimated from suspended solids rating curves were 109–250 times higher than they would have been without fire. A large additional amount of sediment remained stored within the river network for at least four years, particularly in lower-gradient reaches. Analysis of a sediment core showed that surface erosion following a previous fire had supplied at least 29% of total catchment sediment yield over the past 36 years. It is concluded that wildfire can alter catchment sediment budgets in two ways. Firstly, a spatially-diffuse pulse of elevated erosion is associated with moderate or intense rainfall events in post-fire years. Secondly, pulses of elevated catchment sediment yield are driven by the timing and river sediment transport capacity of runoff events. Severe post-fire erosion and high interannual hydrologic variability can result in large sediment stores persisting within the river network for many years. Fallout radionuclide tracers are shown to be useful in quantifying fine sediment sources and transport dynamics following wildfire, and the contribution of wildfire to catchment sediment yield. 相似文献
6.
Determining the contribution of gully erosion to the total sediment yield is important for enhancing decision-making regarding sediment abatement and soil conservation measures. The dry-hot valley region of the Jinsha River is one of the most intensive areas of gully erosion in China. However, the contribution of gully erosion to total sediment production in this region is unclear. Instead of using the source tracing technique commonly employed in other studies, this study provides a method of rapidly reconstructing historical sediment yields based on the properties of sediment that accumulated in an undrained pond at a small gully watershed outlet. We produced a three-dimensional model in geographical information system software to calculate the volume of each layer of accumulated pond deposits from 2006 to 2011. Moreover, we estimated sheet erosion amounts using the Universal Soil Loss Equation. The results showed that sheet erosion accounted for between 14.28 and 23.39% of the total sediment yield in the watershed in the case that the sediment delivery ratio was 100%. Therefore, gully erosion is the major source of total soil loss in this area, and effective soil measures of gully erosion mitigation are crucial for managing the sediment yield. 相似文献
7.
风力侵蚀对无定河流域产沙作用定量分析 总被引:6,自引:2,他引:6
本文利用无定河的水文泥沙观测日值资料和该流域内及周围气象站气象观测月值资料,通过流域的水沙关系与各年风蚀气候因子,估计了风力作用对无定河流域产沙的贡献量。结果揭示出:在风沙区,由于水力的搬运作用仍然决定了流域输沙量的大小,所以风力作用产生的输沙模数很小,在总输沙量中只占约1/4;风力作用增加输沙量比例最大的地区是穿过风沙区和丘陵沟壑区交界区,既有活跃的风沙活动又有强烈的黄土水蚀,风力和水力形成强耦合侵蚀搬运作用的干流上游,占输沙量的1/3以上;位于靠近风沙区并有片沙分布的黄土丘陵沟壑区的流域,风蚀产沙占流域输沙量的比例约为1/10;在黄土丘陵沟壑区,相对强烈的水力侵蚀,风力作用对产沙影响较小。整个无定河流域风力作用产生的输沙量包括入河风沙、降尘以及风力与水力的耦合侵蚀搬运作用可能增加的泥沙,接近流域总输沙量的1/6。 相似文献
8.
Modelling the runoff-sediment yield relationship using a proportional function in hilly areas of the Loess Plateau, North China 总被引:7,自引:0,他引:7
Based on data observed at the 12 small watersheds in hilly areas of the Loess Plateau, North China, the relationship between event runoff volume and sediment yield is examined. The results reveal that the runoff-sediment yield relationship at the inter-event timescale is mainly determined by the runoff-sediment concentration relationship at the intra-event timescale. In the study area, the sediment concentration tends to be stable when the flow discharge exceeds a certain critical value. Many factors that are important for determining the characteristics of low-magnitude events, such as flow discharge, particle size of fluvial sediment, and accumulation of loose material on land surfaces prior to a rainstorm, appear to have little importance for high-magnitude events. Consequently, mean sediment concentration tends to be stable for large flood events, suggesting a strong similarity between the two flow-sediment relationships at inter-and intra-event temporal scales. Furthermore, a proportional function is proposed to predict event sediment yield, and the correspondence between the predicted and observed sediment yields is examined. The performance of the model is good for high-magnitude events, especially extreme events. The applicability of the proposed model at the annual timescale is also discussed. 相似文献
9.
Assessment of sidewall erosion in large gullies using multi-temporal DEMs and logistic regression analysis 总被引:3,自引:0,他引:3
Although in the last decades gully erosion has been a thriving research field, few studies have specifically addressed the contribution and location of sidewall erosion processes in gullies. In this paper, sidewall erosion in some large gullies in a Mediterranean area (Anoia-Penedès, NE Spain) is mapped and assessed for two time intervals (1975–1995 and 1995–2002), using detailed digital elevation models derived from aerial photographs at a scale of 1:5000 to 1:7000. Logistic regression analysis is applied to compute the probability of occurrence of gully sidewall erosion from terrain variables. The results confirm the complex nature of sidewall processes, whose intensity is most probably related to rainfall characteristics. Prolonged wet soil conditions in the period 1995–2002, together with the large and high-intensity rainfall of an extreme event occurred on 10th June 2000, help to explain the different sediment production rates: 16±0.4 Mg ha−1 year−1 in 1975–1995 and 83±6.3 Mg ha−1 year−1 in 1995–2002. The logistic regression analysis revealed that gully-wall slope angle was the main factor controlling gully sidewall failure. In gully walls with high slope angles, tension crack development is the main process promoting wall collapse. The application of the logistic regression model showed a high overall accuracy (87%) but over 50% of commission and omission errors for the class of interest (sidewall erosion), in agreement with the variance explained by the model. 相似文献
10.
AbstractErosion rates in residual limestone soils in a humid climate were measured for 10 years at one site, and for 4 years at another site, using erosion pins. Erosion pins were placed in gully floors and on convex divides between adjacent gullies, on abandoned land where vegetation had been removed. We measured an average erosion rate of 20 mm yr?1 over 10 years at one site and only 5 mm yr?1 over 4 years at another site where chert gravel was common on the surface. The 10-year average erosion rate of divides (26 mm yr?1) was significantly greater than the average erosion rate of gullies (14 mm yr?1), suggesting control by different processes, some of which may be seasonal. In winter, it was observed that frost action produced a thin layer of loose soil on the surface of divides. In summer, a hardpan developed on divides, as the soil loosened by winter frosts was transported to gullies, likely by rainsplash or dry ravel. The diffusive processes of frost action, rainsplash, and dry ravel appear to shape the convex divides in this study. Down-cutting of gullies requires channelized flow produced by intense rainfall, which is more common in summer for this location. 相似文献
11.
Relations between interrill erosion processes and sediment particle size distribution in a semiarid Mediterranean area of SE of Spain 总被引:10,自引:0,他引:10
Erosion and sediment characteristics were measured using simulated rainfall on two cultivated soils of contrasting lithology (Quaternary calcareous colluvium and Tertiary marls) in a semiarid Mediterranean area of SE Spain. Two rainfall intensities, high (56.0±2.4 mm h−1) and medium (31.4±1.4 mm h−1), were used in order to know the mechanisms involved in each selected condition. For each simulated event, runoff and sediment were sampled at 1-min intervals on a 1-m wide by 2-m long erosion plot. The erosion rate was calculated as the total amount of soil lost divided by the time period of the test. The duration of the test was that needed to reach steady state runoff, an average time of 24.5 min for Quaternary calcareous colluvium and 17.7 min for Tertiary marls. The size distribution of the transported sediment in the field (effective size distribution) was compared with equivalent measurements of the same samples after chemical and mechanical dispersion (ultimate size distribution) to investigate the detachment and transport mechanisms involved in sediment mobilisation. The results showed that the soil type determined the hydrological response, regardless of the rainfall intensity. The erosional response was, however, determined by the rainfall and soil surface characteristics.In Quaternary calcareous colluvial soils, the predominant erosion process depended on the rainfall intensity, with a prevailing detachment-limited condition in high-intensity events and prevailing transport-limited conditions in those events of medium intensity. These differences in the main erosion processes were reflected in the size of the transported material and in the change in sediment size within the storm. Thus, a time-dependent size distribution of the eroded material (decreasing coarse fractions and increasing fine fractions with runoff time) was observed for high-intensity events. In medium-intensity events, on the other hand, the time-independent size distribution of the eroded material indicated transport-limited erosion.Due to the rapid surface crusting on the Tertiary marl soil, no differences in the main erosion processes or in the sediment size distribution occurred for the different rainfall intensities tested. The erosion of marl soils was determined mainly by the limited quantity of available sediment.The effective size of material was a more sensitive parameter than the ultimate size of the sediment to study the way in which the sediment was transported. 相似文献
12.
M.J. Machado G. Benito M. Barriendos F.S. Rodrigo 《Journal of Arid Environments》2011,75(12):1244-1253
The semiarid SE fringe of the Iberian Peninsula is considered one of the most sensitive to extreme floods and droughts in the western Mediterranean area. The controlling climatic mechanisms are nevertheless difficult to predict and model. A combined documentary-sedimentary-instrumental 500 years comprehensive register of climatic data (rainfall and flooding) was collated for analysing the decadal to centennial scale hydrological response. Wet years are closely linked to the presence of autumn (SON) positive anomalies (e.g. early 18th century). However, continuous, decadal wet periods seem to correspond in time to both autumn and spring (MAM) positive rainfall anomaly years (e.g. 1570/90, 1830/40, 1870/1900). High frequencies of large floods were registered during the late Medieval Warm Period (AD 950–1200), and during some decades of the Little Ice Age with an average of 0.22 floods/year (1440–1490, 1520–1570, 1600–1740, 1770–1800, 1820–1840, 1870–1900), but flood frequency decreased in the 20th Century (1945–1973; 0.14 floods/year). During wet phases (e.g. late 19th century), large floods occurred during all seasons, whereas a predominantly autumn extreme flooding (>70%) is linked to a rainfall patterns with higher inter-annual variability (e.g. 1945–1973). The recurrence of dry phases is higher since early 17th century, and the frequency of continuous wetter phases lower than the ones with marked annual variability. This results in a trend with less frequent high magnitude catastrophic floods. This study confirms a shift from autumn rainfall maxima towards winter since the early 1990's. The tendency towards longer dry periods and increased inter-annual variability (with 1–3 years maximum wet spells) and a changing seasonal rainfall distribution are thought to be key in modelling projections for this specific arid Mediterranean region. 相似文献
13.
Robert G. Hatfield Barbara A. Maher Jacqueline M. Pates Philip A. Barker 《Journal of Paleolimnology》2008,40(4):1143-1158
We examine sediment dynamics in an upland, temperate lake system, Lake Bassenthwaite (NW England), in the context of changing
climate and land use, using magnetic and physical core properties. Dating and analysis of the sedimentary records of nine
recovered cores identify spatially variable sedimentation rates across the deep lake basin. Mineral magnetic techniques, supported
by independent geochemical analyses, identify significant variations both in sediment source and flux over the last ∼2100 years.
Between ∼100 years BC and ∼1700 AD, sediment fluxes to the lake were low and dominated by material sourced from within the
River Derwent sub-catchment (providing 80% of the hydraulic load at the present day). Post-1700 AD, the lake sediments became
dominantly sourced from Newlands Beck (presently providing ∼10% of the lake’s hydraulic load). Three successive, major pulses
of erosion and increased sediment flux appear linked to specific activities within the catchment, specifically: mining activities
and associated deforestation in the mid-late nineteenth century; agricultural intensification in the mid-twentieth century
and, within the last decade, the additional possible impact of climate change. These results are important for all upland
areas as modifications in climate become progressively superimposed upon the effects of previous and/or ongoing anthropogenic
catchment disturbance. 相似文献
14.
Small gullies occur in forested gully systems on the undulating loess plateau in southern Poland. The old gully hillslopes are mainly covered with 200-year old beech trees in contrast with the surface of the summit plateau, which is cultivated agricultural land. Beech roots are exposed in the gullies through erosion. Wood vessels in the root tree rings divide into early wood and late wood and, after the roots are exposed, start to make fewer vessels. These anatomical changes in root tree rings allow us to date erosion episodes.Small gullies form in a different manner on the valley floor and on hillslopes. In valley bottoms, erosion features are often formed at some distance from one another, and in time small gullies combine to form a single, longer one. Depending on local conditions, such as the hillslope profile, hillslopes may exhibit headward erosion or may be eroded downwards. Hilllope gullies may be transformed into side valleys as a result of gradual widening and deepening.Dating the exposure of roots indicates that small gullies had already formed in the valley system by 1949. Intensive gully erosion was recorded between 1984 and 2002, during intense precipitation in 1984 and, of particular note, during the extraordinary flood of 1997 which affected all of Central Europe. The mean rate of small gully erosion in the old gully system studied is 0.63 m/year. On hillslopes the mean gully erosion rate is 0.21–0.52 m/year, and on the valley bottoms 0.18–1.98 m/year. High bottom erosion rates resulted from the emergence of long gullies during the erosion episodes in 1984 and 1997. Sheet flow in valley floors intensifies at times of heavy rainfall which causes long gullies to form.Taking into account the fact that conditions favoured erosion, the rate at which the old gullies under forest were transformed should be considered slow. New side gullies form slowly within the valley and it appears that if erosion progressed at the rate observed, new side valleys would take a few hundred years to form. 相似文献
15.
Armando Molina Gerard Govers Jean Poesen Hendrik Van Hemelryck Bert De Bivre Veerle Vanacker 《Geomorphology》2008,98(3-4):176
A large spatial variability in sediment yield was observed from small streams in the Ecuadorian Andes. The objective of this study was to analyze the environmental factors controlling these variations in sediment yield in the Paute basin, Ecuador. Sediment yield data were calculated based on sediment volumes accumulated behind checkdams for 37 small catchments. Mean annual specific sediment yield (SSY) shows a large spatial variability and ranges between 26 and 15,100 Mg km− 2 year− 1. Mean vegetation cover (C, fraction) in the catchment, i.e. the plant cover at or near the surface, exerts a first order control on sediment yield. The fractional vegetation cover alone explains 57% of the observed variance in ln(SSY). The negative exponential relation (SSY = a × e−b C) which was found between vegetation cover and sediment yield at the catchment scale (103–109 m2), is very similar to the equations derived from splash, interrill and rill erosion experiments at the plot scale (1–103 m2). This affirms the general character of an exponential decrease of sediment yield with increasing vegetation cover at a wide range of spatial scales, provided the distribution of cover can be considered to be essentially random. Lithology also significantly affects the sediment yield, and explains an additional 23% of the observed variance in ln(SSY). Based on these two catchment parameters, a multiple regression model was built. This empirical regression model already explains more than 75% of the total variance in the mean annual sediment yield. These results highlight the large potential of revegetation programs for controlling sediment yield. They show that a slight increase in the overall fractional vegetation cover of degraded land is likely to have a large effect on sediment production and delivery. Moreover, they point to the importance of detailed surface vegetation data for predicting and modeling sediment production rates. 相似文献
16.
Prolonged impact of earthquake-induced landslides on sediment yield in a mountain watershed: The Tanzawa region, Japan 总被引:5,自引:0,他引:5
Takashi Koi Norifumi Hotta Ituro Ishigaki Norimasa Matuzaki Yoshimi Uchiyama Masakazu Suzuki 《Geomorphology》2008,101(4):692-702
To determine for how long a landslide affects sediment discharge, the sediment yields of 15 check-dam basins were compared with the time series of landslide distributions in a mountain basin in the Tanzawa region, central Japan. The distribution of sediment yield was quantitatively estimated from deposition in the sediment pools of check dams. The relationship between the landslide history and sediment discharge in the Nakagawa River basin was examined for an approximately 80-year period. Two major landslide events occurred during this period: the 1923 Kanto Earthquake and the 1972 disaster caused by heavy rainfall. The resulting trend in sediment discharge of the whole basin, estimated using reservoir sedimentation in the Miho Dam at its base, was nearly constant, with high sediment discharge (2897 m3 km− 2 yr− 1) in the intervening quarter-century, despite the recovery of vegetation on landslide areas in this period. Comparisons of the landslide distributions resulting from the two disasters, the sediment yields of check-dam basins, and the sediment discharge of the whole basin indicate that recent sediment discharge contains landslide debris that was originated by the Kanto Earthquake that occurred over 80 years ago. Thus, to understand high sediment discharge, it is essential to investigate not only the current basin condition and recent events, but also the landslide history of the basin for at least the previous 100 years. 相似文献
17.
Spatial distribution and morphologic characteristics of gullies in the Black Soil Region of Northeast China: Hebei watershed 总被引:4,自引:0,他引:4
Gully erosion in the Black Soil Region of China has posed a threat to food security. This study aimed to determine the spatial distribution and morphologic characteristics of gullies in the region and their topographic thresholds. A 28 km2 watershed was surveyed and 117 gullies measured. The results showed that: (1) Gullies were distributed equally on both hillslope and valley floor positions, with a total gully density of .66 km/km2. (2) The mean depth, width, and cross-sectional area of gullies were .74 m, 2.39 m, and 2.43 m2, respectively. These characteristics varied among gullies according to their topographic positions and slope gradients. Individual gully volume (V) was well predicted from gully length (L) by V = 2.08L0.96 (r2 = .66). Total gully volume (V) of each sub-watershed was predicted from mean slope gradient (S) and drainage area (A) as V = 275800S ? 8600A (r2 = .73). (3) Gully erosion was more serious in steeper sub-watersheds and steeper hillslope positions. Gullies were wider in regions with relatively larger drainage areas, except for those developed in the main valley. The topographic threshold for gully initiation was S = .10A?0.34, which indicated gully erosion was dominated by surface runoff. (4) Human activities, such as road construction, played a significant role in gully erosion. 相似文献
18.
Differences in hillslope runoff and sediment transport rates within two semi-arid catchments in southeast Spain 总被引:1,自引:1,他引:1
This paper focuses on hillslope runoff and sediment transport within two catchments in southeast Spain. Five monitoring sites were established on hillslope concavities throughout the two catchments. The techniques used were mini-crest stage recorders, spray-painted lines, sediment traps and tipping bucket rain gauges (established during previous research). Results show that a storm event in the Rambla Nogalte on 30 June 2002 of 83.0 mm was responsible for a maximum runoff depth of 12 cm and a maximum hillslope sediment transport of 1886 cm3 m−1. The same storm in the Rambla de Torrealvilla produced 53.4 mm of rainfall on the 1 July 2002, had a maximum runoff depth of 26 cm and resulted in 2311 cm3 m−1 of sediment transport. There is evidence to suggest that measured sediment transport is related to runoff and a qualitative estimate of Morphological Runoff Zones (MRZ). Sediment transport and depth of runoff varied dramatically with lithology; marl sites produced most runoff and sediment transport, followed by the sites of mixed red and blue schist, then blue schist. These results are important for understanding the behaviour of slopes and show that for short lived storms with high, but not rare, rainfall intensities and total rainfall amounts, runoff can cause significant hillslope sediment transport in semi-arid areas. 相似文献
19.
Slope–channel coupling and in-channel sediment storage can be important factors that influence sediment delivery through catchments. Sediment budgets offer an appropriate means to assess the role of these factors by quantifying the various components in the catchment sediment transfer system. In this study a fine (< 63 µm) sediment budget was developed for a 1.64-km2 gullied upland catchment in southeastern Australia. A process-based approach was adopted that involved detailed monitoring of hillslope and bank erosion, channel change, and suspended sediment output in conjunction with USLE-based hillslope erosion estimation and sediment source tracing using 137Cs and 210Pbex. The sediment budget developed from these datasets indicated channel banks accounted for an estimated 80% of total sediment inputs. Valley floor and in-channel sediment storage accounted for 53% of inputs, with the remaining 47% being discharged from the catchment outlet. Estimated hillslope sediment input to channels was low (5.7 t) for the study period compared to channel bank input (41.6 t). However an estimated 56% of eroded hillslope sediment reached channels, suggesting a greater level of coupling between the two subsystems than was apparent from comparison of sediment source inputs. Evidently the interpretation of variability in catchment sediment yield is largely dependent on the dynamics of sediment supply and storage in channels in response to patterns of rainfall and discharge. This was reflected in the sediment delivery ratios (SDR) for individual measurement intervals, which ranged from 1 to 153%. Bank sediment supply during low rainfall periods was reduced but ongoing from subaerial processes delivering sediment to channels, resulting in net accumulation on the channel bed with insufficient flow to transport this material to the catchment outlet. Following the higher flow period in spring of the first year of monitoring, the sediment supplied to channels during this interval was removed as well as an estimated 72% of the sediment accumulated on the channel bed since the start of the study period. Given the seasonal and drought-dependent variability in storage and delivery, the period of monitoring may have an important influence on the overall SDR. On the basis of these findings, this study highlights the potential importance of sediment dynamics in channels for determining contemporary sediment yields from small gullied upland catchments in southeastern Australia. 相似文献
20.
Erosion rates and sediment budgets in vineyards at 1-m resolution based on stock unearthing (Burgundy, France) 总被引:1,自引:0,他引:1
Jrme Brenot Amlie Quiquerez Christophe Petit Jean-Pierre Garcia 《Geomorphology》2008,100(3-4):345-355
A new and simple method is developed to efficiently quantify erosion and deposition rates based on stock unearthing measurements. This is applicable to spatial scales ranging from plot to hillslopes, and to time scales ranging from single hydrologic events to centennial scales. The method is applied to a plot area on vineyard hillslopes in Burgundy (Monthélie, France), with measurement of 4328 vine plants. A sediment budget established at the plot scale shows a mean soil lowering of 3.44 ± 1 cm over 20 years, involving a minimal erosion rate of 1.7 ± 0.5 mm yr− 1. Locally, erosion rates can reach up to 8.2 ± 0.5 mm yr− 1.This approach allows the sediment redistribution to be mapped and analyzed at 1-m resolution. It provides novel insights into the characterization of erosion patterns on pluri-decennial scales and into the analysis of spatial distribution of erosion processes on cultivated hillslopes. 相似文献